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Abstract: Goodness of fit procedures are essential tools for assessing model ad-

equacy. In this work, we present a general theory and approach to goodness of

fit techniques based on U-processes for the accelerated failure time (AFT) model.

Many of the examples focus on U-statistics of order 2. While many authors have

proposed goodness of fit tests for U-statistics of order one, less has been devel-

oped for higher order U-statistics. We propose goodness of fit tests for U-statistics

of order 2 by using theoretical results from Nolan and Pollard (1987) and Nolan

and Pollard (1988). We advance a resampling approach that is a generalization of

the one proposed in Lin, Robins and Wei (1996). Simulation studies are used to

illustrate the proposed methods.

Key words and phrases: U-statistics, Gaussian process, perturbation method, sur-

vival analysis.

1. Introduction

Goodness of fit is fundamental for assessing the appropriateness of a model.

Methodology for model checking for parametric regression has been well devel-

oped (Lin, Wei and Ying (2002); (Klein and Moeschberger, 2003, Chap. 12)).

Assessing adequacy in parametric models is based on studying residuals that

capture the difference between the observed and predicted parts of a model (Lin,

Wei and Ying (2002)). Residuals are important in that they enable graphical

and numerical summaries for assessing model fit.

We consider the linear model

T = ZTη0 + ε, (1.1)

where T is the response variable, possibly log-transformed, Z is a p× 1 vector of

covariates, η0 is a p×1 vector of regression coefficients and ε is an error term. The

distribution of ε is unspecified, so semiparametric methods are used to estimate

η0.

U-statistics (Hoeffding (1948)) occupy an important role. For a parameter

vector θ and sample X1, . . . Xn, a U-statistic of order K is defined as
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Un(θ) =

(
n

K

)−1 ∑
1≤i1...iK≤n

h(Xi1 , . . . XiK ),

where h(·) is called the kernel, usually symmetric in (Xi1 , . . . XiK ).

U-statistics surface in the accelerated failure time model in survival analysis,

when observations are right-censored. In this context, an estimating function

was given by Tsiatis (1990), and a rank estimator was proposed by Fygenson

and Ritov (1994). The first of these is essentially a U-statistic of order 1, while

the second is a U-statistics order 2.

Model checking techniques for censored data and uncensored data have been

studied in many settings. For censored data, Therneau, Grambsch and Fleming

(1990) developed a graphical approach of checking the Cox model by using mar-

tingale residuals. Lin, Wei and Ying (1993) proposed model checking based on

cumulative sums of martingale residuals for the Cox proportional hazard model.

Lin, Robins and Wei (1996) proposed model checking procedures for the accel-

erated failure time (AFT) model in overall fit. For uncensored data, Lin, Wei

and Ying (2002) proposed a cumulative residual approach to check the functional

form and link function in generalized linear models. Arbogast and Lin (2004) de-

veloped a goodness of fit method for matched case-control studies. León and Cai

(2012) proposed checking the form of covariates using ‘robust residuals’ based on

work from León, Cai and Wei (2009). They argued that when a random variable

of interest and other covariates have high correlation, in the uncensored case,

the approach of Lin, Wei and Ying (2002) clearly fails to detect misspecification

because of the high correlation.

The above-mentioned methodology for goodness of fit is based on U-statistics

of order 1. Many rank-based estimators arise from U-statistics of order 2, and

performing model checking based on the U-statistic of the wrong order may lead

to bias. We propose methodology for goodness of fit for U-statistics of order 2

under linear models for censored and uncensored data. Theoretical justification

is based on U-process theory from Nolan and Pollard (1987) and Nolan and

Pollard (1988). In Section 2, we describe the method of goodness of fit for U-

statistic of order 2. Section 3 outlines the results of some simulation studies,

while an application to data from an HIV clinical trial is given in Section 4.

Some discussion concludes in Section 5.

2. Checking Overall Model Fit

2.1. Independent censoring

Here we consider censored data and assume that failure times are indepen-
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dently censored. Let Vi = (εi, Ci,Z
T
i )T , i = 1, . . . , n and η be parameter of

interest, η0 is true value. We assume that εi are i.i.d which has Vi i.i.d. General

U-statistics of order 2 with standardization to estimate η0 are given by

Un(η) =
n1/2

n(n− 1)

∑
i 6=j

h(Vi,Vj ,η), (2.1)

where h(·, ·,η) is a kernel function such that E{n−1/2Un(η0)} = 0.

