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The following supplementary materials include:

S1. Derivation of the asymptotic kernel function of degree two based on Kullback-Leibler

distance.

S2. Proof of Theorem 2, the consistency of the pseudo-kernel variance estimator of degree two.

S3. Expression of jackknife variance estimator using a pseudo-kernel of degree one.

S4. Proof of Theorem 3, the third-order unbiasedness of a pseudo-kernel variance estimator of

degree three.

S1 Derivation of the asymptotic kernel of degree two

Let θ∗ be the true value of the parameter θ in Θ ⊆ Rp. Assume f is twice-

differentiable at point θ∗ and define θ̂ := θ̂(Xm). According to Taylor series,

the log-likelihood function can be expanded around θ∗ as follows:

log fθ̂(x) = log fθ∗(x) + (θ̂ − θ∗)T ∂
∂θ

log fθ(x)|θ=θ∗ +Re,

where the remainder term Re = o(‖θ̂−θ∗‖) and ‖·‖ represents the Euclidean

norm.

Under the regularity conditions C1–C5 (Lehmann (2004)) shown in

Appendix A1, the Maximum Likelihood (ML) estimator θ̂ of θ∗ is consistent,

i.e. θ̂
P−→ θ∗ as m→∞. Denote the Fisher score, i.e. the first derivative of

the log-likelihood, evaluated at θ∗ as u(x). Then,

log fθ̂(x) = log fθ∗(x) + (θ̂ − θ∗)Tu(x) + o(‖θ̂ − θ∗‖).
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Given a training sample Xm of size m, write the joint log-likelihood as

l(θ) = l(θ|Xm) =
∑
xj∈Xm

log fθ(xj).

We have

l′(θ) = l′(θ∗) + l′′(θ∗)(θ − θ∗) + o(‖θ − θ∗‖).

Let H(θ) = l′′(θ) =
∑

xj∈Xm
∂2

∂θ∂θT
log fθ(xj) be the p×p Hessian matrix. Be-

cause the ML estimator θ̂ is the root of l′(θ) = 0 and l′(θ∗) =
∑

xj∈Xm u(xj),

we have

l′(θ∗) +H(θ∗)(θ̂ − θ∗) = 0 + o(‖θ̂ − θ∗‖).

This implies

θ̂ − θ∗ ≈ −H−1(θ∗)
∑
xj∈Xm

u(xj)

with an error of order o(‖θ̂ − θ∗‖). Let I(θ∗) be the Fisher Information

matrix evaluated at θ∗, defined as

I(θ∗) = −E
[

∂2

∂θ∂θT
log fθ(X)

]
|θ=θ∗ .

Because X1, . . . , Xm are independent and identically distributed with finite

variance, by the Law of Large Numbers as m→∞

1

m

∑
Xj∈Xm

∂2

∂θ∂θT
log fθ(Xj)

a.s.−−→ −I(θ).

Therefore, 1
m
H(θ∗)

a.s.−−→ −I(θ∗), which implies thatH−1(θ∗) = −(1/m)I−1(θ∗)+

o(1/m). We then have

−H−1(θ∗)
∑
xj∈Xm

u(xj) = I(θ∗)−1

 1

m

∑
xj∈Xm

u(xj)

+ o(1).

For large enough m

log fθ̂(xi) ≈ log fθ∗(xi) +

 1

m

∑
xj∈Xm

u(xj)

T

I(θ∗)−1u(xi).
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Therefore, under Kullback-Leibler distance the symmetric kernel function
φ(Xm+1) defined in Equation (2.1) has the following approximation:

φ(X1, . . . , Xm+1)

= − 1

m+ 1

∑
Xi∈Xm+1

log fθ∗(Xi) +
 1

m

∑
Xj∈X

(−i)
m

u(Xj)


T

I(θ∗)−1u(Xi)

+ o(‖θ̂ − θ∗‖)

≈ −

(
m+ 1

2

)−1 ∑
1≤i<j≤m+1

{
1

4
[log fθ∗(Xi) + log fθ∗(Xj)] + u(Xj)

T I(θ∗)−1u(Xi)

}

The error of the approximation is of order o(‖θ̂ − θ∗‖).
When θ̂ is

√
m-consistent, ‖θ̂ − θ∗‖ = Op(1/

√
m). In this case, the

error of the approximation is of order Op(1/
√
m). The detailed proof for

this statement is shown below:

Denote the approximation error as error = o(‖θ̂ − θ∗‖) and assume θ̂ is√
m-consistent for θ∗. We have

• |error|‖θ̂−θ‖ = o(1). That is, for any ε > 0, there exists an integer M such

that for m ≥M we have |error|‖θ̂−θ‖ ≤ ε.

