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Abstract: We consider prediction when distributions of current and future obser-

vations may differ. We derive the asymptotic Kullback–Leibler risks of Bayesian

predictive distributions when both the numbers of current and future observations

grow to infinity. Based on these results, we construct model selection criteria when

the true distributions of current and future observations may differ. Through nu-

merical experiments, we show that Bayesian predictive distributions based on the

proposed model selection criteria work well.
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1. Introduction

We consider prediction of future observations on the basis of current ob-

servations. Let x(N) = (x1, . . . , xN )> be current observations and let y(M) =

(xN+1, . . . , xN+M )> be future observations. The joint distribution of x(N) and

y(M) is assumed to be a distribution pθ∗(x
(N))× qθ∗(y(M)) in a parametric model

{pθ(x(N)) × qθ(y(M)) : θ ∈ Θ}, where Θ is a parameter space in Rd. Here we

assume that distributions pθ(x
(N)) and qθ(y

(M)) may differ with an unknown pa-

rameter θ. In this paper, we consider all random variables x1, . . . , xN , xN+1, . . . ,

xN+M to be independent in the model and also consider that the dimension d is

fixed and does not grow to infinity as the number N grows to infinity.

In applications, we often encounter parametric models in which distributions

pθ(x
(N)) and qθ(y

(M)) differ. The widely used linear regression model is a typical

example. Suppose that the distribution pθ(x
(N)) is given by the N -dimensional

Gaussian distribution NN (Zθ, σ2IN ), where Z is an N × d-dimensional design

matrix and θ is a d-dimensional parameter, and suppose that the distribution

qθ(y
(M)) is given by the M -dimensional Gaussian distribution NM (Z̃θ, σ2IM ),

where Z̃ is an M × d-dimensional design matrix. For example, for an un-

known function f(t) and a random function ε(t) of which each distribution
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at t is independent and N1(0, σ2) with known σ2 > 0, we observe x(N) =

(x(t1), x(t2), . . . , x(tN ))> from a curve x(t) given by x(t) = f(t) + ε(t) at (t1, . . . ,

tN ), and predict y(M) = (x(tN+1), x(tN+2), . . . , x(tN+M ))> from the curve x(t)

at (tN+1, . . . , tN+M ). For simplicity, we model f(t) as f(t) = θ1 + θ2t. Thus, the

parametric model for x(N) and y(M) is given by {φN (x(N);Zθ, σ2IN )×φM (y(M);

Z̃θ, σ2IM ) : θ ∈ R2} where θ = (θ1, θ2)>, φd(·;µ,Σ) is the density of Nd(µ,Σ),

Z =

 1 t1
. . . . . .

1 tN

 and Z̃ =

 1 tN+1

. . . . . .

1 tN+M

 .

We discuss the details of the above example in Section 4.

First, we discuss performance of a predictive distribution q̂(y(M);x(N)) when

the true distributions pθ∗(x
(N)) and qθ∗(y

(M)) may differ. We measure the per-

formance of q̂(y(M);x(N)) using the Kullback–Leibler risk∫
pθ∗(x

(N))

∫
qθ∗(y

(M)) log
qθ∗(y

(M))

q̂(y(M);x(N))
dy(M)dx(N).

We show that the Bayesian predictive distribution based on prior density π(θ)

on Θ,

qπ(y(M)|x(N)) :=

∫
qθ(y

(M))pθ(x
(N))π(θ)dθ∫

pθ(x(N))π(θ)dθ
,

has a smaller Kullback–Leibler risk than the plug-in predictive distribution based

on the maximum likelihood estimator θ̂ when both the numbers N and M grow

to infinity. Komaki (1996, 2015) and Hartigan (1998) showed that the Bayesian

predictive distribution has a smaller Kullback–Leibler risk than the plug-in pre-

dictive distribution when M is 1. Our result is an extension of these works

to settings in which both the numbers N and M grow to infinity, which often

appear. The typical example is the example in the previous paragraph.

Second, we discuss model selection when the true distributions of x(N) and

y(M) may differ. For such a setting, we propose model selection criteria that are

asymptotically unbiased estimators of the Kullback–Leibler risk of the Bayesian

predictive distribution. Akaike’s Information Criterion (AIC; Akaike (1973))

and Predictive Information Criterion (PIC; Kitagawa (1997)) constitute such

estimators for the plug-in predictive distribution and the Bayesian predictive

distribution, respectively, when the true distribution of y(M) is identical to that

of x(N). However, these criteria are not asymptotically unbiased when the true

distributions of x(N) and y(M) differ; our model selection criteria represent the

extensions of PIC to this setting. We extend PIC instead of AIC because the
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Bayesian predictive distribution has a smaller Kullback–Leibler risk than the

plug-in predictive distribution.

This paper is organized as follows. In Section 2, we discuss the performance

of the Bayesian predictive distribution. In Section 3, we propose a model selec-

tion criterion and its bootstrap adjustment. In Section 4, we present numerical

experiments to compare performances of several model selection criteria.

2. Bayesian Predictive Distributions When Both the Numbers N and

M Grow to Infinity

In this section, we discuss the Kullback–Leibler risk of the predictive dis-

tribution. We consider two parametric models for the joint distribution of x(N)

and y(M), the full model M := {pθ(x(N)) × qθ(y
(M)) : θ ∈ Θ ⊂ Rd} and the

sub-model Ms := {pθs(x(N)) × qθs(y(M)) : θs ∈ Θs ⊂ Θ}, where we denote the

dimension of Θs by ds (≤ d). We discuss the Kullback–Leibler risk of the pre-

dictive distribution based on the sub-model. Since the sub-model is included in

the full model, we decompose parameter θ in Θ into θ(θs, γs) using an additional

parameter γs ∈ Rd−ds , where θ(θs, 0) takes a value in Θs. We denote the true

parameter value with respect to (θs, γs) by (θ∗s , γ
∗
s ).

We assume that the true parameter value is given by(
θ∗s
γ∗s

)
=

(
θs,0

0

)
+

1√
N
hs (2.1)

for some θs,0 ∈ Θs and some hs ∈ Rd. This assumption is called local misspecifi-

cation and is an extension of the setting in which the true distribution is included

in the sub-model. For further discussions concerning local misspecification, see

Shimodaira (1997), Hjort and Claeskens (2003), and Claeskens and Hjort (2003).