Under mild conditions, the estimator η̂, the solution of Un(η) = 0, is strongly

consistent and asymptotically normal (Jin, Ying and Wei (2001); Honoré and

Powell (1994)). Using the assumptions of Honoré and Powell (1994),

Un(η) = Un(η0) + n1/2Ψ0(η − η0) + op(1 + n1/2‖η − η0‖), (2.2)

where Ψ0 is the derivative of E{n−1/2Un(η)} evaluated at η = η0. To assess the

overall fit of the model, we define

Un(t;η) =
n1/2

n(n− 1)

∑
i 6=j

h(Vi,Vj ,η)I{g(Vi,Vj ,η) ≤ t},

where g is a function that belongs to the Euclidian class (Nolan and Pollard

(1988)). One natural choice of g is the maximum function. For example, in the

AFT model, g(Vi,Vj ,η) = ei(η)∨ ej(η), where a∨ b denotes the maximum of a

and b. Then (2.2) leads to the following expansion (Lin, Robins and Wei (1996)):

Un(t;η) = Un(t;η0) + n1/2Ψ0(t)(η − η0) + op(1 + n1/2‖η − η0‖), (2.3)

where Ψ0(t) is expectation of the slope matrix of Un(t;η0) at time t. Note that

when t =∞, (2.3) is equal to (2.2). Since the solution of the estimating function

Un(η), is strongly consistent, we have that

Un(t; η̂) = Un(t;η0) + n1/2Ψ0(t)(η̂ − η0) + op(1).

If the model is correct, then Un(t; η̂) fluctuates around 0. Un(t; η̂) contains

information about the model behavior, analogous to the martingale residuals in

Lin, Robins and Wei (1996) and Lin, Wei and Ying (1993).

In this case, the key issue is to show that the process Un(t; η̂) converges

to a mean-zero Gaussian process. We cannot use the empirical process results

from Lin, Wei and Ying (1993) and Lin, Robins and Wei (1996), because we

do not have a sum of independent and identically distributed random variables

in the estimating function. However, by using the U-process theory of Nolan

and Pollard (1987) and Nolan and Pollard (1988), the following result can be

obtained.
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Theorem 1. If model (1.1) holds, Un(t; η̂) converges to a Gaussian process with

mean zero and covariance function given in the online Supplementary Materials.

The proof of the result is in the online Supplementary Materials. The idea of the

proof is to use the fact that the class of indicator functions is Euclidean and to

show the tightness of each term in Un(t; η̂).

The next issue is to find the null distribution of Un(t;η). Since the structure

of the process h(Vi,Vj ,η)I{g(Vi,Vj ,η) ≤ t} is unknown, it is very difficult to

tackle the process directly. One way to solve this problem is to approximate

the process by a known distribution (Lin, Wei and Ying (1993)). Since Un(t;η)

is nonsmooth, approximation through Taylor expansion does not work. To find

an expression for the approximate distribution of n1/2(η̂ − η0), a resampling

approach (Parzen, Wei and Ying (1994)) is used. Resampling has been used in

a variety of covariance matrix estimation settings for rank regression estimators

(e.g. Parzen, Wei and Ying (1994); Lin, Robins and Wei (1996); Peng and Fine

(2006); Jin, Ying and Wei (2001)). In this approach,

Un(η) = −ur, (2.4)

with ur simulated from a normal distribution whose mean is 0 and covariance

matrix is Σ̂, where Σ̂ is estimated covariance matrix of Un(η). Let the solution of

(2.4) be η∗. Under mild conditions, given the observed data, n1/2(η∗− η̂) has the

same asymptotic distribution as the unconditional distribution of n1/2(η̂ − η0)
(Parzen, Wei and Ying (1994)). Let Q1, . . . , Qn be standard normal random

variables.

Theorem 2. If model (1.1) holds,

Ûn(t;η∗) =
n1/2

n(n−1)

∑
i 6=j

h(Vi,Vj , η̂)I{g(Vi,Vj ; η̂) ≤ t}Qi+Un(t;η∗)−Un(t; η̂),

conditional on the observed data, converges weakly to the same Gaussian Process

limit as the Un(t; η̂) of Theorem 1.

The proof of this result is also in the online Supplementary Materials. These

processes, called bootstrapped processes, are fundamental for checking the overall

fit of model. We can adopt the approach of Lin, Robins and Wei (1996) for

graphical and numerical summaries. For a graphical summary, we randomly

choose 20 or 30 observations from Ûn(·) and plot them with the observed process.