• ‖θ̂ − θ∗‖ = Op(1/
√
m). That is, for any ε > 0, there exists Cε and Mε

(both depend on ε) such that for m ≥Mε we have

P

(
‖θ̂ − θ∗‖
1/
√
m

> Cε

)
≤ ε.

For any ε > 0, let M∗
ε = max{M,Mε} and C∗ε = εCε. If m ≥M∗

ε , then

(i). |error|‖θ̂−θ‖ ≤ ε

(ii). P
(
‖θ̂−θ∗‖
1/
√
m
> Cε

)
≤ ε

From (i) we have

|error|
1/
√
m
≤ ε‖θ̂ − θ∗‖

1/
√
m

.

Let A =
{
|error|
1/
√
m
> C∗ε

}
and B =

{
ε‖θ̂−θ∗‖
1/
√
m

> C∗ε

}
. It’s easy to see that

A ⊆ B. Therefore,

P

(
error

1/
√
m
> C∗ε

)
≤ P

(
ε‖θ̂ − θ∗‖

1/
√
m

> C∗ε

)
= P

(
‖θ̂ − θ∗‖
1/
√
m

> Cε

)
≤ ε.
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The last inequality holds because of (ii). As a result, if θ̂ is
√
m-consistent,

the error of the approximation satisfies error = Op(1/
√
m).

S2 Proof of Theorem 2

Let γ = Var(Un). By the Chebyshev’s inequality, for any ε > 0,

P (| V̂PS − γ |≥ ε) ≤ ε−2E[(V̂PS − γ)2]

= ε−2[bias2(V̂PS) + Var(V̂PS)].

Deviation for the bias is as follows:

From Theorem 1 V̂PS is second-order unbiased so thatE(V̂PS) =
(
k
1

)2(n
1

)−1
δ21+(

k
2

)2(n
2

)−1
δ22 +o(n−2), where δ2c ’s (1 ≤ c ≤ k) are the variances of the orthog-

onal terms in the Hoeffding decomposition of Un as defined in Appendix

A2. Thus,

bias(V̂PS) = o(n−2).

Deviation for the variance is as follows:

Let h(c)(x1, . . . , xc) (1 ≤ c ≤ k) be the orthogonal terms in the Hoeffding

decomposition of the original U-statistic Un. From the proof of Theorem 1

(Appendix A2)

φPS(xi, xj) = θ +
k

2
[h(1)(xi) + h(1)(xj)] +

k(k − 1)

2
h(2)(xi, xj) + remainder,

where the remainder involves h(c) terms for 3 ≤ c ≤ k and the leading term

in the remainder is {k(k − 1)(k − 2)/[2(n− 2)]}
∑

l 6=i and l 6=j h
(3)(xi, xj, xl).

Let φ0(xi, xj) = (k/2)[h(1)(xi) + h(1)(xj)] + [k(k − 1)/2]h(2)(xi, xj), a

symmetric kernel function of degree two. Write φPS(xi, xj) = θ+φ0(xi, xj)+

remainder. Therefore, UPS = θ + U0 + remainder, where

UPS =

(
n

2

)−1 ∑
1≤i<j≤n

φPS(xi, xj), and U0 =

(
n

2

)−1 ∑
1≤i<j≤n

φ0(xi, xj).

It is easy to show that U0 can be equivalently written as

U0 =

(
k

1

)(
n

1

)−1 n∑
i=1

h(1)(xi) +

(
k

2

)(
n

2

)−1 ∑
1≤i<j≤n

h(2)(xi, xj).