We denote the Kullback–Leibler risk of predictive distribution q̂(y(M);x(N))

by

Rs(θ
∗, q̂) =

∫
pθ∗(x

(N))

∫
qθ∗(y

(M)) log
qθ∗(y

(M))

q̂(y(M);x(N))
dy(M)dx(N)

and denote the Bayesian predictive distribution based on prior density πs(θs) on

Θs by

qπs
(y(M)|x(N)) =

∫
qθs(y

(M))pθs(x
(N))πs(θs)dθs∫

pθs(x
(N))πs(θs)dθs

.

The Fisher information matrices of pθs(x
(N)) and qθs(y

(M)) at θs,0 are g
(N)
s (θs,0)

and g̃
(M)
s (θs,0), respectively, and the Fisher information matrix of qθ(y

(M)) with



1208 KEISUKE YANO AND FUMIYASU KOMAKI

respect to (θs, γs) at (θ∗s , γ
∗
s ) is g̃(M)(θ∗s , γ

∗
s ). For a ∈ N and b ∈ N, we denote the

a× b-dimensional zero matrix by Oa,b.

Theorem 1. If M is given by a constant multiple of N and (2.1) holds, as N

grows to infinity, the Kullback–Leibler risk of the Bayesian predictive distribution

based on prior density πs on Θs is

Rs(θ
∗, qπs

) =
1

2N
h>s G

(N)
s (θ∗, θs,0)hs +

1

2
log
|g(N)

s (θs,0) + g̃
(M)
s (θs,0)|

|g(N)
s (θs,0)|

+ o(1),

(2.2)

where | · | is the determinant and

G(N)
s (θ∗, θs,0) :=

(
g̃(M)−1

(θ∗s , γ
∗
s ) +

(
g

(N)
s

−1
(θs,0) Ods,(d−ds)

O(d−ds),ds O(d−ds),(d−ds)

))−1

.

The proof is given in the Appendix.

Remark 1. Consider invariance and the dependence on prior densities. First,

from (A.29) in the Appendix, expansion (2.2) is invariant up to o(1) under

the reparameterization of θ. Second, the asymptotic Kullback–Leibler risk of

the Bayesian predictive distribution does not depend on prior densities up to

o(1), which corresponds to the fact that the N−1-order term of the asymptotic

Kullback–Leibler risk when M = 1 does not depend on prior densities, as dis-

cussed in Remark 2 below.

Remark 2. The asymptotic Kullback–Leibler risk (2.2) is considered to be the

accumulation of the asymptotic Kullback–Leibler risks of the Bayesian predictive

distribution when M is 1. We explain this heuristically. For simplicity, we

assume that hs vanishes and that all random variables {xi : i = 1, . . . , N + M}
are identically distributed. Then, the constant order term in (2.2) is given by

(ds/2) log{(N + M)/N}, whereas the N−1-order term of the Kullback–Leibler

risk when M = 1 is given by (ds/2N). Since the Bayesian predictive distribution

qπs
(y(M)|x(N)) is decomposed into a product of Bayesian predictive distributions

as

qπs
(y(M)|x(N))

= qπs
(xN+1|x(N))× qπs

(xN+2|x(N), y(1))× · · · × qπs
(xN+M |x(N), y(M−1)), (2.3)

the Kullback–Leibler risk Rs(θ
∗, qπs

) is also calculated as
∑M

j=1{ds/(2N + 2j)}.
This is asymptotically equal to (ds/2) log{(N +M)/N}.

Remark 3. Consider the predictive setting in which M is fixed and N grows to

infinity. In this setting, from Lemmas A1 and A2 and (A.19) in the Appendix,
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the Kullback–Leibler risk of the Bayesian predictive distribution is given by

Rs(θ
∗, qπs

) =
1

2N
h>s g̃

(M)(θ∗)hs +
1

2N
tr{g(N)

s

−1
(θs,0)g̃(M)

s (θs,0)}+ o(
1

N
).

This can also be derived by further expanding the right-hand side of (2.2) with

respect to N . By setting M equal to 1 and allowing hs to vanish, this is consistent

with the result in Komaki (1996, 2015) and Hartigan (1998).

The following theorem states that the Bayesian predictive distribution is

asymptotically better than the plug-in predictive distribution based on the max-

imum likelihood estimator when both the numbers N and M simultaneously grow

to infinity. The plug-in predictive distribution based on the maximum likelihood

estimator θ̂s is

q(y(M); θ̂s(x
(N))) = q

θs=θ̂s(x(N))
(y(M)).

Theorem 2. If M is given by a constant multiple of N and (2.1) holds, as N

grows to infinity, the difference between the Kullback–Leibler risks of the Bayesian

predictive distribution based on prior density πs(θs) on Θs and the plug-in pre-

dictive distribution with the maximum likelihood estimator θ̂s is

Rs(θ
∗, qπs

)−Rs(θ
∗, q(·; θ̂s))

=
1

2

[
log
|g(N)

s (θs,0) + g̃
(M)
s (θs,0)|

|g(N)
s (θs,0)|

− tr{g(N)
s

−1
(θs,0)g̃(M)

s (θs,0)}

]
+

1

2

{
h>s G

(N)
s (θ∗, θs,0)hs − h>s g̃(M)(θ∗s , γ

∗
s )hs

}
+ o(1), (2.4)

where tr is the trace of a matrix. Furthermore, the difference up to o(1) is non-

positive. If two Fisher information matrices g
(N)
s (θs,0) and g̃

(M)
s (θs,0) are positive

definite, the difference up to o(1) is strictly negative.

Proof. From (A.18) in the Appendix, the Kullback–Leibler risk Rs(θ
∗, q(·; θ̂s)) is

expanded as

Rs(θ
∗, q(·; θ̂s)) =

1

2N
h>s g̃

(M)(θ∗s , γ
∗
s )hs +

1

2
tr{g(N)

s

−1
(θs,0)g̃(M)

s (θs,0)}+ o(1).

By combining this with Theorem 1, we obtain (2.4).