Lack of fit can be checked by examining the behavior of observed process and

observation from resampling processes graphically. In addition to the graphical

approach, it is possible to perform a more formal test as in the case of U-statistics
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of order one. Similar to assessing proportional hazards (Wei (1984); Lin, Wei and

Ying (1993)), the test statistic for evaluating overall fit is D = supt ‖Un(t; η̂)‖.
Larger values of D indicate stronger evidence for lack of fit. Let ηi∗ be ith value

from resampling and suppose there are M resampling values. We can compute

a p-value as Hsieh, Ding and Wang (2011) by

p =
1

M

M∑
i=1

I{sup
t
‖Ûn(t;ηi∗)‖ ≥ D}.

Let Fygenson and Ritov (1994) estimating function with n1/2 standardization be

UFR
n (η) =

n1/2

2n(n− 1)

∑
i 6=j

(Zi − Zj)[∆iI{ej(η) > ei(η)} −∆jI{ei(η) > ej(η)}],

where ei(η) = Yi − ZT
i η. The test statistic is supt ‖UFR

n (t; η̂)‖, where

UFR
n (t;η) =

n1/2

2n(n− 1)

∑
i 6=j

(Zi − Zj)[∆iI{ej(η) > ei(η)}

−∆jI{ei(η) > ej(η)}]I(ei(η) ∨ ej(η) ≤ t).

Now it is necessary to find the null distribution of UFR
n (t;η). By the argu-

ments in Fygenson and Ritov (1994), n1/2(η̂−η0) has an asymptotically normal

distribution with mean 0 and covariance matrix Γ−10 Ω0Γ
−1
0 , where Γ0 is nonsin-

gular and Ω0 is an asymptotic covariance matrix of UFR
n (η0). They proposed to

use numerical derivatives for estimating Γ0, but these involved unknown hazard

functions of the event of the interest and can be numerically unstable.

We again use the approach from Parzen, Wei and Ying (1994) to simulate

from the null distribution. The empirical influence function for the asymptotic

distribution of UFR
n (η0) is given by

v̂i =
1

n− 1

n∑
j=1

(Zi − Zj)[∆iI{ej(η) > ei(η)} −∆jI{ei(η) > ej(η)}].

Then we construct

UFR
n (η) = −n−1/2

n∑
i=1

v̂iQi. (2.5)

Let the solution of (2.5) be η∗. By Parzen, Wei and Ying (1994), the uncon-

ditional distribution of n1/2(η̂ − η0) has the same limiting distribution as the

conditional distribution of n1/2(η∗ − η̂) given the data. Then the bootstrapped

processes are given by
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ÛFR
n (t;η∗) =

n1/2

2n(n− 1)

∑
i 6=j

(Zi − Zj)[∆iI{ej(η) > ei(η)} −∆jI{ei(η) > ej(η)}]

×I(ei(η) ∨ ej(η) ≤ t)Qi + UFR
n (t;η∗)−UFR

n (t; η̂).

These bootstrapped processes are random processes whose asymptotic distri-

bution is identical to UFR
n (t; η̂). As described before, a graphical test can be

performed by plotting 20 or 30 realized values of ÛFR
n (·; ·) with the observed

process UFR
n (t; η̂). A p-value can be computed from replications of η∗.

It is important to show that the proposed test procedure is consistent, which

implies that power approaches one when sample size goes to infinity. Since the

power is closely related to rejecting the misspecified model, the estimator un-

der a misspecified model should converge to some constant value (Struthers and

Kalbfleisch (1986); Lin and Wei (1989)). Before proving consistency of the pro-

posed test, it is necessary to prove the consistency of estimator under a misspec-

ified model. Let T be the time to failure and C be independent censoring. Let

Y = T ∧ C, ∆ = I(T ≤ C) and covariates be W = (ZT ,Z∗T )T . Let η0 and

θ0 be the true parameter values corresponding to Z and Z∗, respectively. Let

τ0 = (ηT0 ,θ
T
0 )T . The observed data are n i.i.d replicates of (Y,∆,W). As before,

all times are log-transformed. Assume that the true model is

T = WTτ0 + ε,

where ε is an i.i.d error term. Suppose that model is fitted using Z only.

