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Abstract: This paper addresses the problem of variance estimation of a general U-

statistic with large kernel size (degree) k. U-statistics form a class of unbiased esti-

mators. It was first proposed in Hoeffding (1948) and has since been widely used in

many statistical applications. Wang and Lindsay (2014) propose an unbiased vari-

ance estimator for a general U-statistic; it is applicable provided that the kernel

size k is at most half of the sample size n. This condition restricts its application to

common K-fold cross-validation problems. We devise a pseudo-kernel variance es-

timator that can be realized in the same fashion as the unbiased variance estimator,

but is defined based on a pseudo-kernel function of degree two. We demonstrate

how to construct a pseudo-kernel function and show that the resulting variance

estimator is second-order unbiased. Moreover, we develop an efficient realization of

the proposal in the context of K-fold cross-validation. The proposed variance es-

timator shows comparable performance with significantly improved computational

efficiency compared to its bootstrap and jackknife counterparts in simulation and

data analysis in the context of model selection using the “one-standard-error” rule.

Key words and phrases: K-fold cross-validation, Kullback-Leibler distance, pseudo-

kernel, second-order unbiased, U-statistic, variance estimation.

1. Introduction

Variance measures the uncertainty of a random quantity. Therefore, vari-

ance estimation is crucial in evaluating the performance of a point estimator or

conducting inference for a statistical methodology. In statistical practice, an un-

biased estimator is often desired. Because most unbiased estimators in common

use can be written in the form of a U-statistic, in this paper we focus on the

problem of variance estimation of a U-statistic.

Consider a parameter of interest θ that is defined as the expectation of a

symmetric function φ with k components.

θ = E[φ(X1, . . . , Xk)], (1.1)

where X1, . . . , Xk are independent and identically distributed (i.i.d.) random

variables, and symmetry means that the function φ is permutation invariant
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of its k components. We call φ the kernel function and k the kernel size. The

smallest integer k for (1.1) to hold is also referred to as the degree of the statistical

functional θ. Given an i.i.d. sample of size n (n ≥ k), Xn = (X1, . . . , Xn), from

some distribution with probability density f , a U-statistic with a symmetric

kernel function φ of degree k is defined in Hoeffding (1948) as

Un =

(
n

k

)−1 ∑
1≤i1<···<ik≤n

φ(Xi1 , . . . , Xik).

Although the kernel function φ is often scalar-valued, most of the results can be

easily generalized to vector-valued cases.

Let φc(x1, . . . , xc) = E[φ(X1, . . . , Xk) | X1 = x1, . . . , Xc = xc]. Write

Var[φc(X1, . . . , Xc)] = σ2c (1 ≤ c ≤ k). Hoeffding (1948) gives the closed-form

expression of the variance of Un:

Var(Un) =

(
n

k

)−1 k∑
c=1

(
k

c

)(
n− k
k − c

)
σ2c . (1.2)

Under the conditions that f is square-integrable and 0 < σ21 < ∞, Un admits

an asymptotic normal distribution with asymptotic variance k2σ21/n. However,

the exact U-statistic variance given in (1.2) is complicated in form, and the

asymptotic variance of Un is not necessarily reliable when the kernel size k is not

small compared to the sample size n.

Wang and Lindsay (2014) propose an unbiased variance estimator, denoted

as V̂u. It is of an elementary quadratic form and easy to realize with the help of a

partition resampling scheme proposed in Wang and Lindsay (2014). Let (Sa, Sb)

represent a pair of data subsets, each of size k. Denote |Sa ∩ Sb| as the number

of overlaps between Sa and Sb. Provided that k ≤ n/2, the unbiased variance

estimator V̂u can be written as

V̂u = U2
n −Q(0), where (1.3)

Q(0) =

[(
n

k

)(
n− k
k

)]−1 ∑
|Sa∩Sb|=0

φ(Sa)φ(Sb).

Since E[U2
n−Q(0)] = E(U2

n)− [E(Un)]2, the unbiasedness of V̂u follows. Maesono

(1998) compares several U-statistic variance estimators, including an unbiased

estimator. Maesono’s method is based on finding unbiased estimates for the σ2c
terms in (1.2). Let

∑
(n,j) denote a summation taken over all subsets of size

j (1 ≤ j ≤ n). Following the notations in Maesono (1998), it can be shown that
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Q(0) =

(
n

2k

)−1 ∑
(n,2k)

ζ0(X1, . . . , X2k),

U2
n =

(
n

k

)−1 k∑
c=0

(
k

c

)(
n− k
k − c

)
λ̂k,

where λ̂k =
(

n
2k−c

)−1∑
(n,2k−c) ζk(xi1 , . . . , xi2k−c

), and

ζc(x1, . . . , x2k−c) =

(
2k − c
c

)−1(2k − 2c

k − c

)−1 ∑
|Sa∩Sb|=c

φ(Sa)φ(Sb) for 0 ≤ c ≤ k.

As a result, Maesono’s unbiased variance estimator is equivalent to V̂u. However,

the proposal of Wang and Lindsay (2014) is of a much simpler form.

The construction of the Q(0) term in V̂u requires that k ≤ n/2. This con-

dition restricts its application to common K-fold cross-validation problems. For

more on cross-validation, see Picard and Cook (1984), Shao (1993), and Hastie,

Tibshirani and Friedman (2009). Ray and Lindsay (2008) and Wang and Lind-

say (2014) show that the unbiased estimator for the Kullback-Leibler risk of a

parametric model can be written as a U-statistic with kernel size k = m + 1,

where m is the training sample size. Thus, the U-statistic estimator for the K-

fold cross-validated risk has kernel size k = n(K − 1)/K + 1, bigger than n/2.

