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Abstract: Should one rely on a parametric or nonparametric model when analysing

a given data set? This classic question cannot be answered by traditional model

selection criteria like AIC and BIC, since a nonparametric model has no likelihood.

The purpose of the present paper is to develop a focused information criterion

(FIC) for comparing general non-nested parametric models with a nonparamet-

ric alternative. It relies in part on the notion of a focus parameter, a population

quantity of particular interest in the statistical analysis. The FIC compares and

ranks candidate models based on estimated precision of the different model-based

estimators for the focus parameter. It has earlier been developed for several classes

of problems, but mainly involving parametric models. The new FIC, including also

nonparametrics, is novel also in the mathematical context, being derived without

the local neighbourhood asymptotics underlying previous versions of FIC. Cer-

tain average-weighted versions, called AFIC, allowing several focus parameters to

be considered simultaneously, are also developed. We concentrate on the standard

i.i.d. setting and certain direct extensions thereof, but also sketch further generalisa-

tions to other types of data. Theoretical and simulation-based results demonstrate

desirable properties and satisfactory performance.

Key words and phrases: Asymptotic theory, focused information criterion, model

selection.

1. Introduction

Statistical model selection is the task of choosing a good model for one’s data.

There is of course a vast literature on this broad topic, see e.g. methods surveyed

in Claeskens and Hjort (2008). Methods are particularly plentiful when it comes

to comparison and ranking of competing parametric models, e.g. for regression

analyses, where AIC (the Akaike information criterion), BIC (the Bayesian infor-

mation criterion), DIC (the deviance information criterion), TIC (the Takeuchi

information criterion or model-robust AIC), and other information criteria are

in frequent use. The idea of the focused information criterion (FIC) is to specif-

ically address the quality of the final outcomes of a fitted model. This differs
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from the ideas underlying the other information criteria pointed to, as these di-

rectly or indirectly assess general overall issues and goodness of fit aspects. The

FIC starts by defining a population quantity of interest for the particular data

analysis at hand, termed the focus parameter, as judged by context and scientific

relevance. One then proceeds by estimating the mean squared error (or other

risk aspects) of the different model estimates of this particular quantity. Thus,

one is not merely saying ‘this model is good for these data’, but rather ‘this

model is good for these data when it comes to inference for this particular aspect

of the distribution’. Examples of focus parameters are a quantile, the standard

deviation, the interquartile range, the kurtosis, the probability that a data point

will exceed a certain threshold value, or indeed most other statistically mean-

ingful functionals mapping a distribution to a scalar. To avoid confusion, note

in particular that the focus parameter need not be a specified parameter of the

parametric distributions we handle.

The FIC and similar focused methods have been developed for nested para-

metric and regression models (Claeskens and Hjort (2003, 2008)), generalised

additive partial linear models (Zhang and Liang (2011)), Cox’s proportional haz-

ards semiparametric regression model (Hjort and Claeskens (2006)), Aalen’s lin-

ear hazards risk regression model (Hjort (2008)), certain semiparametric versions

of the Aalen model (Gandy and Hjort (2013)), autoregressive time series model

(Claeskens, Croux and Van Kerckhoven (2007)), as well as for certain applica-

tions in economics (Behl et al. (2012)), finance (Brownlees and Gallo (2008)) and

fisheries science (Hermansen, Hjort and Kjesbu (2016)).

The above constructions and further developments of the FIC have mainly

relied on estimating risk functions via large-sample results derived under a cer-

tain local misspecification framework (Claeskens and Hjort (2003, 2008)). In

this framework the assumed true density or probability mass function gradually

shrinks with the sample size (at rate 1/
√
n) from a biggest ‘wide’ model, hitting

a simplest ‘narrow’ model in the limit. This has proven to lead to useful risk

approximations and then to model selection and model averaging methods, but

carries certain inherent limitations. One of these is that the candidate models

need to lie between these narrow and wide models. Another is that the resulting

FIC apparatus, while effectively comparing nested parametric candidate models,

cannot easily be used for comparison with nonparametric alternatives or other

model formulations lying outside the widest of the parametric candidate models.