Theorem 3. Let η̂mis be the estimator from the misspecified model. Then η̂mis

is a consistent estimator of ηmis, which is a solution of

λ∗(η)=
1

2
E

[
(Z1 − Z2)

∫ ∞
−∞

Ḡ(t+ WT
1 τ0 − ZT

1 η|Z1)Ḡ(t+ WT
2 τ0 − ZT

2 η|Z2)

×{F̄ (t+ WT
2 τ0 − ZT

2 η|Z2)f(t+ WT
1 τ0 − ZT

1 η|Z1)

−F̄ (t+ WT
1 τ0 − ZT

1 η|Z1)f(t+ WT
2 τ0 − ZT

2 η|Z2)}dt
]
,

where f is a (true) density of error term ε, F̄ is (true) survival function of error

and Ḡ is (true) survival function of C −W Tτ0.

Theorem 4. The test D = supt ‖Un(t; η̂)‖ is consistent against the alternative

hypothesis that violates the null hypothesis.

Proofs of Theorems 3 and 4 can be found in the online Supplementary Materials.

2.2. Dependent censoring

It is common that independent censoring does not hold when the event of
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interest is disease occurrence and death is the dependent censoring mechanism.

This is called ‘semicompeting risks data’ (Fine, Jiang and Chappell (2001); Peng

and Fine (2006)). Let X be the time to event of interest, D be time to dependent

censoring, C be time to independent censoring and Z be p×1 vector of covariates.

We assume that all times are log-transformed. Take X̃ = X ∧D∧C, D̃ = D∧C,

ξ = I(D ≤ C), and δ = I(X ≤ D∧C). The observed data is (X̃i, D̃i, ξ, δ,Zi), i =

1, . . . , n. Now the model is a bivariate AFT model (Lin, Robins and Wei (1996);

Peng and Fine (2006)):(
Xi = ZT

i θ0 + εXi
Di = ZT

i η0 + εDi

)
i = 1 . . . n, (2.6)

where γ0 = (ηT0 ,θ
T
0 )T is 2p × 1 vector of true value γ = (ηT ,θT )T and εi =

(εXi , ε
D
i )T are independent and identically distributed with unspecified survival

function F . Since D only depends on independent censoring, the Tsiatis (1990)

estimator for η0 is obtained by solving Sn(η) = 0 where Sn(η) is defined by

Sn(η) = n−1/2
n∑

i=1

∆i

[
Zi −

∑n
j=1 I{ej(η) ≥ ei(η)}Zj∑n
j=1 I{ej(η) ≥ ei(η)}

]
.

For the event of the interest, it is necessary to adjust for the effect of dependent

censoring to remove bias. To adjust for it, Peng and Fine (2006) used an artificial

censoring technique. Let

dij(γ) = max{0,ZT
i (θ − η),ZT

j (θ − η)},
X̃∗i(j)(γ) = (Xi − ZT

i θ) ∧ (Di − ZT
i η − dij(γ)) ∧ (Ci − ZT

i η − dij(γ)),

δ̃∗i(j)(γ) = I{(Xi − ZT
i θ) ≤ (Di − ZT

i η − dij(γ)) ∧ (Ci − ZT
i η − dij(γ))},

ψij(γ) = δ̃∗i(j)(γ)I{X̃∗i(j)(γ) ≤ X̃∗j(i)(γ)} − δ̃∗j(i)(γ)I{X̃∗i(j)(γ) ≥ X̃∗j(i)(γ)}.

The estimating function proposed by Peng and Fine (2006) is

UP
n (γ) =

2n1/2

n(n− 1)

∑
1≤i<j≤n

(Zi − Zj)ψij(γ).

To evaluate model fit, they adapted the approach of Lin, Robins and Wei (1996).

Let N1i(t;η) = ξiI(D̃∗i (η) ≤ t) and N2i(t;γ) = δ̃∗i (γ)I{X̃∗i (γ) ≤ t}, where

D̃∗i (η) = D̃i − ZT
i η,

d(γ) = max {0,ZT
i (θ − η)},

X̃∗i (γ) = (Xi − ZT
i θ) ∧ (Di − ZT

i η − d(γ)) ∧ (Ci − ZT
i η − d(γ)),

δ̃∗i (γ) = I{Xi − ZT
i θ ≤ (Di − ZT

i η − d(γ)) ∧ (Ci − ZT
i η − d(γ))}.