In this case the unbiased variance estimator V̂u is no longer applicable. Bengio

and Grandvalet (2004) argue that there is no universal unbiased estimator for

the variance of K-fold cross-validation. This paper aims to develop reliable and

efficient estimators for the variance of a U-statistic with relatively large kernel

size k. We will focus the discussion on applications of K-fold cross-validation

under Kullback-Leibler loss function.

We first notice that the kernel function of the U-statistic estimator for the

Kullback-Leibler risk of a parametric model can be approximated asymptotically

by a kernel function of two components. We define a pseudo-kernel function as the

“fake” kernel derived from Un when assuming the degree of Un is two. Using the

degree-two pseudo-kernel function, one can construct a variance estimator of Un
based on equation (1.3). We call it a pseudo-kernel variance estimator. When

Un is non-degenerate, i.e. 0 < σ21 < ∞, the proposed pseudo-kernel variance

estimator is second-order unbiased (Theorem 1) and consistent (Theorem 2).

We also notice that the well-known delete-one jackknife variance estimator can

be expressed in the form of an unbiased variance estimator using a pseudo-kernel

of degree one (Remark 3). Efron and Stein (1981) and Wang and Chen (2015)
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show that the conventional jackknife variance estimator is first-order unbiased.

Therefore, the proposed pseudo-kernel variance estimator is more accurate than

the conventional jackknife method.

The rest of the paper is organized as follows: In Section 2 we propose a

pseudo-kernel method in variance estimation. We show how one can construct a

pseudo-kernel function of degree two based on a given data set and also discuss

the construction of pseudo-kernels with higher degree. We prove some theoret-

ical properties of the resulting pseudo-kernel variance estimator. In Section 3

we demonstrate an efficient realization of the proposal in the context of ten-fold

cross-validation. Then, we compare the performance of the pseudo-kernel vari-

ance estimator with its bootstrap and jackknife counterparts using simulations

and a real data set.

2. Pseudo-Kernel Method in U-statistic Variance Estimation

2.1. Asymptotic kernel for the U-statistic Kullback-Leibler risk esti-

mator

Consider a family of parametric models M = {mθ | θ ∈ Θ} with unknown

parameter θ ∈ Θ ⊆ Rp (p ∈ Z+). Denote the Maximum Likelihood (ML) esti-

mator of the parameter as θ̂(Xm), where Xm = (X1, . . . , Xm) is a training sample

of size m taken out of Xn. Write the log-likelihood function of the fitted model

as log f
θ̂(Xm)

(x). Wang and Lindsay (2014) show that the unbiased estimator for

the Kullback-Leibler risk in model selection can be written as

Un =

(
n

m+ 1

)−1 ∑
(n,m+1)

φ(Xm+1),

φ(Xm+1) = −(m+ 1)−1
m+1∑
i=1

log f
θ̂(X (−i)

m )
(Xi), (2.1)

where the summation
∑

(n,m+1) is taken over all subsets of size m + 1 out of

Xn, X (−i)
m represents a training sample of size m without Xi, and f

θ̂(X (−i)
m )

(Xi)

is the estimated probability density function evaluated at point Xi. Because

the parameter θ is estimated using data subset X (−i)
m (1 ≤ i ≤ m + 1), the

degree of the kernel function φ(Xm+1) (2.1) is k = m+ 1. Therefore, unless the

training sample size m < n/2 one cannot apply the unbiased variance estimator

V̂u directly. Below we show that the kernel function φ(Xm+1) (2.1) with possibly

large degree has an approximate symmetric kernel function with two components.

Consider an i.i.d. sample of size n, X1, . . . , Xn, from some parametric distri-
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bution fθ (θ ∈ Θ ⊆ Rp, p ∈ Z+). Let θ∗ be the true value of the parameter in Θ,

and let θ̂(Xm) be the Maximum Likelihood estimator. Assume the regularity con-

ditions C1–C5 (Appendix A1) hold such that θ̂(Xm) is consistent for θ∗. With a

Taylor series expansion, the kernel function φ(Xm+1) (2.1) can be approximated

asymptotically by a symmetric function of two components. The error of the

approximation is of order o(‖θ̂(Xm) − θ∗‖) where ‖ · ‖ represents the Euclidean

norm. We call the approximate symmetric kernel function an asymptotic kernel;

it is defined as

φ∗(xi, xj) =
1

4
[log fθ∗(xi) + log fθ∗(xj)] + u(xj |θ∗)T I(θ∗)−1u(xi|θ∗), (2.2)

where u(xi|θ∗) = ∂ log fθ(xi)/∂θ |θ=θ∗ , and I(θ∗) is the Fisher Information matrix

I(θ∗) = −E
[

∂2

∂θ∂θT
log fθ(X)

]
|θ=θ∗ .

When θ̂(Xm) is
√
m-consistent, the error of the approximation is of order Op(1/√

m). (A detailed derivation of the asymptotic kernel in (2.2) can be found in

the supplementary materials.)

There exists an alternative approximation to the kernel function φ(Xm+1)

(2.1) that leads to an interesting interpretation of the risk estimator, akin to the

generalized AIC (Wang and Lindsay (2014)).