S2. PROOF OF THEOREM 25

Next, we show that the following equation holds:

V̂PS = V̂0 + o(n−2).

From the derivation of the pesudo-kernel function φPS in the Proof of The-

orem 1 (Appendix A2), we have

φPS(xi, xj) = θ +
k

2

[
h(1)(xi) + h(1)(xj)

]
+

(
k

2

)
h(2)(xi, xj)

+
k(k − 1)(k − 2)

2(n− 2)

∑
l 6=i or j

[
h(3)(xi, xj, xl) +O(n−1)

]
+ remainder,

where O(n−1) is of order n−1 and only depends on h(3), and the remainder

terms involve h(c) (4 ≤ c ≤ k) and are orthogonal to each other and to the

previous terms.

By the definition of UPS we have

UPS =

(
n

2

) ∑
1≤i<j≤n

φPS(xi, xj)

= θ +

(
k

1

)(
n

1

)−1 n∑
i=1

h(1)(xi) +

(
k

2

)(
n

2

)−1 ∑
1≤i<j≤n

h(2)(xi, xj)

+

(
k

3

)(
n

3

)−1 ∑
1≤i<j≤n

∑
l 6=i or j

[
h(3)(xi, xj, xl) +O(n−1)

]
+ remainder,

where the remainder terms are orthogonal to the previous terms.

Denote the Hoeffding orthogonal terms of UPS as h∗(c) (1 ≤ c ≤ k). We

have

h∗(1)(x1) = h(1)(x1),

h∗(2)(x1, x2) = h(2)(x1, x2),

and h∗(3)(x1, x2, x3) = h(3)(x1, x2, x3) +O(n−1).

In general, h∗(c)(x1, . . . , xc) 6= h(c)(x1, . . . , xc) for 3 ≤ c ≤ k.
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Let δ∗2c be the variance of h∗(c). Then,

Var(UPS) =
k∑
c=1

(
k

c

)2(
n

c

)−1
δ∗2c

=

(
k

1

)2(
n

1

)−1
δ21 +

(
k

2

)2(
n

2

)−1
δ22 +

k∑
c=3

(
k

c

)2(
n

c

)−1
δ∗2c .

In addition, recall that

Var(U0) =

(
k

1

)2(
n

1

)−1
δ21 +

(
k

2

)2(
n

2

)−1
δ22.

As discussed in Section 1 of the manuscript, the unbiased U-statistic

variance estimator as defined in Equation (1.3) (Wang and Lindsay (2014))

is equivalent to the unbiased variance estimator in Maesono (1998), where

the latter estimates the variance of each Hoeffiding orthogonal term unbi-

asedly. Let δ̂2t be the unbiased estimator for δ2t (t = 1, 2) and let δ̂∗2c be

the unbiased estimator for δ∗2c (3 ≤ c ≤ k). Since the unbiased U-statistic

variance estimator has a U-statistic representation itself (Wang and Lind-

say (2014)), it is the best unbiased variance estimator and can be written

as a function of the order statistics. Recall that the set of order statistics is

the complete sufficient statistics in nonparametric inference (Fraser (1954)).

By Lehmann-Scheffe theorem, the best unbiased variance estimators for UPS

and U0 can be written uniquely as

V̂PS =

(
k

1

)2(
n

1

)−1
δ̂21 +

(
k

2

)2(
n

2

)−1
δ̂22 +

k∑
c=3

(
k

c

)2(
n

c

)−1
δ̂∗2c ,

V̂0 =

(
k

1

)2(
n

1

)−1
δ̂21 +

(
k

2

)2(
n

2

)−1
δ̂22,

which implies V̂PS = V̂0 + o(n−2).