In this case, for i = 1, . . . , n, X̃∗i (γ) is the transformed time to adjust dependent
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censoring and δ̃∗i (γ) is a new censoring indicator for disease occurrence (Lin,

Robins and Wei (1996)). Observed processes for the dependent censoring and

the event of interest are defined by

Sn(t; η̂) = n−1/2
n∑

i=1

ZiM̂1i(t; η̂),

UL
n(t; γ̂) = n−1/2

n∑
i=1

ZiM̂2i(t; γ̂),

where

M̂1i(t;η) = N1i(t;η)−
∫ t

−∞
I{D̃∗i (η) ≥ u}dΛ̂10(u;η),

M̂2i(t;γ) = N2i(t;γ)−
∫ t

−∞
I{X̃∗i (γ) ≥ u}dΛ̂20(u;γ),

Λ̂10(u;η) =

∫ u

−∞

∑n
i=1 dN1i(t;η)∑n

j=1 I{D̃∗j (η) ≥ t}
,

Λ̂20(u;γ) =

∫ u

−∞

∑n
i=1 dN2i(t;γ)∑n

j=1 I{X̃∗j (γ) ≥ t}
.

Peng and Fine (2006) used a martingale approach to check model fit. However,

their estimating function does not have a martingale structure. Moreover, the

artificial censoring applied in the assessment of model fit is one by Lin, Robins

and Wei (1996), which differs from that in Peng and Fine (2006). Thus applying

a model assessment method using the Lin, Robins and Wei (1996) approach for

UP
n (γ) is problematic. By using a similar approach to what is done in Fygenson

and Ritov (1994), we can define the score process y

UP
n (t; γ̂) =

n1/2

n(n− 1)

∑
i 6=j

(Zi − Zj)ψij(γ̂)I{X̃∗i(j)(γ̂) ∨ X̃∗j(i)(γ̂) ≤ t}.

As before, a resampling approach is used to derive the null distribution. Let

γ̂ be the estimator of γ0 from Peng and Fine (2006). Then by their Theorem

2, n1/2(γ̂ − γ0) has an asymptotically normal distribution with mean zero and

covariance matrix Υ−10 Ξ0Υ
−1
0 , where Υ0 is nonsingular matrix and Ξ0 is covari-

ance matrix of limn→∞WP
n (γ0), where WP

n (γ0) = [ST
n (η0), {UP

n (γ0)}T ]T . By

Peng and Fine (2006), the empirical distribution for the asymptotic distribution

of UP
n (γ0) is

J
(1)
i = ξi

[
Zi −

∑n
j=1 I{D̃∗j (η̂) ≥ D̃∗i (η̂)}Zj∑n
j=1 I{D̃∗j (η̂) ≥ D̃∗i (η̂)}

]
−

n∑
l=1

ξlI{D̃∗i (η̂) ≥ D̃∗l (η̂)}∑n
j=1 I{D̃∗j (η̂) ≥ D̃∗l (η̂)}
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×

[
Zi −

∑n
j=1 I{D̃∗j (η̂) ≥ D̃∗l (η̂)}Zj∑n
j=1 I{D̃∗j (η̂) ≥ D̃∗l (η̂)}

]
,

J
(2)
i =

2

n− 1

n∑
j=1

(Zi − Zj)φij(γ̂).

Let Sn(η) = n1/2STS
n (η) and Ji = [{J(1)

i }T , {J
(2)
i }T ]T . To apply the resampling

approach of Parzen, Wei and Ying (1994), perturbed terms need to be generated.

The perturbed term is generated by constructing linear combinations of Jis and

Qis. Then γ∗ can be obtained by solving the equations(
Sn(η) = −n−1/2

∑n
i=1 J

(1)
i Qi

UP
n (γ) = −n−1/2

∑n
i=1 J

(2)
i Qi

)
.

Then n1/2(γ̂−γ0) has the same asymptotic distribution as n1/2(γ∗− γ̂) (Parzen,

Wei and Ying (1994)). By using a similar approach as in Section 2.1, we can show

that the joint process Wn(t, s; γ̂) ≡ [{Sn(t; η̂)}T , {UP
n (s; γ̂)}T ]T is approximated

by Ŵn(t, s) = [{Ŝn(t;η∗)}T , {ÛP
n (s;γ∗)}T ]T , where

Ŝn(t;η∗) = n−1/2
n∑

i=1

∫ t

−∞

[
Zi −

∑n
j=1 I(D̃∗j (η̂) ≥ v)Zj∑n
j=1 I(D̃∗j (η̂) ≥ v)

]
dM̂i(v; η̂)Qi

+ Sn(t;η∗)− Sn(t; η̂),

ÛP
n (s;γ∗) =

n1/2

n(n− 1)

∑
i 6=j

(Zi − Zj)ψij(γ̂)I{X̃∗i(j)(γ̂) ∨ X̃∗j(i)(γ̂) ≤ s}Qi

+ UP
n (s;γ∗)−UP

n (s; γ̂).