In the present paper we leave the local misspecification idea and work with

a fixed true distribution of unknown form. Our purpose is to develop new FIC
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methodology for comparing and ranking a set of (not necessarily nested) paramet-

ric models, jointly with a nonparametric alternative. This different framework

causes the development of the FIC to pan out somewhat differently from that

in the various papers pointed to above. We shall again reach large-sample re-

sults and exploit the ensuing risk approximations, but although we borrow ideas

from the previous developments, we need new mathematics and derivations. The

resulting methods hence involve different risk approximations and, in particu-

lar, lead to new FIC formulae. Note that when referring to ‘the FIC’ below, we

mean the new FIC methodology developed in the present paper, unless otherwise

stated.

1.1. The present FIC idea

To set the idea straight, consider i.i.d. observations Y1, . . . , Yn from some

unknown distribution G. The task is to estimate a focus parameter µ = T (G),

where T is a suitable functional which maps a distribution to a scalar. The

most natural estimator class for µ uses µ̂ = T (Ĝ), with an estimator Ĝ of the

unknown distribution G. The question is however which of the several reasonable

distribution estimators Ĝ we should insert? As explained above we shall consider

both parametric and nonparametric solutions.

The nonparametric solution is to use data directly without any structural

assumption for the unknown distribution. In the i.i.d. setting this leads to

µ̂np = T (Ĝn), with Ĝn the empirical distribution function. Under weak reg-

ularity conditions (see Section 2) this estimator is asymptotically unbiased and

has limiting distribution
√
n(µ̂np − µ)

d→ N(0, vnp), (1.1)

with the limiting variance vnp identified in Section 2.

Next consider parametric solutions. Working generically, let f(· ; θ) be a

parametric family of density or probability mass functions, with θ belonging to

some p-dimensional parameter space having F (y; θ) = Fθ(y) as its correspond-

ing distribution. Let θ̂ = argmaxθ ℓn(θ) be the maximum likelihood estimator,

with ℓn(θ) =
∑n

i=1 log f(Yi; θ) being the log-likelihood function of the data. We

need to consider the behaviour outside model conditions, where generally no true

parametric value θtrue exists. For g the density or probability mass function as-

sociated with G, assume there is a unique minimiser θ0 of the Kullback–Leibler

divergence KL(g, f(· ; θ)) =
∫
log{g(y)/f(y; θ)}dG(y) from true model to para-

metric family. White (1982) was among the first to demonstrate that under
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mild regularity conditions, the maximum likelihood estimator is consistent for

this least false parameter value and
√
n(θ̂ − θ0)

d→ Np(0,Σ) for an appropriate

Σ. Note that if the model happens to be fully correct, with G = Fθ0 , then

θ0 = θtrue, and Σ simplifies to the inverse Fisher information matrix formula

usually found in standard textbooks. Write now s(θ) for the more cumbersome

T (Fθ) = T (F (· ; θ)), the focus parameter under the parametric model written as

a function of θ. The parametric focus parameter estimator is µ̂pm = s(θ̂), aiming

at the least false µ: µ0 = s(θ0). A delta method argument yields
√
n(µ̂pm − µ0) =

√
n{s(θ̂)− s(θ0)}

d→ N(0, vpm), (1.2)

with an expression for the limiting variance vpm given in Section 2.

Results (1.1) and (1.2) may now be rewritten as

µ̂np = µ+
v
1/2
np Zn√

n
+ opr(n

−1/2),

µ̂pm = µ+ b+
v
1/2
pmZ∗

n√
n

+ opr(n
−1/2),

(1.3)

where b = µ0−µ = s(θ0)−T (G) is the bias caused by using the best parametric

approximation rather than the true distribution. Here Zn and Z∗
n are variables

tending to the standard normal in distribution. Relying on a squared error loss

gives risks for the two estimators which decompose nicely into squared bias and

variance. The expressions in (1.3) then yield first-order approximations of the

risks of the nonparametric and parametric estimators:

msenp = 02 +
vnp
n

and msepm = b2 +
vpm
n

. (1.4)

Pedantically speaking, we have demonstrated that our nonparametric and para-

metric estimators are close in distribution to variables having these expressions

as their exact mean squared errors, as opposed to showing that the exact mean

squared errors of µ̂np and µ̂pm themselves converge. Our FIC strategy consists

of estimating quantities like those in (1.4) – i.e. to obtain estimates for each of

the possibly several different msepm, each corresponding to a different parametric

model and family Fθ, least false parameter θ0, and so on – in addition to the

estimate of msenp. The models are then ranked according to these estimates,

coined the FIC scores, and the model (and corresponding estimator) with the

smallest FIC score is selected.