Wang and Lindsay (2014) point out in their Remark 3 that the unbiased

variance estimator of a U-statistic can be written in the form of a U-statistic

itself with a kernel function of order 2k. Since the degree for φ0 is k = 2,

we can write

V̂0 =

(
n

4

)−1 ∑
1≤i1<···<i4≤n

ψ(xi1 , . . . , xi4).
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The definition for the kernel function ψ(xi1 , . . . , xi4) is given below:

Let Sm be a data subset of sizem (m ∈ N+). The kernel function ψ(xi1 , . . . , xi4)

for V̂0 is defined by

ψ(S4) = ψ4(S4)− ψ0(S4),

where

ψ0(S4) =

(
n
4

)(
n
2

)(
n−2
2

) ∑
S2,a,S2,b⊂S4

φ0(S2,a)φ0(S2,b)I{S2,a ∩ S2,b = ∅},

ψ4(S4) =

(
n
4

)(
n
2

)2 ∑
S2,a,S2,b⊂S4

φ0(S2,a)φ0(S2,b)ω(a, b),

ω(a, b) = 1/n(a, b), and n(a, b) =
(
n−(4−c)

c

)
with c being the number of

overlaps between S2,a and S2,b. More details on the derivation of the U-

statistic representation of the unbiased variance estimator V̂u can be found

in Wang (2012).

As a result, the variance of V̂0 can be expressed explicitly as shown in

Hoeffding (1948). Let h∗(c) (1 ≤ c ≤ 4) be the orthogonal terms in the

Hoeffding decomposition of V̂0, and denote δ∗c
2 as the variance of h∗(c) (1 ≤

c ≤ 4). We have

Var(V̂0) =
4∑
c=1

(
4

c

)2(
n

c

)−1
δ∗c

2 =
16

n
δ∗1

2 + o(1/n).

Assume the original U-statistic Un is well defined so that δ21 = Var[h(1)(X1)] <

∞. We then have δ∗1
2 = Var{E[ψ(x1, . . . , x4) | x1 = X1]} <∞. Therefore,

Var(V̂PS) = Var
[
V̂0 + o(n−2)

]
=

16

n
δ∗1

2 + o(1/n).

Based on the above deviations for the bias and variance of V̂PS, for any

ε > 0

P (| V̂PS − γ |> ε) ≤ ε−2
(
o(1/n4) +

16

n
δ∗1

2 + o(1/n)

)
LetM =

{
16
(

[
2δ∗1

2

ε2
] + 1

)}2

, where the notation [
2δ∗1

2

ε2
] represents the integer

part of
2δ∗1

2

ε2
. Then, for any n ≥M we have

P (| V̂PS − γ |> ε) ≤ ε2

64δ∗1
2 + o(ε2).
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Therefore, P (| V̂PS − γ |> ε)→ 0 as n→∞. That is, V̂PS is consistent for

Var(Un).

S3 Expression of jackknife variance estimator using

pseudo-kernel of degree one

Consider a degree-one pseudo-kernel function defined as

φPS(xi) =

(
n

1

)
U(x1, . . . , xn)−

(
n− 1

1

)
U(x1, . . . , xi−1, xi+1, . . . , xn)

= nUn − (n− 1)U
(−i)
n−1 .

Let φ̄PS = (1/n)
∑n

i=1 φPS(Xi). The jackknife variance estimator is

defined as V̂J = 1
n(n−1)

∑n
i=1(φPS(Xi)− φ̄PS)2. It can be re-expressed in the

following way:

V̂J =
1

n(n− 1)

n∑
i=1

(
φPS(Xi)

2 − 2

n
φPS(Xi)

n∑
j=1

φPS(Xj) +
1

n2

n∑
i=1

n∑
j=1

φPS(Xi)φPS(Xj)

)

=
1

n(n− 1)

(
n∑
i=1

φPS(Xi)
2 − 1

n

n∑
i=1

n∑
j=1

φPS(Xi)φPS(Xj)

)

=
1

n

∑
1≤i,j≤n

φPS(Xi)φPS(Xj)−
1

n(n− 1)

∑
i 6=j

φPS(Xi)φPS(Xj)

= (φ̄PS)2 − 1

n(n− 1)

∑
i 6=j

φPS(Xi)φPS(Xj)

= V̂u the unbiased variance estimator Q(m)−Q(0)

This result agrees with Comment 1 in Efron and Stein (1981), i.e. when the

statistic is a linear functional (assuming the true kernel of the U-statistic is

of order one) the jackknife variance estimator is unbiased.
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S4 Proof of Theorem 3