Since log |I+A−1B| ≤ tr{A−1B} for the invertible matrix A and the matrix

B, we have

log
|g(N)

s (θs,0) + g̃
(M)
s (θs,0)|

|g(N)
s (θs,0)|

≤ tr{g(N)
s

−1
(θs,0)g̃(M)

s (θs,0)}.

If the two matrices are positive definite, the strict inequality holds. Since A −
(A−1+B)−1 is positive semidefinite for the invertible matrix A and the matrix B,
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we have h>s g̃
(M)(θ∗s , γ

∗
s )hs ≥ h>s G

(N)
s (θ∗, θs,0)hs. Thus, we complete the proof.

Remark 4. The implication of Theorem 2 is explained by Remark 2: the

one-step ahead Bayesian predictive distribution qπs
(xN+i|x(N), y(i−1)) is updated

based on y(i−1) as (2.3), whereas the one-step ahead plug-in predictive distribu-

tion q(xN+i; θ̂(x
(N))) is not.

Remark 5. The result is related to prediction in locally asymptotically mixed

normal (LAMN) models as discussed in Sei and Komaki (2007). In both our

setting and LAMN models, we consider prediction of future observations based

on the current observations conditioned on two Fisher information matrices of

current and future observations. Indeed, the Kullback–Leibler risk (2.2) has the

same form as (2) in Sei and Komaki (2007).

3. Information Criteria When the True Distributions of Current and

Future Observations Differ

First, to construct information criteria, we derive an asymptotically unbiased

estimator of the Kullback–Leibler risk of the Bayesian predictive distribution

when the true distributions of current and future observations differ. Let θ̂s be

the maximum likelihood estimator of θs and let ξ̂s be the maximum likelihood

estimator of (θ>s , γ
>
s )>, respectively. Let ĥs be given by

ĥs :=
√
N

{
ξ̂s −

(
θ̂s

0

)}
.

Let Ĝ
(N)
s be a matrix given by

Ĝ(N)
s :=

(
g̃(M)−1

(ξ̂s) +

(
g

(N)
s

−1
(θ̂s) Ods,(d−ds)

O(d−ds),ds O(d−ds),(d−ds)

))−1

and let Ĝ
(N)
s,ds×ds be the top left ds × ds-dimensional sub-matrix of Ĝ

(N)
s .

Let R̂s be the estimator of the Kullback–Leibler risk of the Bayesian predic-

tive distribution based on sub-model Ms given by

R̂s :=
1

2N
ĥ>s Ĝ

(N)
s ĥs +

1

2
tr{g(N)

s

−1
(θ̂s)Ĝ

(N)
s,ds×ds}

− 1

2
tr{g(N)−1

(ξ̂s)Ĝ
(N)
s }+

1

2
log
|g(N)

s (θ̂s) + g̃
(M)
s (θ̂s)|

|g(N)
s (θ̂s)|

. (3.1)

Theorem 3. If M is given by a constant multiple of N and (2.1) holds, for prior

density πs(θs) on Θs, R̂s given as (3.1) is an asymptotically unbiased estimator of

the Kullback–Leibler risk Rs(θ
∗, qπs

) of the Bayesian predictive distribution qπs
.
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The proof is in the Appendix.

Remark 6. Since estimator (1/N)ĥ>s Ĝ
(N)
s ĥs of (1/N)h>s G

(N)(θ∗, θs,0)hs has an

asymptotic bias

tr{g(N)−1
(θ∗)G(N)

s (θ∗, θs,0)} − tr{g(N)
s

−1
(θs,0)G

(N)
s,ds×ds(θ

∗, θs,0)}

as shown in (A.33) in the Appendix, the bias adjustment term

tr{g(N)
s

−1
(θ̂s)Ĝ

(N)
s,ds×ds} − tr{g(N)−1

(ξ̂s)Ĝ
(N)
s }

appears in (3.1).

On the basis of Theorem 3, we propose an information criterion when the

true distributions of current and future observations may differ. We prepare K+1

parametric models for the joint distribution of x(N) and y(M), the full model M
and the K sub-models {Mm}Km=1, where each sub-modelMm is included inM.

We denote the dimension of sub-model Mm by dm for m ∈ {1, . . . ,K} and the

dimension of the full model by dK+1, for convenience.

As an information criterion, we propose a multistep predictive information

criterion (MSPIC) given by

MSPIC(m) :=
1

N
ĥ>mĜ

(N)
m ĥm + tr{g(N)

m

−1
(θ̂m)Ĝ

(N)
m,dm×dm}

− tr{g(N)−1
(ξ̂m)Ĝ(N)

m }+ log
|g(N)
m (θ̂m) + g̃

(M)
m (θ̂m)|

|g(N)
m (θ̂m)|

,

where the quantities with subscript m are those with subscript s when the sub-

model Ms is Mm. If the true distribution satisfies (2.1) for a sub-model Mm,

MSPIC(m) is an asymptotically unbiased estimator of 2×Rm(θ∗, qπm
) according

to Theorem 3. We name the model selection criterion MSPIC because size M

plays the role of time as discussed in Remark 2. If two Fisher information matrices

g
(N)
m (θm) and g̃

(M)
m (θm) are identical, MSPIC(m) coincides with PIC (Kitagawa

(1997)) when using the uniform prior and also with the predictive likelihood

(Akaike (1980)).

MSPIC itself is an estimator of the risk and may have an excessive variance

and an excessive skewness. These excesses may appear in the first three terms

in the definition of MSPIC because matrix Ĝ
(N)
m is not equal to the asymptotic

covariance matrix of ĥm.

To reduce the effects of the variance and the skewness of MSPIC, we use

its bootstrap adjustment MSPICBS. First, we generate B bootstrap samples

x
(N)
1 , . . . , x

(N)
b , . . . , x

(N)
B according to the bootstrap method using the full model.