Let u(xi|θ) = ∂ log/∂θfθ(xi) = ∂l/∂θ(θ|xi). We have

φ(Xm+1) =
1

m+ 1

m+1∑
i=1

log fθ∗(Xi)

+
1

m(m+ 1)

∑
i 6=j

u(Xj |θ∗)T I(θ∗)−1u(Xi|θ∗) + o(‖θ̂(Xm)− θ∗‖).

Given an i.i.d. data subset Xm+1 of size m+ 1, denote the ML estimator based

on Xm+1 as θ̂m+1 := θ̂(Xm+1). For large enough m, we have

φ(Xm+1) ≈
1

m+ 1

m+1∑
i=1

log f
θ̂m+1

(Xi)

+
1

m(m+ 1)

∑
i 6=j

u(Xj |θ̂m+1)
T I(θ̂m+1)

−1u(Xi|θ̂m+1).

Because
∑m+1

i=1 u(Xi|θ̂m+1) =
∑m+1

i=1 l′(θ̂m+1|Xi) = 0, we have[
m+1∑
i=1

u(Xi|θ̂m+1)
T

]
I(θ̂m+1)

−1

m+1∑
j=1

u(Xj |θ̂m+1)


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=

m+1∑
i=1

m+1∑
j=1

u(Xi|θ̂m+1)
T I(θ̂m+1)

−1u(Xj |θ̂m+1) = 0,

which yields ∑
i 6=j

u(Xi|θ̂m+1)
T I(θ̂m+1)

−1u(Xj |θ̂m+1)

= −
m+1∑
i=1

u(Xi|θ̂m+1)
T I(θ̂m+1)

−1u(Xi|θ̂m+1).

Thus,

φ(Xm+1) ≈
1

m+ 1
l(θ̂m+1)−

1

m(m+ 1)

m+1∑
i=1

u(Xi|θ̂m+1)
T I(θ̂m+1)

−1u(Xi|θ̂m+1),

where l(θ̂m+1) =
∑m+1

i=1 l(θ̂m+1|Xi) is the joint log-likelihood.

Because X1, . . . Xm+1 are i.i.d., by the Law of Large Numbers,

1

m+ 1

m+1∑
i=1

[
u(Xi|θ̂m+1)

T I(θ̂m+1)
−1u(Xi|θ̂m+1)

]
a.s.−−→ E[u(X1 | θ̂m+1)

T I(θ̂m+1)
−1u(X1 | θ̂m+1)]

as m goes to infinity. Since

E[u(X1 | θ̂m+1)
T I(θ̂m+1)

−1u(X1 | θ̂m+1)]

= E{trace[u(X1 | θ̂m+1)
T I(θ̂m+1)

−1u(X1 | θ̂m+1)]}

= trace{E[I(θ̂m+1)
−1u(X1 | θ̂m+1)u(X1 | θ̂m+1)

T ]}
= p,

we have (m + 1)−1
∑m+1

i=1 u(Xi|θ̂m+1)
T I(θ̂m+1)

−1u(Xi|θ̂m+1) → p as m → ∞.

Thus, for large enough m φ(Xm+1) ≈ c[l(θ̂m+1) − p], where p is the dimension

of parameter θ and c is a fixed constant. Namely, φ(Xm+1) is asymptotically

proportional to −2[l(θ̂m+1)− p].

Remark 1. The symmetric kernel function φ(Xm+1) in (2.1) is asymptotically

equivalent to the generalized AIC evaluated at subsample size m+1. Therefore, a

U-statistic risk estimator, defined as an average of φ(Xm+1) over n-choose-(m+1)

subsamples of size m + 1, is approximately an average of the AIC scores, each

computed based on a subsample of size m + 1. When comparing AIC at size

m+ 1 with AIC at size n, the difference comes from the log-likelihood term, the

source of bias incurred by using subsample size m+ 1 < n.
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2.2. Construction of pseudo-kernel of degree two

Equation (2.2) gives us an explicit expression of the asymptotic kernel func-

tion for the U-statistic estimator of a Kullback-Leibler risk. However, it is not

directly applicable without knowing the true parameter θ∗. In the following we

give the definition of a pseudo-kernel function, a “fake” kernel function of lower

degree. We propose to use the pseudo-kernel function to construct a U-statistic

variance estimator, applicable even when the kernel size k of Un is large.

Definition 1. Consider a U-statistic Un, defined on a symmetric kernel function

φ of degree k (k ≥ 2). The function φPS(xi, xj) is a degree-two pseudo-kernel

function if

φPS(xi, xj) =

(
n

2

)
Un−

(
n− 1

2

)
U

(−i)
n−1−

(
n− 1

2

)
U

(−j)
n−1 +

(
n− 2

2

)
U

(−i,−j)
n−2 , (2.3)

where U
(−i)
n−1 is a U-statistic computed based on a data subset of size n−1 without

the ith observation, and U
(−i,−j)
n−2 is a U-statistic computed based on a data subset

of size n− 2 excluding both the ith and the jth observations.