As seen from (1.4), the selection between parametric and nonparametric then

comes down to balancing squared bias and variance. Viewing the nonparametric

model as an infinite-dimensional parametric model, it is natural that this estima-
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tor has zero squared bias, but the largest variance. Indeed, including this can-

didate has the benefit that the winning model should always be reasonable: the

nonparametric is selected when all parametric biases are large, while a para-

metric model is preferred when its bias is small enough. Despite this behaviour

being typical for comparison of parametrics and nonparametrics, the literature

on specifically comparing parametrics to nonparametrics is slim. Note that such

comparison is e.g. not possible with the traditional AIC and the BIC methods as

these rely on likelihoods. One recent approach is however Liu and Yang (2011).

With ΩM the set of candidate models, the authors attempt to classify model

selection situations as either parametric (G ∈ ΩM ) or nonparametric (G /∈ ΩM ),

as they put it. The results are however used to attempt to choose between the

AIC- and BIC-selector, and not to choose between parametric or nonparametric

models as such.

When several focus parameters are of interest, a possible strategy is to ap-

ply the FIC repeatedly, for one focus parameter at a time, perhaps producing

different rankings of the models and estimators. In many cases it might be more

attractive to find one model appropriate for estimating all these focus parame-

ters simultaneously; say not only the 0.9 quantile, but all quantiles from 0.85 to

0.95. Such an averaged focused information criterion (AFIC), where the focus

parameters may be given different weights to reflect their relative importance,

emerges by properly generalising the FIC idea (see Section 4).

1.2. Motivating illustration

Consider for motivation the data set of Roman era Egyptian life-lengths,

a century before Christ, taken from Pearson (1902). This data set, from the

very first volume of Biometrika, contains the age at death of 82 males (M) and

59 females (F). The numbers range from 1 to 96 and Pearson argues that they

may be taken as a random sample from the better-living classes of the society

at that time. Modelling these as two separate distributions, we define µ =

med(M)−med(F), the difference in median life-lengths, as the focus parameter.

We put up five different parametric model pairs (same parametric class for each

gender) to compete with the nonparametric which uses the difference in the

sample medians directly; see Table 1 for estimates and model selection results.

The ‘FIC plot’ of Figure 1 visualises the results from applying the FIC scheme.

Using the root of the FIC score does not alter the ranking of the candidate models,

but lends itself better to interpretation as it brings the FIC score back to the

scale of the observations. Perhaps surprisingly, the best model for estimating
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Figure 1. FIC plot for life lengths in Roman era Egypt: Six different estimates of
µ = med(M) − med(F) are given, corresponding to five parametric models along with
the direct nonparametric estimate. A small

√
FIC indicates better precision.

µ turns out to be the simplest, using exponential distributions for both groups.

This model does rather badly in terms of the overall performance measured by

AIC(model) = 2{ℓn(θ̂)−pmodel}, where pmodel is the dimension of the model, but

succeeds better than the others for the particular task of estimating µ, according

to the FIC. This is possibly caused by two wrongs indeed making a right in

this particular case. The exponential model seems to underestimate the median

mortality by about the same amount for both males and females, implying that

the difference has a small bias. Being the simplest model, this model also has

small variance. For various other focus parameters, like apparently any difference

in quantiles above 0.6, the exponential model will not be the winner. This is

typical FIC behaviour; it is seldom that the same model is judged best for a wide

range of focus parameters.