Using the orthogonal terms in Hoeffding decomposition (Hoeffding (1948))

as defined in Appendix A2, we have

Un = θ +

(
n

k

)−1 k∑
c=1

(
n− c
k − c

)∑
(n,c)

h(c)(xν1 , . . . , xνc)

U
(−i1)
n−1 = θ +

(
n− 1

k

)−1 k∑
c=1

(
n− 1− c
k − c

) ∑
(n−1(−i1),c)

h(c)(xν1 , . . . , xνc)

U
(−i1,−i2)
n−2 = θ +

(
n− 2

k

)−1 k∑
c=1

(
n− 2− c
k − c

) ∑
(n−2(−i1,−i2 ),c)

h(c)(xν1 , . . . , xνc)

U
(−i1,−i2,−i3)
n−3 = θ +

(
n− 3

k

)−1 k∑
c=1

(
n− 3− c
k − c

) ∑
(n−3(−i1,−i2,−i3),c)

h(c)(xν1 , . . . , xνc)

The notation
∑

(n,c) indicates the summation is taken over all subsets of
size c taken out of Xn. The pseudo-kernel of degree three can be expressed
as

φPS(xi1 , xi2 , xi3) =

(
n

3

)θ +(n
k

)−1 k∑
j=1

(
n− j
k − j

)∑
(n,j)

h(j)(xν1 , . . . , xνj )


−

(
n− 1

3

)θ +(n− 1

k

)−1 k∑
c=1

(
n− 1− c
k − c

) ∑
(n−1(−i1),c)

h(c)(xν1 , . . . , xνc)


−

(
n− 1

3

)θ +(n− 1

k

)−1 k∑
c=1

(
n− 1− c
k − c

) ∑
(n−1(−i2),c)

h(c)(xν1 , . . . , xνc)


−

(
n− 1

3

)θ +(n− 1

k

)−1 k∑
c=1

(
n− 1− c
k − c

) ∑
(n−1(−i3),c)

h(c)(xν1 , . . . , xνc)


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+

(
n− 2

3

)θ +(n− 2

k

)−1 k∑
c=1

(
n− 2− c
k − c

) ∑
(n−2(−i1,−i2),c)

h(c)(xν1 , . . . , xνc)


+

(
n− 2

3

)θ +(n− 2

k

)−1 k∑
c=1

(
n− 2− c
k − c

) ∑
(n−2(−i1,−i3),c)

h(c)(xν1 , . . . , xνc)


+

(
n− 2

3

)θ +(n− 2

k

)−1 k∑
c=1

(
n− 2− c
k − c

) ∑
(n−2(−i2,−i3),c)

h(c)(xν1 , . . . , xνc)


−

(
n− 3

3

)θ +(n− 3

k

)−1 k∑
c=1

(
n− 3− c
k − c

) ∑
(n−3(−i1,−i2,−i3),c)

h(c)(xν1 , . . . , xνc)



Following straightforward but tedious algebra simplifications, we can

re-express φPS(xi1 , xi2 , xi3) as

φPS(xi1 , xi2 , xi3) = θ +

(
k

1

)
(1/3)[h(1)(xi1) + h(1)(xi2) + h(1)(xi3)]

+

(
k

2

)
(1/3)[h(2)(xi1 , xi2) + h(2)(xi1 , xi3) + h(2)(xi2 , xi3)]

+

(
k

3

)
h(3)(xi1 , xi2 , xi3) + remainder

where the reminder term only depends on h(c) for 4 ≤ c ≤ k.

As a result, we have

UPS =

(
n

2

)−1 ∑
1≤i1<i2<i3≤n

φPS(xi1 , xi2 , xi3)

= θ +
k

n

n∑
i=1

h(1)(xi) +

(
n

k

)−1(
n− 2

k − 2

)∑
(n,2)

h(2)(xi1 , xi2)

+

(
n

k

)−1(
n− 3

k − 3

)∑
(n,3)

h(3)(xi1 , xi2 , xi3) + remainder.

From here it’s easy to show that the variance of the remainder terms is of

order n−4. Thus, V̂PS is third-order unbiased.
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