The motivation for the definition of φPS(xi, xj) is as follows: Assume that Un
has an asymptotic kernel function of degree two, such as in the case of Kullback-

Leibler risk estimation shown in Subsection 2.1, and ignore the errors in the

asymptotic approximation. Then, for any i, j (1 ≤ i < j ≤ n),(
n

2

)
Un =

∑
1≤k<l≤n

φPS(xk, xl),(
n− 1

2

)
U

(−i)
n−1 =

∑
1≤k<l≤n

φPS(xk, xl)−
∑
l 6=i

φPS(xi, xl),(
n− 1

2

)
U

(−j)
n−1 =

∑
1≤k<l≤n

φPS(xk, xl)−
∑
k 6=j

φPS(xk, xj),(
n− 2

2

)
U

(−i,−j)
n−2 =

∑
1≤k<l≤n

φPS(xk, xl)−
∑
l 6=i

φPS(xi, xl)−
∑
k 6=j

φPS(xk, xj)

+ φPS(xi, xj).

It follows that φPS(xi, xj) has the form (2.3).

Using the pseudo-kernel function φPS of degree two, one can follow the con-

struction of an unbiased variance estimator in (1.3) to obtain a variance estimator

for Un. We call the resulting estimator a pseudo-kernel variance estimator, de-

fined as
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V̂PS = UPS
2 −

[(
n

2

)(
n− 2

2

)]−1∑
φPS(Xi1 , Xi2)φPS(Xj1 , Xj2), (2.4)

where the summation is taken over all pairs of non-overlapped subsamples of size

two, and UPS =
∑

1≤i<j≤n φPS(Xi, Xj)/{n!/[2!(n− 2)!]}.
Although V̂PS is constructed based on φPS, not the true kernel, we can show

that, when Un is non-degenerate, the pseudo-kernel variance estimator V̂PS (2.4)

is always second-order unbiased. This property makes the proposed estimator

preferable to the jackknife variance estimator. For a proof of Theorem 1, see

Appendix A2.

Theorem 1. Consider a non-degenerate U-statistic Un of degree k (k ≥ 2). The

pseudo-kernel variance estimator V̂PS defined in (2.4) is second-order unbiased.

Besides the second-order unbiasedness of the devised pseudo-kernel variance

estimator, it can be shown that V̂PS is also a consistent estimator for the true

variance Var(Un). The consistency property is stated in Theorem 2 and the proof

can be found in the supplementary materials.

Theorem 2. Let Un be a non-degenerate U-statistic with degree k (k ≥ 2). The

pseudo-kernel variance estimator V̂PS defined in (2.4) satisfies for any ε > 0,

P (| V̂PS −Var(Un) |> ε)→ 0 as n→∞.

Remark 2. If the degree of a U-statistic is exactly two (k = 2), the pseudo-kernel

method yields the unbiased variance estimator V̂u.

Remark 3. As with the the degree-two pseudo-kernel, one can define a degree-

one pseudo-kernel as

φPS(xi) =

(
n

2

)
Un −

(
n− 1

2

)
U

(−i)
n−1 .

The conventional leave-one-out jackknife variance estimator can be written in

the form of V̂u based on a pseudo-kernel function of degree one. (For proof, see

the supplementary materials.)

Remark 4. The asymptotic kernel φ∗(x1, x2), (2.2), for the kernel function

φ(Xm+1), (2.1), of a U-statistic risk estimator is independent of the training

sample size m. Therefore, in the context of K-fold cross-validation the pseudo-

kernel function can be realized by deleting an entire block of observations rather

than removing one observation at a time. We investigate this idea further in

Section 3 to simplify the computational cost of the proposed variance estimator.
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2.3. Pseudo-Kernel of higher degree

Following the construction of a pseudo-kernel function of degree two, one

can define a pseudo-kernel of higher degree in a similar fashion. For instance, a

pseudo-kernel function of degree three can be written as

φPS(xi1 , xi2 , xi3) =

(
n

3

)
Un −

(
n− 1

3

)(
U

(−i1)
n−1 + U

(−i2)
n−1 + U

(−i3)
n−1

)
(2.5)

+

(
n− 2

3

)(
U

(−i1,−i2)
n−2 + U

(−i1,−i3)
n−2 + U

(−i2,−i3)
n−2

)
−
(
n− 3

3

)
U

(−i1,−i2,−i3)
n−3 ,

where Un, U
(−i1)
n−1 , and U

(−i1,−i2)
n−2 (1 ≤ i1 < i2 ≤ n) are defined in the same way

as in Definition 1, and U
(−i1,−i2,−i3)
n−3 is a U-statistic computed based on a data

subset of size n− 3, excluding the i1th, the i2th, and the i3th observations from

the data set.

Using a pseudo-kernel function of degree three, (2.5), the resulting pseudo-

kernel variance estimator V̂PS is

V̂PS = U2
PS −

[(
n

3

)(
n− 3

3

)]−1∑
φPS(Xi1 , Xi2 , Xi,3)φPS(Xj1 , Xj2 , Xj3),

where the summation is taken over all pairs of non-overlapped data subsets of

size three, and UPS =
(
n
3

)−1∑
1≤i1<i2<i3≤n φPS(xi1 , xi2 , xi3).

Using a degree-three pseudo-kernel, the pseudo-kernel variance estimator

is third-order unbiased (Theorem 3). The proof for Theorem 3 is straightfor-

ward but involves tedious manipulations of the orthogonal terms in Hoeffding

decomposition (Hoeffding (1948)). A sketch of the proof can be found in the

supplementary materials.

Theorem 3. Consider a non-degenerate U-statistic Un of degree k (k ≥ 3). Us-

ing a degree-three pseudo-kernel function as defined in (2.5), the resulting vari-

ance estimator V̂PS is third-order unbiased.