Both [Sn(t; η̂)T , {UP
n (s; γ̂)}T ]T and [Ŝn(t;η∗)T , {ÛP

n (s;γ∗)}T ]T , conditional on

the observed data, converge weakly to the same bivariate Gaussian process. The

testing procedure based on this bivariate process is the same as in the case of

independent censoring.

Remark. Unlike modeling in the independent censoring, joint modeling of failure

of interest and dependent censoring is required when there exists dependence be-

tween failure of interest and censoring. This leads to derivation of joint processes

for the failure of interest and dependent censoring for evaluation of the model

fit. However, numerical summaries (test statistic and p-value) can be computed

separately for the failure of interest and dependent censoring.

2.3. Uncensored case

In the uncensored case, for the usual linear model (possibly with transforming
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Table 1. Size of the proposed method in scenario 1.

Censored data Uncensored data

sample size
p-values Cutoff values Cutoff values

0.01 0.05 0.01 0.05
n = 50 0.005 0.0275 0.0075 0.0275
n = 100 0.01 0.085 0.0025 0.0425

response variable by log), the method proposed in Section 2.1 still holds because

the estimating function for parameter η is the same except that ∆i = 1 for

i = 1, . . . , n. Thus the test statistic and bootstrapped processes for overall fit are

equal to UFR
n (t;η), except ∆i = 1 for i = 1, . . . , n. Moreover, the asymptotic

theory for censored data in Section 2.1 also hold for uncensored data.

3. Simulation Studies

We first considered simulation studies using the estimating function from

Fygenson and Ritov (1994). The error term was distributed as ε ∼ N(0, 1). For

covariates, in scenario 1, we generated random variable W = (Z1, Z2)
T from a

bivariate normal distribution with mean 0 and covariance matrix

(
1 1

1 25

)
. True

parameter values were η0 = (0.2, 1)T . In this setting, say scenario 1, we considered

both the censored and uncensored cases. We computed size and power in this

setting. We generated 400 simulated datasets and tried 200 resamplings for both

size and power calculation. In calculation, due to computational expense, we

only considered time points transformed by {ei(η̂)}ni=1 using 5[j]% quantiles for

t. Sample sizes used here were n = 50 and n = 100. The censoring variable C,

when exponentiated, was uniform [0, 200]. For the censored case, the censoring

rate was approximately 20% on average.

Table 1 shows the simulation results for type I error rates for the censored

and uncensored data scenarios using the proposed method. We computed the

powers of the proposed method and the Lin, Robins and Wei (1996) method. For

power comparison, we fit the model using only Z1. Table 2 shows the simulation

results comparing the Lin, Robins and Wei (1996) and our method.

The proportion of rejections from the proposed method is higher than that

from Lin, Robins and Wei (1996). Figures 1 and 2 show the power corresponding

to threshold values of p-value. The plot shows that our proposed method per-

forms better than the Lin, Robins and Wei (1996) method. Table 1 shows the

power comparison between the new method and the Lin, Robins and Wei (1996)
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Table 2. Comparison of empirical power between new method and Lin, Robins and Wei
(1996)’s method in scenario 1.

Censored data

n = 50
p-values Cutoff values

0.05 0.10 0.15 0.2
Lin, Robins and Wei (1996) 0 0.0025 0.0025 0.0175

Proposed method 0.0625 0.16 0.2275 0.3025

n = 100
p-values Cutoff values

0.05 0.10 0.15 0.2
Lin, Robins and Wei (1996) 0.0025 0.0075 0.025 0.04

Proposed method 0.2525 0.3925 0.46 0.5525
Uncensored data

n = 50
p-values Cutoff values

0.05 0.10 0.15 0.2
Lin, Robins and Wei (1996) 0 0.015 0.0275 0.045

Proposed method 0.0475 0.1175 0.1575 0.2175

n = 100
p-values Cutoff values

0.05 0.10 0.15 0.2
Lin, Robins and Wei (1996) 0.0125 0.0175 0.0275 0.0575

Proposed method 0.055 0.1275 0.19 0.245
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Figure 1. Plot of empirical powers according to threshold p-values when n = 50 (left)
and n = 100 (right) for independent censoring case in the scenario 1.

method. Numerical results indicate that the proposed approach has higher power.

Moreover, the power difference between the two methods is higher in censored

case than in the uncensored case.