Second, for each b ∈ {1, . . . , B}, we calculate the value of MSPIC1(m;x
(N)
b )
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defined by

MSPIC1(m;x
(N)
b ) :=

1

N
ĥ>mĜ

(N)ĥm

+ tr{Ĝ(N)
m,dm×dmg

(N)
m

−1
(θ̂m)} − tr{Ĝ(N)

m g(N)−1
(ξ̂m)}

using x
(N)
b instead of x(N). Finally, we obtain

MSPICBS(m) :=
1

B
ΣB
b=1MSPIC1(m;x

(N)
b ) + log

|g(N)
m (θ̂m) + g̃

(M)
m (θ̂m)|

|g(N)
m (θ̂m)|

.

Our bootstrap adjustment MSPISBS is related to the bootstrap adjustment of

Takeuchi’s Information Criterion (TIC; Takeuchi (1976)) considered in Lv and

Liu (2014), because TIC also may have an excessive variance and an excessive

skewness.

4. Numerical Experiments

Through two numerical experiments, we show that the proposed model selec-

tion criteria can effectively perform predictions when the distributions of current

and future observations differ.

For comparison, we used AIC, PIC, the bootstrap adjustment of PIC (PICBS)

, MSPIC, and MSPICBS and evaluated their performances based on the good-

ness of the Bayesian predictive distributions using their selected models. We

considered the goodness of predictive distributions as follows. We generated cur-

rent and future observations R times and calculated the mean of negative log

Bayesian predictive densities, −ΣR
r=1 log qπ(y

(M)
r |x(N)

r )/R, based on the selected

model by each criterion. Here, for r = 1, . . . , R, x
(N)
r and y

(M)
r were the r-th cur-

rent observations and the r-th future observations, respectively. It is desirable

that the value be small because it is an estimator of the Kullback–Leibler risk

up to the term independent of the predictive distribution. We set R = 100 in

the first experiment and R = 50 in the second.

4.1. The extrapolation of curve fitting

The following setting deals with the high-dimensional model selection. We

do not provide their theoretical extensions. Those are important. We provide

the numerical experiment related to the extension.

We consider an extrapolation of the curve fitting mentioned in the introduc-

tion. Suppose that a curve x(t) is given by x(t) = f(t) + ε(t) where f(t) is an

unknown function and ε(t) is a random function. Suppose that we observe x(N)
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Table 1. The means (with the standard deviations) of negative log predictive densities
when the true function is f1 given in (4.1) and α is 1. The lowest value in each row is
underlined.

N and M AIC PIC PICBS MSPIC MSPICBS

100 and 100 −9.17 (7.92) −9.34 (7.82) −9.60 (7.15) −9.34 (7.82) −9.60 (7.16)
100 and 200 −21.0 (12.2) −21.0 (12.1) −22.9 (10.2) −21.4 (11.3) −22.7 (10.1)
100 and 500 −63.3 (23.9) −63.4 (22.1) −69.3 (17.5) −68.3 (18.7) −69.6 (16.5)
100 and 1,000 −139 (41.2) −141 (39.4) −156 (24.4) −154 (26.8) −156 (21.8)

Table 2. The means (with the standard deviations) of negative log predictive densities
when the true function is f2 given in (4.2) and α is 1. The lowest value in each row is
underlined.

N and M AIC PIC PICBS MSPIC MSPICBS

100 and 100 −12.8 (7.51) −13.0 (7.32) −13.0 (7.17) −13.0 (7.32) −13.0 (7.17)
100 and 200 −27.6 (10.2) −28.0 (10.1) −28.1 (10.1) −28.4 (10.1) −28.2 (10.1)
100 and 500 −71.5 (18.8) −72.7 (18.9) −76.1 (16.6) −73.8 (19.0) −76.6 (16.4)
100 and 1,000 −158 (26.1) −158 (26.4) −166 (23.0) −163 (23.7) −167 (23.3)

= (x(t1), . . . , x(tN ))> of x(t) at (t1, . . . , tN ) and predict y(M) = (x(tN+1), . . . ,

x(tN+M ))> of x(t) at (tN+1, . . . , tN+M ).

In this experiment, we set ti = α × (i/N) with α ∈ [0, 1] for each i ∈ {1,
. . . , N +M}. We took ε(N) = (ε(t1), . . . , ε(tN ))> distributed according to NN (0,

σ2IN ) with known σ2 and ε̃(M) = (ε(tN+1), . . . , ε(tN+M ))> distributed according

to NM (0, σ2IM ) with known σ2. For simplicity, we assumed that ε(N) and ε̃(M)

were independent.

We used the following regression models. For each m ∈ {1, . . . ,K + 1}, the

model Mm is given by {φN (x(N);Zmθm, σ
2IN )× φM (y(M); Z̃mθm, σ

2IM ) : θm ∈
Rm}, where φd(·;µ,Σ) is the density of Nd(µ,Σ), and Zm and Z̃m are design

matrices defined by

Zm =

ψ1(t1) . . . ψm(t1)

. . . . . . . . .

ψ1(tN ) . . . ψm(tN )

 and Z̃m =

 ψ1(tN+1) . . . ψm(tN+1)

. . . . . . . . .

ψ1(tN+M ) . . . ψm(tN+M )

 ,

respectively. Here {ψ1, . . . , ψK+1} is a set of functions of t. For {ψm}K+1
m=1, we

used trigonometric functions {ψtri,m}K+1
m=1:

ψtri,m(t) =


1 (m = 1),
√

2 cos(2π
m

2
t) (m : even),

√
2 sin(2π

m− 1

2
t) (m : odd).
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Table 3. The means (with the standard deviations) of negative log predictive densities
when the true function is f2 given as (4.2) and α is 0.9. The lowest value in each row is
underlined.