Hypothetically one can define a pseudo-kernel function of any degree k∗ (2 ≤
k∗ ≤ k) in an adaptive fashion. As the degree of the pseudo-kernel function

increases, the bias of the resulting pseudo-kernel variance estimator decreases.

The improvement in bias is of order n−k
∗

(k∗ ≥ 2), which may be negligible for

large n. Given the marginal gain in accuracy and the incurred computational

cost by using k∗ ≥ 3, we do not pursue the implementation of pseudo-kernel

functions of higher degree. The degree-two pseudo-kernel function would mostly
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yield satisfactory result in practice, as shown later in Section 3, and we focus on

the discussion of the pseudo-kernel variance estimator with k∗ = 2.

3. Pseudo-Kernel Variance Estimator in Ten-Fold Cross-Validation

Ten-fold cross-validation is one of the most widely used algorithms in statis-

tical practice and machine learning (Kohavi (1995)). We now demonstrate how

to realize the pseudo-kernel variance estimator V̂PS (2.4) with high computational

efficiency in the case of ten-fold cross-validation.

3.1. An efficient realization

Without loss of generality, assume n is a multiple of K = 10. We partition

the data set into ten blocks, each of size ñ = n/10, say S1, . . . , S10. Write the

observations in subsample Sl as xl,t (1 ≤ l ≤ 10; 1 ≤ t ≤ ñ). Let L be a loss

function used to evaluate the closeness between an independent observation xl,t
and its prediction x̂

(−Sl)
l,t , where x̂

(−Sl)
l,t is obtained by fitting the model exclud-

ing the lth block of observations. The conventional ten-fold cross-validated risk

estimator can be expressed as

UCV =
1

10

10∑
l=1

1

ñ

∑
xl,t∈Sl

L(x̂
(−Sl)
l,t , xl,t),

and the remove-one-block and remove-two-block cross-validated risk estimators

can be written as

U
(−Si)
CV =

1

9

∑
l 6=i

1

ñ

∑
xl,t∈Sl

L(x̂
(−Si,−Sl)
l,t , xl,t),

U
(−Si,−Sj)
CV =

1

8

∑
l 6=i and l 6=j

1

ñ

∑
xl,t∈Sl

L(x̂
(−Si,−Sj ,−Sl)
l,t , xl,t).

Here x̂
(−Si,−Sl)
l,t represents the predicted value for xl,t ∈ Sl when the model is

fitted without Si and Sl (1 ≤ i ≤ 10; 1 ≤ l ≤ 10; l 6= i), and x̂
(−Si,−Sj ,−Sl)
l,t is

the predicted value for xl,t ∈ Sl when the model is fitted without Si, Sj , and Sl
(1 ≤ i < j ≤ 10; 1 ≤ l ≤ 10; l 6= i or j). Simply put, U

(−Si)
CV is a nine-fold CV

risk estimator after removing Si, and U
(−Si,−Sj)
CV is an eight-fold CV risk estimator

after removing both Si and Sj from the data.

Under Kullback-Leibler distance, the U-statistic risk estimator has an asymp-

totic kernel function of degree two. Then,
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UCV ≈
(
n

2

)−1 ∑
1≤s<t≤n

φPS(xs, xt), (3.1)

U
(−Si)
CV ≈

(
0.9n

2

)−1 ∑
xs,xt /∈Si

φPS(xs, xt), (3.2)

U
(−Sj)
CV ≈

(
0.9n

2

)−1 ∑
xs,xt /∈Sj

φPS(xs, xt), (3.3)

U
(−Si,−Sj)
CV ≈

(
0.8n

2

)−1 ∑
xs,xt /∈Si∪Sj

φPS(xs, xt), (3.4)

where the summation
∑

xs,xt /∈Si
is taken over 1 ≤ s < t ≤ n and xs, xt /∈ Si for

1 ≤ i ≤ 10; the summation
∑

xs,xt /∈Si∪Sj
is taken over 1 ≤ s < t ≤ n and xs, xt /∈

Si ∪ Sj for 1 ≤ i < j ≤ 10.

Take

φ̃(i, j) =
1

ñ2

[(
n

2

)
UCV −

(
0.9n

2

)
U

(−Si)
CV −

(
0.9n

2

)
U

(−Sj)
CV +

(
0.8n

2

)
U

(−Si,−Sj)
CV

]
.

According to (3.1) to (3.4), we have

φ̃(i, j) ≈ 1

ñ2

∑
xi,s∈Si

∑
xj,t∈Sj

φPS(xi,s, xj,t).

It is easy to see that the average of φ̃(i, j) over 1 ≤ i < j ≤ 10 is an approxi-

mation for UCV. In addition, φ̃(i, j)φ̃(l, k) with (i, j) ∩ (l, k) = ∅ is an average of

φPS(xi,s, xj,t)φPS(xl,s, xk,t) terms, where xi,s ∈ Si, xj,t ∈ Sj , xl,s ∈ Sl, and xk,t ∈
Sk (1 ≤ i < j < 10; 1 ≤ l < k < 10; 1 ≤ s, t ≤ ñ). Thus, the average of

φ̃(i, j)φ̃(l, k) over (i, j) ∩ (l, k) = ∅ can be used to approximate the Q(0) term in

V̂u (1.3) directly. Moreover, the pseudo-kernel variance estimator at (2.4) can be

approximated by

ṼPS := U∗CV
2 −

[(
10

2

)(
8

2

)]−1 ∑
(i,j)∩(s,t)=∅

φ̃(i, j)φ̃(s, t), (3.5)

where U∗CV =
(
10
2

)−1∑
1≤i<j≤10 φ̃(i, j).