In scenario 2, we simulated variable whose variability was larger than in the

first scenario and we omitted it in the model fitting. Here we only considered



1186 YOUNGJOO CHO AND DEBASHIS GHOSH

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pr
op

or
tio

n 
of

 re
je

ct
io

n

p-value threshold

Lin et al. (1996)
New

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pr
op

or
tio

n 
of

 re
je

ct
io

n
p-value threshold

Lin et al. (1996)
New

Figure 2. Plot of empirical powers according to threshold p-values when n = 50 (left)
and n = 100 (right) for uncensored data in the scenario 1.

censored data. We first generated (A1, A2)
T from a bivariate normal distribution

with mean 0 and covariance matrix

(
1 0.25

0.25 1

)
.

We let Z1 = A1 and Z2 =
∑

j jA
2
2I(b[j − 1] < A2 ≤ b[j]), j = 1, . . . 21, where

b[j] was the 5(j − 1)% quantile of W2. b[0] = −∞ and b[1] was the minimum of

b[·] and b[21] was the maximum of b[·]. The censoring variable was uniform on

[0,150]. On average, the censoring rate was between 7% and 8%. True regression

coefficient values were η0 = (0.2, 1)T . We simulated 400 datasets with sample

size n = 50, 100, and 200. In each simulation run, 200 resampling runs were

performed. We fitted the model by using only Z1 and, for comparison, the

testing procedure was compared to that of Lin, Robins and Wei (1996). We only

computed the empirical power from each method in this case.

Table 3 shows the numerical results of comparing the two methods and Figure

3 and Figure 4 is a graphical comparison of rejection rates between the methods.

As in scenario 1, our method has higher power than the method of the Lin, Robins

and Wei (1996). In scenarios, as the sample size increases, the rejection rate of

both methods increases and the difference of proportion of rejection between the

two methods decreases. When sample size goes to infinity, the power by the

proposed method approaches one, supporting Theorem 4.

We applied the proposed method to the dependent censoring case. The steps

for data generation are shown below:
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Table 3. Comparison of empirical power between new method and Lin, Robins and Wei
(1996)’s method for independent censoring case in scenario 2.

n = 50
p-values Cutoff values

0.05 0.10 0.15 0.2
Lin, Robins and Wei (1996) 0.0475 0.11 0.18 0.2425

Proposed method 0.1375 0.28 0.37 0.48

n = 100
p-values Cutoff values

0.05 0.10 0.15 0.2
Lin, Robins and Wei (1996) 0.2925 0.37 0.445 0.4925

Proposed method 0.34 0.485 0.6125 0.68

n = 200
p-values Cutoff values

0.05 0.10 0.15 0.2
Lin, Robins and Wei (1996) 0.5425 0.6475 0.71 0.7525

Proposed method 0.595 0.71 0.8025 0.845
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Figure 3. Plot of empirical powers according to threshold p-values when n = 50 (left)
and n = 100 (right) for independent censoring case in scenario 2.

1. Generate W = (W1,W2)
T ∼

(
1 0.25

0.25 1

)
.

2. Set R1 = I(W1 > 0) and R2 =
∑

j jW
2
2 I(b[j−1] < W2 ≤ b[j]), j = 1, . . . 21,

where b[j] is 5(j − 1)% quantile of W2. b[0] = −∞, b[1] is minimum of b[·]
and b[21] is maximum of b[·].

3. Generate ε = (εX , εD) ∼ N
{(

0

1.2

)
,

(
1 0.25

0.25 1

)}
.

4. Set θ0 = (1, 0.5) and η0 = (0.5, 1) and generate X = RTθ0 + εX and

D = RTη0 + εD, where R = (R1, R2)
T .
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Figure 4. Plot of empirical powers according to threshold p-values when n = 200 for
independent censoring case in scenario 2.

Table 4. Comparison of empirical power between new method and Lin, Robins and Wei
(1996)’s method for model of the event of interest in the presence of dependent censoring.