N and M AIC PIC PICBS MSPIC MSPICBS

100 and 100 −12.5 (8.24) −12.6 (7.92) −12.2 (7.89) −12.7 (8.02) −12.2 (7.80)
100 and 200 −27.3 (12.0) −27.3 (11.6) −28.0 (11.3) −27.4 (11.5) −28.1 (11.2)
100 and 500 −70.8 (19.7) −71.6 (19.6) −76.2 (16.9) −73.3 (20.0) −76.6 (17.1)
100 and 1,000 −153 (27.8) −153 (27.8) −161 (25.1) −155 (29.8) −164 (23.2)

We compared the negative log Bayesian predictive densities based on the uni-

form prior for the AIC-best, PIC-best, the PICBS-best, the MSPIC-best, and the

MSPICBS-best models. For each m ∈ {1, . . . ,K + 1}, the negative log Bayesian

predictive density based on model Mm was

− log qum
(y(M)|x(N)) =

1

2σ2

∣∣∣∣∣
(
x(N)

y(M)

)
−

(
Zm
Z̃m

)
θ̂m(x(N), y(M))

∣∣∣∣∣
2

− 1

2σ2

∣∣∣x(N)> − Zmθ̂m(x(N))
∣∣∣2

+
M

2
log(2πσ2) +

1

2
log
|Z>mZm + Z̃>mZ̃m|

|Z>mZm|
,

where we denote the uniform prior on Rm by um and the maximum likelihood

estimator of θm based on x(N) and y(M) by θ̂m(x(N), y(M)).

First, we considered that true function f was

f1(t) = 2 sin(2π × t) + 0.2 sin(2π × 4t)

+ 0.1 sin(2π × 8t) + 0.1 sin(2π × 12t). (4.1)

We set σ2 = (0.2)2, α = 1.0, and K = 30. Table 1 shows that MSPICBS and

PICBS perform well.

Second, we considered the true function f to be given by

f2(t) =
π2

6
− π

2
(tmod 2π) +

1

4
(tmod 2π)2. (4.2)

We set σ2 = (0.2)2 and K = 15, and considered the settings with α = 1 and with

α = 0.9. Tables 2 and 3 show that MSPICBS tends to perform well.

In the second setting, we consider the misspecification discussed in Takeuchi

(1976), Sin and White (1996), Fushiki (2005), and Lv and Liu (2014): the true

function f2 is not included in the full model. The experiment indicates that

MSPICBS works well in this setting and that the dominance of MSPICBS is

enlarged as the ratio of N and M grows.
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Table 4. The means (with the standard deviations) of negative log predictive densities
in the settings with N = 50 and M = 250. The lowest value in each row is underlined.

λ AIC PIC PICBS MSPIC MSPICBS

50 −186 (12.5) −184 (12.3) −190 (12.2) 544 (3.25) −194 (11.2)
100 −142 (22.9) −107 (136) −162 (27.9) 750 (3.37) −188 (10.2)
150 −91.1 (29.0) −82.1 (17.1) −124 (46.5) 871 (2.76) −182 (18.1)
200 −50.0 (47.8) −18.4 (115) −91.5 (64.6) 957 (3.42) −178 (23.6)

Table 5. The means (with the standard deviations) of negative log predictive densities
in the settings with N = 100 and M = 500. The lowest value in each row is underlined.

λ AIC PIC PICBS MSPIC MSPICBS

50 −408 (15.3) −406 (14.8) −412 (16.2) −303 (353) −419 (15.9)
100 −360 (29.1) −348 (19.7) −375 (28.8) 1, 220 (323) −405 (22.2)
150 −302 (45.2) −276 (13.8) −337 (54.4) 1, 530 (5.63) −401 (27.4)
200 −238 (64.7) −198 (27.8) −296 (84.3) 1, 700 (5.67) −399 (31.9)

4.2. The linear regression with an unknown variance

We considered a linear regression with an unknown variance. We assumed

that the true distributions of x(N) and y(M) were given by NN (Zθ∗, σ∗2IN ) and

NM (Z̃θ∗, σ∗2IM ), respectively. Here Z and Z̃ were a known N × 9-dimensional

matrix and a known M × 9-dimensional matrix, respectively. We set θ∗ =

(−0.1, 0.1,−0.1, 0.1, 0.1, 0.1,−0.002,−0.002,−0.005)> and σ∗ = 0.1. We setM =

5×N and used the design matrices given by

Z = Zr and Z̃ =


Zr
Zr
. . .

Zr

+ λ

(
I9

O(M−9),9

)
,

where Zr was given randomly. We changed the value of λ to each element in {50,

100, 150, 200}.
We considered the full model {φN (x(N);Zθ, σ2IN ) × φM (y(M); Z̃θ, σ2IM ) :

θ ∈ R9, σ > 0} and 511 sub-models obtained by setting some components of θ

equal to zero. By denoting the design matrix in the m-th model by Zm, the m-th

sub-model is {φN (x(N);Zmθm, σ
2IN ) × φM (y(M); Z̃mθm, σ

2IM ) : θm ∈ Rdm , σ >
0}. We call the full model the 512-th model for convenience. We denote Z by

Z512, Z̃ by Z̃512, and the dimension of the full model by d512 + 1(= 10).

We examined a setting with N = 50 and M = 250 and a setting with

N = 100 and M = 500. We compared the values of negative log Bayesian

predictive densities based on π(θm, σ) = 1/σ using the AIC-best, the PIC-best,
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the PICBS-best, the MSPIC-best, and the MSPICBS-best models. We used the

above Bayesian distribution because it is mini-max under the Kullback–Leibler

risk (see Liang and Barron (2004)). However, the choice of prior densities is

asymptotically irrelevant according to Theorem 1.

Tables 4 and 5 show that MSPICBS has the lowest value of the negative

log predictive distribution. The dominance of MSPICBS is enlarged depending

on the value of λ. In contrast, MSPIC has the worst performance because of

the variance and the skewness of MSPIC. These results suggest that we use the

bootstrap adjustment MSPICBS instead of MSPIC itself.

5. Discussion and Conclusion

In this paper, we have considered prediction when the distributions of cur-

rent and future observations may differ with an identical unknown parameter.

We have shown that the Bayesian predictive distribution has a smaller Kullback–

Leibler risk than the plug-in predictive distribution when both N and M simul-

taneously grow to infinity. The asymptotic form of the Kullback–Leibler risk is

different from that when N grows to infinity but M is 1. Based on the results,

we have proposed a model selection criterion MSPIC for settings in which the

true distributions of current and future observations may differ. The proposed

model selection criterion MSPIC is an asymptotically unbiased estimator of the

Kullback–Leibler risk of the Bayesian predictive distribution. We have also pro-

posed a bootstrap adjustment MSPICBS. Numerical experiments show that our

proposed model selection criterion MSPICBS is effective.
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Appendix

We provide the proofs of Theorems 1 and 3. The proofs consist of three parts:

the connection formula (Lemma A1), the expansions of maximum likelihood es-

timators (Lemma A2), and the expansions of Kullback–Leibler risk Rs(θ
∗, qπs

).