Supposing we are interested in right tail differences between the distributions,

it is appropriate to apply the AFIC strategy mentioned above. One may for

instance put up a focus parameter set consisting of differences in quantiles from

0.90 upwards to say 0.99 or 0.999. Almost no matter how the quantile differences

are weighted, the Gompertz model is the clear winner, hence being deemed the

overall best model for estimation of upper quantile differences. The exception is if

a small neighbourhood around the 0.95 quantiles is deemed extremely important

relative to the others, in which case the nonparametric is deemed better.

1.3. The present paper

In Section 2 we present precise conditions and derive asymptotic results used
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Table 1. Life lengths in Roman era Egypt: The table displays estimates of median life
length for male, female, and the difference, based on six different models; see also Figure
1. Also listed are the number of parameters estimated for each model, the AIC, the√
FIC scores, and the ranking based on FIC.

Model m̂ed(M) m̂ed(F) µ̂ dim AIC
√
FIC FIC rank

nonparametric 28.000 22.000 6.000 Inf NA 4.128 5
exponential 23.650 17.969 5.681 2 −1249.009 2.351 1
log−normal 23.237 19.958 3.279 4 −1262.809 3.447 3
gamma 26.655 21.877 4.778 4 −1232.129 3.370 2
Gompertz 31.783 22.139 9.644 4 −1224.776 4.955 6
Weibull 28.263 22.728 5.534 4 −1227.909 3.673 4

to build and illuminate the new FIC scheme for i.i.d. data. Section 3 discusses

practical uses of the FIC, concentrating on focus parameters that are smooth

functions of means and quantiles, but also discussing others. Section 4 then

extends the framework to the case of addressing a set of focus parameters through

the weighted or averaged focus information criterion (AFIC). Section 5 considers

performance aspects of our methods. This covers analysis of limiting model

selection probabilities (including asymptotic significance level of the FIC when

viewed as an implicit focused goodness-of-model test procedure), summaries of

simulation results, and asymptotic comparisons of the new and original FIC.

Section 6 considers model averaging aspects and Section 7 discusses extensions

of the present FIC approach to other data types and frameworks, including that of

density estimation and regression. Finally, some concluding remarks are offered

in Section 8. Supplementary material containing proofs of results in the main

paper, another illustration, details of simulations studies, details on FIC and

AFIC for categorical data, and some local asymptotics results, are given in Jullum

and Hjort (2017a).

2. Derivation of the FIC

To develop the estimators of vnp/n and b2 + vpm/n in (1.4), it is fruitful to

start from a general result pertaining to the joint limit distribution of the right

hand side of (1.1) and (1.2). We first introduce some helpful quantities and a

set of working conditions for the parametric models. For convenience we shall

write ∂h(x0)/∂x for the derivative of a function h with respect to x, evaluated

at x = x0. Let u(y; θ), I(y; θ) and İ(y; θ) denote, respectively, the first, second,

and third derivatives of log f(y; θ) w.r.t. θ. Let also

J = −EG{I(Yi; θ0)} and K = EG{u(Yi; θ0)u(Yi; θ0)t}. (2.1)
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Though weaker regularity conditions are possible, see e.g. Hjort and Pollard

(1993) and van der Vaart (2000, Chap. 5), we work under reasonably traditional

maximum likelihood conditions:

(C0) The support of the model is independent of θ; the minimiser θ0 of KL(g, f(· ;
θ)) is unique and lies in an open subset Θ of Euclidean space; u(y; θ), I(y; θ),

and İ(y; θ) exist and the latter is continuous for every y; J , J−1, and K

are finite; and all elements of İ(y; θ) are bounded by an integrable function

in a neighbourhood of θ = θ0.

These conditions will be assumed without further discussion. We turn to the

focus parameter. For a statistical functional T (·) taking distributions H as its

input, the influence function (Huber (1981); Hampel et al. (1986)) is defined as

IF(y;H) =
limt→0{TH,y(t)− T (H)}

t
=

∂TH,y(0)

∂t
, (2.2)

where TH,y(t) = T ((1− t)H+ tδy) and δy is the distribution with unit point mass

at y.