n = 50
p-values Cutoff values

0.05 0.10 0.15 0.2
Lin, Robins and Wei (1996) 0.0225 0.095 0.17 0.2325

Proposed method 0.125 0.245 0.315 0.375

n = 100
p-values Cutoff values

0.05 0.10 0.15 0.2
Lin, Robins and Wei (1996) 0.095 0.205 0.31 0.385

Proposed method 0.25 0.385 0.455 0.53

The independent censoring time C was uniformly distributed [0,100]. On average,

approximately 12% of dependent censoring was censored by C and 12% of the

event of interest was dependently censored by D̃. We fitted the misspecified

model from Section 3.2, which only employs R1 and computed the statistical

power of our method, as well as that of Lin, Robins and Wei (1996), focusing

on the event of interest X. In each simulation run, 200 resampling runs were

tried. Table 4 shows the results when n = 50 based on 400 simulation runs and

for n = 100 based on 200 simulation runs. Figure 5 shows a plot of empirical

power when n = 50 and n = 100. The plots in Figure 5 and numerical summaries

from Table 4 lead the same conclusion as in the independent censoring case. Our

method performs better than that of Lin, Robins and Wei (1996).
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Figure 5. Plot of empirical powers according to threshold p-values when n = 50 (left)
and n = 100 (right) for model of the event of interest in the presence of dependent
censoring.

4. Real Data Analysis

We applied our method to data from AIDS Clinical Trial Study 364 (Albrecht

et al. (2001)), which was previously analyzed by Peng and Fine (2006) and Cho

and Ghosh (2015). In this study, the plasma RNA level of every patient is at

least 500 copies per ml. The event of interest is time to first viologic failure,

which is defined by time of first clinical visit when HIV level ≥ 2,000. Patients

will leave the study due to deterioration of heath status as time progresses (Peng

and Fine (2006)). Hence dependence between failure of interest and censoring

(withdrawal) exists.

In this dataset, three levels of treatment were considered: nelfinavir (NFV),

efavirenz (EFV), and combination of nelfinavir and efavirenz (NFV + EFV). We

considered three covariates: Z1 was 1 if treatment assignment of a patient was

EFV and 0 otherwise; Z2 was value 1 if treatment assignment of a patient was

NFV + EFV and 0 otherwise; Z3 was log(RNA) level. In Cho and Ghosh (2015),

the dependent censoring and the event of interest were analyzed using the Lin,

Robins and Wei (1996) and Peng and Fine (2006) approaches jointly. For model

checking, Cho and Ghosh (2015) used the approach based on Lin, Robins and

Wei (1996) for both the Lin, Robins and Wei (1996) estimator and the Peng and

Fine (2006) estimator.

We fitted the model (2.6) using covariates Z1, Z2 and Z3. We compared our

approach to that by Cho and Ghosh (2015). The p-value from Cho and Ghosh

(2015) was 0.959. The p-value using the new approach was 0.51. Although both
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Figure 6. Observed process (bold line) and 20 bootstrapped processes (dashed lines) for
the first virologic failure.

p-values show that there is no evidence of lack of fit for the model, substantial

decrease is made on the proposed method, suggestive of higher power.

Figure 1 shows a goodness of fit plot of 20 bootstrapped processes along

with the observed process. The observed process is moving around zero and

bootstrapped processes suggest that there is no substantial deviation of model

fit.

5. Discussion

In this paper, our attention has been on checking the overall fit of the model.

Other goodness of fit techniques that can be considered are checking functional

form of covariates and linearity of the model. Lin, Wei and Ying (1993) proposed

methods for these scenarios based on the Cox model. However, direct application

of their approaches to the semiparametric AFT model is impossible because the

estimating function is nonsmooth. By mimicking our approach and that of Lin,

Wei and Ying (1993), for the procedure of Fygenson and Ritov (1994), one can

consider the observed process

U2k(x;η) =
n1/2

n(n− 1)

∑
i 6=j

I(Zki ∨ Zkj ≤ x)(Zi − Zj)[∆iI{ej(η) > ei(η)}

−∆jI{ei(η) > ej(η)}]

to check the form of covariates. Developing details about checking functional

form of covariates and linearity of the model will be communicated in separate



GOODNESS OF FIT 1191

reports.

It is also worthwhile to apply ideas of León and Cai (2012) on checking overall

fit in the U-statistics of order 2 case under observational studies. In U-statistics

of order 2 case, however, there is no concept of residuals. Thus developing a tool

similar to ‘robust residuals’ can be important. This will be communicated in

separate reports. One may be interested in obtaining optimal g(·, ·, ·) to improve

the performance of the test. A possible approach is to combine a set of g(·, ·, ·)s
by using weights. This weighting approach is popular (Wei, Lin and Weissfeld

(1989); Cho and Ghosh (2015)). However, the way to determine optimal weight

for the functions is not straightforward because there is an infinite number of

functions. This is also future research.

Supplementary Materials

The proofs of theorems can be found in online Supplementary Materials.
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