Fix the number of folds K in a cross-validation algorithm. Although the

number of observations in each fold increases with a larger sample size n, the

number of terms being averaged over in (3.5) depends only on K. Therefore,

the computational cost for realizing ṼPS (3.5) does not grow substantially with

greater n, whereas the computational cost of its bootstrap and jackknife coun-

terparts can increase dramatically with larger n.
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3.2. A simulation study in ten-fold cross-validation

We consider a simulation study of regression analysis using ten-fold cross-

validation. The methodology can be easily generalized to other cross-validation

scenarios. We compare the performance of the pseudo-kernel variance estima-

tor ṼPS (3.5) with the nonparametric bootstrap and the leave-one-out jackknife

variance estimators. For more on bootstrap and jackknife, see Efron and Stein

(1981); Efron and Gong (1983); Efron and Tibshirani (1983), and Efron (1987).

Consider a linear regression model between response Yi and seven continuous

predictors Xi,j (1 ≤ i ≤ n; 1 ≤ j ≤ 7). The true regression relationship is

assumed to be

Yi = 1 + 15Xi,1 + 8Xi,2 + 5Xi,3 + 3Xi,4 + 1Xi,5 + 0.01Xi,6 + 0Xi,7 + εi (1 ≤ i ≤ n).

To simulate the data sets, we generated predictors Xi’s, each of size n, indepen-

dently from Uniform(0,1), and standardized each predictor to have zero mean

and unit standard deviation. We simulated random errors of size n from Nor-

mal(0,
√

0.1), and obtained the values for the response variable Y . We repeated

this process R = 1, 000 times to get 1,000 independent data sets. For each sample

of size n, we performed ten-fold cross-validation based on Kullback-Leibler dis-

tance to evaluate the ordinary least-square model fit. In this case, the U-statistic

estimator of the risk can be written as

UCV = − 1

10

10∑
l=1

1

ñ

∑
(xt,yt)∈Sl

log f
β̂(−Sl)

(yt|xt), (3.6)

which is proportional to

1

10

10∑
l=1

1

ñ

∑
(xt,yt)∈Sl

(yt − xtβ̂(−Sl))2,

where xt = (1, xt,1, . . . , xt,7)
T and β = (β0, . . . , β7)

T . Here f
β̂(−Sl)

is the estimated

density function of response Yt when the model is fitted without the lth block of

observations. As shown in equation (3.6), with normal random errors the ten-fold

CV estimator for the Kullback-Leibler risk is proportional to the risk estimator

based on L2 distance. The goal here is to assess the variation of UCV at (3.6).

We focused on the full linear regression model, including all seven predictors,

and compared the efficient pseudo-kernel variance estimator ṼPS at (3.5), the

nonparametric bootstrap variance estimator with 500 bootstrap samples for each

data set, and the leave-one-out jackknife variance estimator. Table 1 summarizes

the average estimated variance, the simulated standard deviation, and the mean
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Table 1. Performance of different variance estimators in ten-fold CV.

n = 100 True Pseudo Bootstrap Jackknife

Ê{Var(UCV)} 0.00547 0.00480 0.00648 0.00747

ŜD{Var(UCV)} 0.00357 0.00184 0.00237
MSE×103 0.01319 0.00441 0.00962

Time (hours) 1.67 6.23 2.35

n = 200 True Pseudo Bootstrap Jackknife

Ê{Var(UCV)} 0.00261 0.00237 0.00279 0.00302

ŜD{Var(UCV)} 0.00138 0.00053 0.00059
MSE×103 0.00196 0.00031 0.00052

Time (hours) 1.87 6.80 2.79

n = 500 True Pseudo Bootstrap Jackknife

Ê{Var(UCV)} 0.00105 0.00103 0.00104 0.00108

ŜD{Var(UCV)} 0.00052 0.00014 0.00012
MSE×103 0.00027 0.00020 0.00015

Time (hours) 3.62 16.59 13.53

squared error for each estimator. The computation time given in Table 1 is the

total time in hours spent to compute R = 1, 000 variance estimates. The true

variance was approximated based on a simulation with 50,000 random samples.

Table 1 shows that the pseudo-kernel method is indeed an efficient way to

estimate the variation of a cross-validation score, especially for large sample size

n. When the sample size n is small, the pseudo-kernel variance estimator is less

biased but may be more variable than its bootstrap and jackknife counterparts.

In this case, the computational advantage of using ṼPS is not as significant. When

the sample size n is relatively large, the proposal yields comparable performance

compared to the bootstrap and jackknife variance estimators, but with much less

computational cost. The bootstrap and jackknife variance estimators become

very expensive to compute for large sample size n. In addition, the jackknife

variance estimator always shows large positive bias in regression analysis, as also

noted in Wu (1986) and Hinkley (1977).

Next, we considered how different the decision of model selection would

be if we used different methods to estimate the variance of UCV. Since the

seven x-variables were independently generated from the same distribution, and

standardized, we ranked the significance of the predictors by the magnitudes of

their corresponding coefficients. We compared seven models, with Model 7 being

the full model and Model 1 being the single-predictor model, as shown in Table

2. We only show results for sample size n = 200 (results with other sample sizes

are very similar).
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Table 2. Models under comparison.