We need the general notion of Hadamard differentiability. For general normed

spaces D and E, a map ϕ : Dϕ 7→ E, defined on a subset Dϕ ⊆ D that contains

β, is called Hadamard differentiable at β if there exists a continuous, linear map

ϕ̇ : D 7→ E (called the derivative of ϕ at β) such that ∥{ϕ(β + tht) − ϕ(β)}/t −
ϕ̇β(h)∥E → 0 as t ↘ 0 for every ht → h such that β + tht is contained in Dϕ.

(We have avoided introducing the notation of Hadamard differentiability tangen-

tially to a subset of D, as such are better stated explicitly in our practical cases.)

With this definition and by recalling that s(θ) = T (Fθ), we define the regularity

conditions:

(C1) The focus functional T is Hadamard differentiable at G with respect to the

uniform norm ∥ · ∥∞ = supy | · |;
(C2) c = ∂s(θ0)/∂θ is finite;

(C3) EG{IF(Yi;G)} = 0;

(C4) EG{IF(Yi;G)2} is finite.

The three first conditions here can typically be checked. The last one can usually

be narrowed down to a simpler assumption for G which then needs to be assumed.

It should be noted that (C2), along with a few of the conditions in (C0), follows

by instead assuming that the parametric focus functional S(·) with S(G) =

T (F (· ;R(G))) = µ0, where R(G) = argminθ KL(g, fθ) and S(Ĝn) = µ̂pm, is

Hadamard differentiable as well. We will however stick to the more natural and

direct conditions above.
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Proposition 1. Under (C1–C4), we have that, as n → ∞,( √
n(µ̂np − µ)√
n(µ̂pm − µ0)

)
d→

(
X

ctJ−1U

)
∼ N2

((
0

0

)
,

(
vnp vc
vc vpm

))
. (2.3)

Here (X,U) is jointly zero-mean normal with dimensions 1 and p, having vari-

ances vnp = EG{IF(Yi;G)2} and K, and covariance d = EG(XU) =
∫
IF(y;G)

u(y; θ0) dG(y). In particular, vpm = ctJ−1KJ−1c and vc = ctJ−1d.

Proof. Under the assumed conditions it follows from, respectively, Shao (2003,

Thm. 5.5) and van der Vaart (2000, Thms 5.41 and 5.42) that

µ̂np − µ =
1

n

n∑
i=1

IF(Yi;G) + opr(n
−1/2), (2.4)

θ̂ − θ0 =
1

n

n∑
i=1

J−1u(Yi; θ0) + opr(n
−1/2). (2.5)

Applying the standard central limit theorem to the summands, followed by appli-

cation of the delta method using h(x, y) = {x, s(y)}t as transformation function,

yields the limit distribution. Slutsky’s theorem takes care of the remainders and

completes the proof.

Since the variance matrix of (X,U) is nonnegative definite, we always have

vnp ≥ dtK−1d. When a parametric model is true, with G = Fθ0 (and a few

other mild regularity conditions hold, cf. Corollary 1) we get J = K and c = d,

implying vnp ≥ ctJ−1c = vpm. In this case we also have vc = vpm and the limiting

correlation (vpm/vnp)
1/2 between the two estimators.

Sometimes we do not need (C1–C4) directly, only that (2.3) holds. This is

beneficial as the above result is sometimes as easily shown on a ‘case by case’ ba-

sis without going through the sets of conditions. The parametric smoothness of

(C0) can indeed be relaxed with (2.5) still holding; see e.g. van der Vaart (2000,

Thm. 5.39). There are also situations where T is not Hadamard differentiable,

but where (2.5) still holds. Some of these situations may be handled by the con-

cept of Fréchet differentiability. By Shao (2003, Thm. 5.5(ii)), (2.5) still holds if

we replace the Hadamard differentiability condition with Fréchet differentiability

equipped with a norm ∥·∥0 possessing the property that ∥Ĝn−G∥0 = Opr(n
−1/2).

As Fréchet differentiability is stronger than Hadamard differentiability, this is

however only useful with other norms than the uniform. Note also that Proposi-

tion 1, through the conditions (C1–C4), is restricted to
√
n-consistent estimators.

Hence, estimators with other convergence rates need to be handled separately.

Density estimation and regression, as examples of this, are discussed in Sections
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7.4 and 7.5.