We use tensorial notations. To avoid the collision of indices, we use indices

i, j, k for observation xi, indices u, v, w for parameter θ, and indices a, b, c for

parameter θs. We use indices κ, λ, µ for the parameter γs. We denote parameter

(θs, γs) by ξs and we use indices α, β, γ for parameter ξs. We denote the true
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parameter value with respect to ξs by ξ∗s .

We adopt the Einstein summation convention: if the same indices appear in

any one term, it implies summation over that index.

We denote the (i, j)-component of g(N)(θ) by g
(N)
ij (θ) and that of g̃(M)(θ) by

g̃
(M)
ij (θ). We denote the (α, β)-components of the Fisher information matrices

g(N)(ξs) and g̃(M)(ξs) with respect to parameter ξs by g
(N)
αβ (ξs) and g̃

(M)
αβ (ξs),

respectively. We denote the (a, b)-component of the ds × ds-dimensional top

left sub-matrix with respect to θs of the Fisher information matrix g
(N)
αβ (ξs) by

g
(N)
s,ab(θs) and that of g̃

(M)
αβ (ξs) by g̃

(M)
s,ab (θs).

We denote the (i, j)-components of inverse Fisher information matrices

g(N)−1
(θ) and g̃(M)−1

(θ) by g(N)ij(θ) and g̃(M)ij(θ), respectively. We denote the

(a, b)-components of inverse Fisher information matrices g
(N)
s

−1
(θs) and

g̃
(M)
s

−1
(θs) by g

(N)ab
s (θs) and g̃

(M)ab
s (θs), respectively. Note that the ds × ds top

left sub-matrix of the inverse Fisher information matrix of g(N)(ξs(θs, 0)) is in

general not identical to g
(N)
s

−1
(θs).

The joint distribution of (x(N), y(M)) is denoted by rθ∗(x
(N), y(M)). In our

setting, distribution rθ∗(x
(N), y(M)) is equal to pθ∗(x

(N))× qθ∗(y(M)). We denote

Fisher information matrices of rθ(x
(N), y(M)) and rθs(x

(N), y(M)) by ḡ(N+M)(θ)

and ḡ
(N+M)
s (θs), respectively. Note that ḡ(N+M)(θ) = g(N)(θ) + g̃(M)(θ). We

denote g
(N)
uα ∂ξαs /∂θ

u by g
(N)
au and use ḡ

(N+M)
at and g̃

(M)
at in the same manner.

We denote the maximum likelihood estimator of rθ(x
(N), y(M)) by θ̂(x(N), y(M))

and the maximum likelihood estimator of rθ(θs,0)(x
(N), y(M)) by θ̂s(x

(N), y(M)).

We denote the (a, b)-components of the observed Fisher information matrices

of pθs(x
(N)) and rθs(x

(N), y(M)) by ĝ
(N)
s,ab(θ̂s(x

(N))) and ĝ
(N+M)
s,ab (θ̂s(x

(N), y(M))),

respectively.

We denote the m-projections of pθ∗(x
(N)), qθ∗(y

(M)), and rθ∗(x
(N), y(M)) into

{pθs(x(N)) : θs ∈ Θs}, {qθs(y(M)) : θs ∈ Θs}, and {rθs(x(N), y(M)) : θs ∈ Θs} by

θ
(p)
s , θ

(q)
s , and θ

(r)
s , respectively. For example, θ

(p)
s is defined by

θ(p)
s = argmax

θs∈Θs

∫
pθ∗(x

(N)) log
pθ∗(x

(N))

pθs(x
(N))

dx(N).

See Chapter 3 of Amari (1985) for details such as the existence of the m-

projection.

In this appendix, θ(p) and θ(r) are used instead of θ(θ
(p)
s , 0) and θ(θ

(r)
s , 0),

respectively. ξ
(p)
s is used instead of ξs(θ

(p)
s , 0). θ0 and ξs,0 are used instead of

θ(θs,0, 0) and ξs(θs, 0), respectively.
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We denote the stochastic large and small orders with respect to the distri-

bution with parameter θ by Oθ and oθ, respectively. We denote the expectation

of x(N) and y(M) with respect to rθ(x
(N), y(M)) by Eθ.

First, we derive equalities with respect to m-projections θ
(p)
s and θ

(r)
s . Note

that under parameterization θ assumption (2.1) is given by

θ∗u − θu(θs,0, 0) =
∂θu

∂ξαs
(ξ∗s )

hαs√
N

+ o(
1√
N

) for u = 1, . . . , d. (A.1)

We denote ∂θu/∂ξαs (ξ∗s )hαs by hus .

Lemma A1. For a = 1, . . . , ds, we have

has√
N

= −g(N)ab
s (θs,0)g

(N)
bκ (ξs,0)

hκs√
N

+ O(
1

N
). (A.2)

For a = 1, . . . , ds, we have

θ(p)a
s − θas,0 = 0 + O(

1

N
), (A.3)

θ(r)a
s − θas,0 = ḡ(N+M)ab

s (θs,0)ḡ
(N+M)
bu (θ0)

hus√
N

+ O(
1

N
). (A.4)

Proof. We have

pθ∗(x
(N)) = pθ0(x

(N))

[
1 + ∂u log pθ0(x

(N))
hu√
N

+ Oθ0(
1√
N

)

]
, (A.5)

qθ∗(y
(M)) = qθ0(y

(M))

[
1 + ∂s log qθ0(y

(M))
hu√
N

+ Oθ0(
1√
N

)

]
. (A.6)

Consider the equation

Eθ∗ [∂κ log pθ∗(x
(N))

1√
N

] = 0 for κ = 1, . . . , d− ds. (A.7)

From (A.5) and the Taylor expansion of pθ(x
(N)) around θ0, we have

Eθ∗ [∂κ log pθ∗(x
(N))

1√
N

] = g(N)
uκ (θ0)

θ∗u − θu0√
N

+ Eθ0 [Oθ0(1)].