Model Predictors
Model 1 X1

Model 2 X1 X2

Model 3 X1 X2 X3

Model 4 X1 X2 X3 X4

Model 5 X1 X2 X3 X4 X5

Model 6 X1 X2 X3 X4 X5 X6

Model 7 X1 X2 X3 X4 X5 X6 X7

If one simply selects the model with the smallest ten-fold CV risk score,

then out of 1,000 random samples one would select Model 5 on 742 occasions,

Model 6 on 178, and Model 7 on 80. We investigated what would happen if

one implemented the “one-standard-error” (1-SE) rule (Hastie, Tibshirani and

Friedman (2009)), selecting the most parsimonious model whose CV risk estimate

is within one standard error of the minimum CV risk estimate. Here all three

methods chose Model 5 all the time. Although Model 6 was the true model, the

coefficient of predictor X6 was very close to 0 and therefore the risk of Model

5 was not significantly larger than that of Model 6. Again, the pseudo-kernel

variance estimator is much more efficient to compute.

Remark 5. As noted in Wang and Lindsay (2014), one can conduct pairwise

model comparisons and evaluate the variance of the difference between two risk

scores. This proposal can be applied to estimating the variance of the difference

in risk scores.

Remark 6. The unbiased variance estimator of Un proposed in Wang and Lind-

say (2014) may yield negative values, but we did not encounter any negative

variance estimates when computing ṼPS in this example. Should this occur, one

can consider the simple fix-ups in Wang and Lindsay (2014), or can implement

the extrapolation techniques discussed in Wang and Chen (2015).

3.3. Data analysis

Consider a heart disease data set available from the UCI Machine Learning

Repository. We focused on the response of whether or not a patient has heart

disease and the thirteen predictor variables. The data set first appeared in Aha

and Kibler (1988) and has been analyzed in Chai et al. (2004); Huang et al.

(2004), and Zhou and Jiang (2012).

After removing observations with missing values, there are 296 observations.
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Table 3. Models under comparison. Predictors marked as “X” are included in the
corresponding model.

p thal exang ca slope cp sex trestbps thalach chol fbs restecg oldpeak age
1 X
2 X X
3 X X X
4 X X X X
5 X X X X X
6 X X X X X X
7 X X X X X X X
8 X X X X X X X X
9 X X X X X X X X X
10 X X X X X X X X X X
11 X X X X X X X X X X X
12 X X X X X X X X X X X X
13 X X X X X X X X X X X X X

For convenience of partitioning the data we focused on a subset of 290 of them,

and considered a logistic regression model to determine the classification of each

patient. Here the ten-fold CV risk estimator based on Kullback-Leibler distance

is

UCV = − 1

10

10∑
l=1

1

ñ

∑
(xt,yt)∈Sl

[yt log p̂
(−Sl)
t + (1− yt) log(1− p̂(−Sl)

t )],

where p̂
(−Sl)
t is the predicted probability of heart disease based on a logistic

regression model fitted without the lth block of observations. Although there

are 213 possible models, we only considered the best model of each size in the

BIC sense. Thus, we worked with 13 models for model comparison, as shown

explicitly in Table 3.

We computed the ten-fold cross-validation score of each candidate model.

Figure 1 indicates that the full model has the smallest estimated Kullback-Leibler

risk. If one does not take into account of the variation of the risk estimator,

Model 13 would have been selected as the best model. In practice, it is clear

that Model 13 is not necessarily the optimal choice, as some more parsimonious

models, such as Models 5 to 12, have CV scores very similar to that of Model

13. We implemented the 1-SE rule to see whether a more parsimonious model

would be selected instead of the full model. We used the same set of methods to

estimate the standard error of the ten-fold CV risk score.

From Figure 2 it can be seen that, based on the 1-SE rule, all three variance

estimation methods lead to the same conclusion of favoring Model 4, as its CV
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Figure 1. Ten-fold cross-validation scores for the candidate models.
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Figure 2. Implementation of 1-SE rule, where the standard error was estimated by
different methods.

risk score is within one standard error of the minimum. Again, the pseudo-kernel

variance estimator is much cheaper to compute compared to its bootstrap and

jackknife counterparts.
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Appendix

A1. Regularity conditions

Under the following regularity conditions C1–C5 (Lehmann (2004)), the

Maximum Likelihood (ML) estimator θ̂ of θ∗ is consistent, i.e. θ̂
P−→ θ∗ asm→∞.

C1. The parameter space Θ is open and bounded.

C2. The probability density function fθ is identifiable, i.e.

θ 6= θ0 implies fθ(x) 6= fθ0(x).

C3. The probability density function fθ(x) is continuous in x.

C4. The set A = {x : fθ(x) > 0} is independent of θ.

C5. For all x in A, fθ(x) is differentiable with respect to θ.

A2. Proof of Theorem 1

Proof. Consider the orthogonal terms in Hoeffding decomposition (Hoeffding

(1948))

h(c)(x1, . . . , xc) = φc(x1, . . . , xc)−
c∑
j=1

∑
(c,j)

h(j)(xi1 , . . . , xxj
)− θ,

where θ = E [φ(X1, . . . , Xk)] and

φc(x1, . . . , xc) = E [φ(X1, . . . , Xk)|X1 = x1, . . . , Xc = xc]

for 1 ≤ c ≤ k.