Consider now estimation of the quantities in (1.3). For msenp = vnp/n, we

use m̂senp = v̂np/n, with v̂np some appropriate and consistent estimator of vnp.

For a large class of functionals, a good general recipe is to use the empirical

analogue v̂np = n−1
∑n

i=1 IF(Yi; Ĝn)
2. Consider now msepm = b2 + vpm/n, where

estimation of vpm = ctJ−1KJ−1c is obtained by taking the empirical analogues

and inserting θ̂ for θ0. For J and K of (2.1) we use Ĵ = −n−1
∑n

i=1 I(Yi; θ̂) and

K̂ = n−1
∑n

i=1 u(Yi; θ̂)u(Yi; θ̂)
t. The first matrix here is n−1 times the Hessian

matrix typically computed in connection with numerically finding the maximum

likelihood estimates, and the second matrix is also easy to compute. For c =

∂s(θ0)/∂θ we also employ plug-in and use ĉ = ∂s(θ̂)/∂θ, which is easy to compute

numerically in cases where there is no closed form expression for the derivatives.

We thus get v̂pm = ĉtĴ−1K̂Ĵ−1ĉ. These plug-in variance estimators are the

canonical choices. They are of the usual
√
n precision order, in the sense that

they under mild regularity assumptions have the property that both
√
n(v̂np−vnp)

and
√
n(v̂pm−vpm) converge to zero-mean normal limit distributions. We do not

need such results or these limits in what follows.

For the square of the bias b = µ0 − µ = s(θ0) − µ(G) we start from b̂ =

s(θ̂)− µ(Ĝn) = µ̂pm − µ̂np. When the conclusion of Proposition 1 holds, we get
√
n(̂b− b)

d→ ctJ−1U −X ∼ N(0, κ), (2.6)

where κ = vpm+vnp−2vc. Here vc = ctJ−1d is estimated by plugging in ĉ and Ĵ

as already given. Analogously, we estimate d by d̂ = n−1
∑n

i=1 IF(Yi; Ĝn)u(Yi; θ̂).

Though b̂ is approximately unbiased for b, its square will typically tend to overes-

timate b2, since EG(̂b
2) = b2+κ/n+o(n−1). Hence, we are led to the modification

b̂sq0 = b̂2 − κ̂/n, where κ̂ = v̂pm + v̂np − 2v̂c. The estimator is unbiased up to

order n−1 for the squared bias. Accuracy to this order is important to capture,

in that the other half of the mse coin is the variance term, which is precisely of

this size. An appropriate further modification is

b̂sq = max(0, b̂sq0) = max(0, b̂2 − κ̂

n
), (2.7)

truncating negative estimates of the obviously nonnegative b2 to zero.

Having established estimates for the nonparametric and parametric first or-

der mean squared error approximations in (1.4), we define the FIC scores:

FICnp = m̂sepm =
v̂np
n

,

FICpm = m̂sepm = b̂sq +
v̂pm
n

= max(0, b̂2 − κ̂

n
) +

v̂pm
n

.

(2.8)
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Even though the above formula for FICpm is our canonical choice, the non-

truncated version FIC∗
pm = b̂sq0 + v̂pm/n may be used on occasion. At any

rate, FICpm and FIC∗
pm agree when b̂2 ≥ κ̂/n, which happens with a probability

tending to one for the realistic case of b ̸= 0. When they agree we can also

express them as FICpm = FIC∗
pm = b̂2 − v̂np/n+ 2v̂c/n.

The focused model selection strategy is now clear. Given a set consisting

of k parametric candidate models, in addition to the nonparametric one, one

computes the focus parameter estimates along with the FIC scores based on (2.8).

The same formula (with different estimates and quantities for different parametric

families) can be used for all parametric candidates as FICpm is independent of

any other competing parametric models. One selects the model and estimator

associated with the smallest FIC score. In particular this setup can also be

used when only parametric models are under consideration, and these parametric

models can be non-nested. In such a case, one is still required to compute the

nonparametric estimator and its variance, since FICpm depends on them.