Thus, we obtain (A.2).

Consider the definition of θ(p) and θ(r). We have
1√
N

Eθ∗
[
∂a log pθ(p)(x

(N))
]

= 0, (A.8)

1√
N

Eθ∗
[
∂a log rθ(r)(x

(N), y(M))
]

= 0. (A.9)

From the independence of x1, . . . , xN , xN+1, . . . , xN+M , equations (A.5) and (A.6),

and from the Taylor expansions of pθ(x
(N)) and rθ(x

(N), y(M)) around θ0, we have
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1√
N

Eθ∗ [∂a log pθ(p)(x
(N))] = g(N)

au (θ0)
hus
N
− g(N)

ab (θ0)
θ

(p)b
s − θbs,0√

N

+ Eθ0 [Oθ0(‖θ(p) − θ0‖2)] + Eθ0 [Oθ0(
1

N
)], (A.10)

1√
N

Eθ∗ [∂a log rθ(r)(x
(N), y(M))] = ḡ(N+M)

au (θ0)
hus
N
− ḡ(N+M)

ab (θ0)
θ

(r)b
s − θbs,0√

N

+ Eθ0 [Oθ0(‖θ(r) − θ0‖2)] + Eθ0 [Oθ0(
1

N
)]. (A.11)

By substituting (A.11) into (A.9), we obtain (A.4). By substituting (A.10) and

(A.2) into (A.8), we obtain (A.3).

Next, we derive the asymptotic linear forms of the maximum likelihood es-

timators.

Lemma A2. For a = 1, . . . , ds, we have

θ̂as (x(N), y(M))− θ(r)a
s = ḡ(N+M)ab

s (θ(r)
s )∂b log rθ(r)s

(x(N), y(M)) + Oθ∗(
1

N
),

(A.12)

θ̂as (x(N))− θ(p)a
s = g(N)ab

s (θ(p)
s )∂b log pθ(p)s

(x(N)) + Oθ∗(
1

N
). (A.13)

For u = 1, . . . , d, we have

θ̂u(x(N), y(M))− θ∗u = ḡ(N+M)uv(θ∗)∂v log rθ∗(x
(N), y(M)) + Oθ∗(

1

N
), (A.14)

θ̂u(x(N))− θ∗u = g(N)uv(θ∗)∂v log pθ∗(x
(N)) + Oθ∗(

1

N
). (A.15)

Proof. Consider the estimative equation

∂a log r
θs=θ̂s(x(N),y(M))

(x(N), y(M)) = 0. (A.16)

From the Taylor expansion around θ
(r)
s and the Central Limit Theorem for

∂ab log rθs(x
(N), y(M)), we have

∂a log r
θs=θ̂s(x(N),y(M))

(x(N), y(M))

= ∂a log rθ(r)s
(x(N), y(M))− ḡ(N+M)

s,ab (θ(r)
s ){θ̂bs(x(N), y(M))− θ(r)b

s }+ Oθ0(1).

Then, we have (A.12). Equation (A.14) immediately follows from the estimative

equation of θ̂. For example, see Theorem 5.39 in van der Vaart (1998). Likewise,

we have (A.13) and (A.15).

Proof of Theorem 1. First, from (A.1), (A.4), and (A.12), we have

θu(θ̂s(x
(N), y(M)), 0)− θ∗u

=
∂θu

∂θas
(θ(r))ḡ(N+M)

s (θ(r)
s )∂b log rθ(r)s

(x(N), y(M))
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+
∂θu

∂θas
(θ0)ḡ(N+M)ab

s (θs,0)ḡ
(N+M)
bv (θ0)

hvs√
N
− hus√

N
+ Oθ∗(

1

N
), (A.17)

θu(θ̂s(x
(N)), 0)− θ∗u

=
∂θu

∂θas
(θ(p))g(N)ab

s (θ(p)
s )∂b log pθ(p)s

(x(N))− hus√
N

+ Oθ∗(
1

N
). (A.18)

Second, consider the decomposition of the Kullback–Leibler risk,

Rs(θ
∗, qπs

) = Eθ∗

[
log

rθ∗(x
(N), y(M))

rπs
(x(N), y(M))

]
− Eθ∗

[
log

pθ∗(x
(N))

pπs
(x(N))

]
, (A.19)

where rπs
(x(N), y(M)) is the marginal distribution of x(N) and y(M) and pπs

(x(N))

is the marginal distribution of x(N). Using the marginal expansions of rπs
(x(N),

y(M)) and pπs
(x(N)) given at p.117 in Ghosh, Delampady and Samanta (2006),

decomposition (A.19) is given by

Rs(θ
∗, qπs

) = Eθ∗

[
log

rθ∗(x
(N), y(M))

r
θ̂s(x(N),y(M))

(x(N), y(M))

]
− Eθ∗

[
log

pθ∗(x
(N))

p
θ̂s(x(N))

(x(N))

]

+ Eθ∗

[
1

2
log
|ĝ(N+M)

s (θ̂s(x
(N), y(M)))|

|ĝ(N)
s (θ̂s(x(N)))|

]

− Eθ∗

[
log

πs(θ̂s(x
(N), y(M)))

πs(θ̂s(x(N)))

]
+ o(1). (A.20)

Consider the first term in (A.20). Using the Taylor expansion, we expand

the negative of the first term as

Eθ∗

[
log

r
θ̂s(x(N),y(M))

(x(N), y(M))

rθ∗(x(N), y(M))

]
= Eθ∗

[
∂u log rθ∗(x

(N), y(M)){θu(θ̂s(x
(N), y(M)), 0)− θ∗u}

]
+

1

2
Eθ∗

[
∂uv log rθ∗(x

(N), y(M))

× {θu(θ̂s(x
(N), y(M)), 0)− θ∗u}{θv(θ̂s(x

(N), y(M)), 0)− θ∗v}
]

+ o(1). (A.21)

From (A.17) and from Lemma A1, we expand the first term in (A.21) as

Eθ∗
[
∂u log rθ∗(x

(N), y(M))
{
θu(θ̂s(x

(N), y(M)), 0)− θ∗u
}]