We have

Un = θ +

(
n

k

)−1 k∑
j=1

(
n− j
k − j

)∑
(n,j)

h(j)(xν1 , . . . , xνj ),

U
(−s)
n−1 = θ +

(
n− 1

k

)−1 k∑
j=1

(
n− 1− j
k − j

) ∑
(n−1(−s),j)

h(j)(xν1 , . . . , xνj ),

U
(−s,−t)
n−2 = θ +

(
n− 2

k

)−1 k∑
j=1

(
n− 2− j
k − j

) ∑
(n−2(−s,−t),j)

h(j)(xν1 , . . . , xνj ).

The notation
∑

(n,j) indicates that the summation is taken over all subsets of

size j taken out of Xn, and
∑

(n−1(−s),j) sums over all subsets of size j taken out

of X (−s)
n−1 where X (−s)

n−1 is a data subset of size n−1 excluding Xs, and
∑

(n(−s,−t),j)
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sums over all subsets of size j taken out of X (−s,−t)
n−2 where X (−s,−t)

n−2 is data subset

of size n− 2 excluding Xs and Xt.

The pseudo-kernel of degree two can be expressed as

φPS(xs, xt) =

(
n

2

)
Un −

(
n− 1

2

)
U

(−s)
n−1 −

(
n− 1

2

)
U

(−t)
n−1 +

(
n− 2

2

)
U

(−s,−t)
n−2

=

(
n

2

)θ +

(
n

k

)−1 k∑
j=1

(
n− j
k − j

)∑
(n,j)

h(j)(xν1 , . . . , xνj )


−
(
n− 1

2

)θ +

(
n− 1

k

)−1 k∑
j=1

(
n− 1− j
k − j

) ∑
(n−1(−s),j)

h(j)(xν1 , . . . , xνj )


−
(
n− 1

2

)θ +

(
n− 1

k

)−1 k∑
j=1

(
n− 1− j
k − j

) ∑
(n−1(−t),j)

h(j)(xν1 , . . . , xνj )


+

(
n− 2

2

)θ +

(
n− 2

k

)−1 k∑
j=1

(
n− 2− j
k − j

) ∑
(n−2(−s,−t),j)

h(j)(xν1 , . . . , xνj )

 .

Here the terms related to θ can be simplified to θ; the terms related to h(1)

can be simplified to (k/2)
[
h(1)(xs) + h(1)(xt)

]
; the terms related to h(2) are(

n

2

)(
n

k

)−1(
n− 2

k − 2

) ∑
1≤i<j≤n

h(2)(xi, xj)

−

(
n− 1

2

)(
n− 1

k

)−1(
n− 3

k − 2

) ∑
1≤i<j≤n

h(2)(xi, xj) −
∑

1≤i<s

h(2)(xi, xs) −
∑

s<j≤n

h(2)(xs, xj)


−

(
n− 1

2

)(
n− 1

k

)−1(
n− 3

k − 2

) ∑
1≤i<j≤n

h(2)(xi, xj) −
∑

1≤i<t

h(2)(xi, xt) −
∑

t<j≤n

h(2)(xt, xj)


+

(
n− 2

2

)(
n− 2

k

)−1(
n− 4

k − 2

) ∑
1≤i<j≤n

h(2)(xi, xj) −
∑

1≤i<t

h(2)(xi, xt) −
∑

t<j≤n

h(2)(xt, xj)


−

(
n− 2

2

)(
n− 2

k

)−1(
n− 4

k − 2

) ∑
1≤i<s

h(2)(xi, xs) +
∑

s<j≤n

h(2)(xs, xj) − h(2)(xs, xt)

 ,

which can be simplified to [k(k − 1)/2]h(2)(xs, xt).

Therefore, for 1 ≤ s < t ≤ n

φPS(xs, xt) = θ+(k/2)
(
h(1)(xs) + h(1)(xt)

)
+[k(k−1)/2]h(2)(xs, xt)+remainder.

The remainder only depends on h(c) with 3 ≤ c ≤ k. The leading term in the
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remainder is, with c = 3,

k(k − 1)(k − 2)

2(n− 2)

∑
i 6=s and i 6=t

h(3)(xs, xt, xi)

+O

k(k − 1)(k − 2)

n2

∑
i 6=s and i 6=t

h(3)(xs, xt, xi)

 .

The other terms in the remainder are of lower orders and can be expressed in

terms of h(j) (4 ≤ j ≤ k) in a similar way.

As a result,

UPS =

(
n

2

)−1 ∑
1≤i<j≤n

φPS(xi, xj)

= θ +
k

n

n∑
i=1

h(1)(xi) +

(
n

k

)−1(n− 2

k − 2

)∑
(n,2)

h(2)(xi, xj) + remainder,

and it is easy to show that the variance of the remainder terms is of order n−3.

Let δ2c = Var(h(c)) for 1 ≤ c ≤ k. The U-statistic variance can be expressed

as (Hoeffding (1948); Lee (1990)):

Var(Un) =

k∑
c=1

(
k

c

)2(n
c

)−1
δ2c .

If one follows the construction of the unbiased variance estimator (1.3) but

changes the original kernel function to the pseudo-kernel function, one would

get a second-order unbiased variance estimator. That is, the coefficients of the

δ21 and δ22 terms in E(V̂PS) match those in Var(Un). Therefore, V̂PS is a second-

order unbiased estimator for Var(Un).
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