= ds + o(1), (A.22)

and we expand the second term in (A.21) as

1

2
Eθ∗ [∂uv log rθ∗(x

(N), y(M)){θ̂us (x(N), y(M))− θ∗u}{θ̂vs (x(N), y(M))− θ∗v}]

= −1

2
ḡ(N+M)
uv (θ(p))

hus h
v
s

N
+

1

2
ḡ(N+M)ab

s (θ(p)
s )ḡ

(N+M)
au′ (θ(p))ḡ

(N+M)
bv′ (θ(p))

hu
′

s h
v′
s

N
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− 1

2
ds + o(1). (A.23)

By combining (A.22) and (A.23), we obtain

Eθ∗

[
log

r
θ̂s(x(N),y(M))

(x(N), y(M))

rθ∗(x(N), y(M))

]

= −1

2

[
ḡ(N+M)
uv (θ(p))− ḡ(N+M)ab

s (θ(p)
s )ḡ(N+M)

au (θ(p))ḡ
(N+M)
bv (θ(p))

] hus hvs
N

+
1

2
ds + o(1). (A.24)

Consider the second term in (A.20). From the Taylor expansion around θ∗,

we expand the negative of the second term in (A.20) as

Eθ∗

[
log

p
θ̂s(x(N))

(xN))

pθ∗(x(N))

]
= Eθ∗ [∂u log pθ∗(x

(N)){θu(θ̂s(x
(N)), 0)− θ∗u}] +

1

2
Eθ∗ [∂uv log pθ∗(x

(N))

× {θu(θ̂s(x
(N)), 0)− θ∗u}{θv(θ̂s(x

(N)), 0)− θ∗v}] + o(1). (A.25)

From (A.18), we have

Eθ∗
[
∂u log pθ∗(x

(N)){θu(θ̂s(x
(N)), 0)− θ∗u}

]
= ds + o(1), (A.26)

Eθ∗ [g
(N)
uv (θ∗){θu(θ̂s(x

(N)), 0)− θ∗u}{θv(θ̂s(x
(N)), 0)− θ∗v}]

= g(N)
uv (θ∗)

hus h
v
s

N
+ ds + o(1). (A.27)

By substituting (A.26) and (A.27) into (A.25), we have

Eθ∗

[
log

p
θ̂s(x(N))

(x(N))

pθ∗(x(N))

]
= −1

2
g(N)
uv (θ∗)

hus h
v
s

N
+

1

2
ds + o(1). (A.28)

The Taylor expansions around θ(p) and Lemma A1 show that the third and

fourth terms in (A.20) are equal to (1/2) log(|ḡ(N+M)
s (θs,0)|/|g(N)

s (θs,0)|) + o(1).

Thus, from (A.24) and (A.28), the Kullback–Leibler risk Rs(θ
∗, qπs

) is ex-

panded as

Rs(θ
∗, qπs

)

=
1

2N

[
ḡ(N+M)
uv (θ∗)− g(N)

uv (θ∗)− ḡ(N+M)ab
s (θ(p)

s )ḡ(N+M)
ua (θ(p))ḡ

(N+M)
vb (θ(p))

]
× hus hvs +

1

2
log
|ḡ(N+M)

s (θs,0)|
|g(N)

s (θs,0)|
+ o(1). (A.29)

Note that this is invariant up to o(1) under reparameterization of θ.
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Finally, to complete the proof of Theorem 1, we show that

Pαβh
α
s h

β
s

N
=
G

(N)
s,αβh

α
s h

β
s

N
+ o(1), (A.30)

where P is a matrix whose (α, β)-component is given by

Pαβ := ḡ
(N+M)
αβ (ξ∗s )− g(N)

αβ (ξ∗s )− ḡ(N+M)ab
s (θ(p)

s )ḡ(N+M)
aα (ξ(p)

s )ḡ
(N+M)
bβ (ξ(p)

s ).

From Lemma A1 and from the evaluations of Pabh
a
sh

b
s, Pκλh

κ
s h

λ
s , and Paκh

a
sh

κ
s ,

we obtain

Pαβh
α
s h

β
s = {g̃(M)

κλ (ξ∗s ) + g(N)ab
s (θs,0)g(N)

aκ (ξ∗s )g
(N)
bλ (ξ∗s )

− ḡ(N+M)ab
s (θs,0)ḡ(N+M)

aκ (ξ∗s )g
(N+M)
bλ (ξ∗s )}hκs hλs + o(N). (A.31)

By applying the Sherman–Morisson–Woodbury identity to matrix G
(N)
s , we have

G(N)
s = g̃(M)(ξ∗s )− g̃(M)(ξ∗s )

(
ḡ

(N+M)
s

−1
(θs,0) Ods,(d−ds)

O(d−ds),ds O(d−ds),(d−ds)

)
g̃(M)(ξ∗s ).

Through the evaluations of G
(N)
s,abh ash

b
s, G

(N)
s,aκhash

κ
s , and G

(N)
s,κλh

κ
s h

λ
s , we obtain

G
(N)
s,αβh

α
s h

β
s =

{
g̃

(M)
κλ (ξ∗s ) + g(N)

aκ (ξ∗s )g(N)
s (θs,0)g

(N)
bλ (ξ∗s )

−ḡ(N+M)
aκ (ξ∗s )g(N+M)

s (θs,0)ḡ
(N+M)
bλ (ξ∗s )

}
hκs h

λ
s + o(N).

Thus, we obtain (A.30).

Proof of Theorem 3. Since ĥαs is decomposed as

ĥαs√
N

= g(N)αβ(ξ∗s )∂β log pξ∗s (x(N)) +
hαs√
N

− δαa g(N)ab
s (θs,0)∂b log pθs,0(x

(N)) + O(
1

N
), (A.32)

where δαa is 1 if α = a and otherwise 0, the expectation of Ĝ
(N)
s,αβĥ

α
s ĥ

β
s /N is given

by

Eθ∗ [Ĝ
(N)
s,αβĥ

αĥβ]

N
= G

(N)
s,αβ

hαs h
β
s

N
+G

(N)
s,αβg

(N)αβ(ξ∗s )−G(N)
s,abg

(N)ab
s (θs,0) + o(1).

(A.33)

Thus, we complete the proof.
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