As the sample size increases, the variance part of (2.8) typically becomes

negligible compared to the squared bias. Hence, consistency of the FIC scores

as MSE estimators is not very informative. It is more illuminating to consider

consistency of the scaled variance and squared bias involved in the FIC scores

separately. Under (C2), the parametric focus functional S(·) does indeed have

influence function ctJ−1u(y; θ0), which appears in (2.5) and is being estimated

(using Ĝn for G) by ĉtĴ−1u(y; θ̂). By working directly on the focus functionals

T and S, general conditions for consistency of plug-in based variance and bias

estimators can be worked out. This involves Gâteaux differentiability, a weaker

form of functional differentiability where the convergence in the definition of

Hadamard differentiability only needs to hold for every fixed ht = h, see e.g. van

der Vaart (2000, Chap. 20.2).

Proposition 2. Suppose T and S are Gâteaux differentiable at G and Ĝn. Sup-

pose sup|y|≤k |IF(y; Ĝn) − IF(y;G)| = opr(1) for any k > 0, that there exist a

constant k0 > 0 and a function r(y) ≥ 0 such that r(Yi) has finite mean and

PrG(IF(y; Ĝn)
2 ≤ r(y) for all y ≥ k0) → 1, and that an equivalent assumption

holds for the influence function of S. Then the variance and covariance estima-

tors v̂np, v̂pm, κ̂, v̂c are all consistent when being based solely on plugging in Ĝn

for G and θ̂ for θ0 in their asymptotic analogues. If in addition the conclusion

of Proposition 1 holds, then the bias terms b̂ (and b̂2) are consistent.

The proofs of Proposition 2 and subsequent results are given in the supple-
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mentary material (Jullum and Hjort (2017a)). Most natural estimators of the

variance etc. are based on direct plug-in estimation, but there are exceptions.

Making minor adjustments to them do not change the asymptotics, so using

them in FIC formulae is generally unproblematic.

For estimating the uncertainty of an estimator, other options are also avail-

able. The bootstrap and the jackknife (Efron and Tibshirani (1993)) can be

applied to estimate the variance of most statistics dealt with here. The squared

bias is also fairly easy to estimate for the nonparametric candidate. A possi-

ble approach to estimate the squared bias is to use the jackknife or bootstrap

only to correct the initial natural squared bias estimate b̂2 = (µ̂pm− µ̂np)
2. This,

combined with jackknife or bootstrap estimates of the variance, would essentially

lead to the same FIC scores as those in (2.8). From this perspective some of the

explicit formulae from our asymptotic theory in this section could be by-passed.

It is however a strength of our approach to have explicit formulae, for compu-

tation and performance analyses. In Section 5 we derive informative properties

and performance based on this theoretical framework. Even though similar re-

sults may perhaps be obtained also for specific types of bootstrap or jackknife

frameworks under certain conditions (Shao and Tu (1996)), they would not be

as readily and generally available. The usual jackknife estimate of the variance

of a quantile, for example, is known to be inconsistent and needs to be corrected

(Efron (1979)). Finally, since the (Monte Carlo) bootstrap possesses sampling

variability, models with similar FIC scores may require an inconveniently large

number of bootstrap samples to have their FIC scores separated with satisfac-

tory certainty. Thus, we leave the jackknife and bootstrap idea as alternative

estimation procedures, and in what follows we stick to the FIC formulae we have

derived, based on large-sample theory and the plug-in principle.

3. FIC in Practice

In this section we introduce a wide class of natural focus parameters and show

that they fit our scheme. We also show that other types of focus parameters may

be used, widening the applicability with a few direct extensions.

3.1. Smooth functions of means and quantiles

Most of the functionals that interest us belong to the class we refer to as

‘smooth functions of means and quantiles’. This class has the functional form

T (G) = A(ξ, ζ) = A(ξ1, . . . , ξk, ζ1, . . . , ζm), (3.1)
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where ξj = EG{hj(Yi)} =
∫
hj(y) dG(y) and ζl = G−1(pl) for one-dimensional

functions hj and pl ∈ (0, 1). Here A : Rk+m 7→ R is a smooth function, i.e. con-

tinuously differentiable at the evaluation points. Some interesting functionals are

smooth functions of means only. The standard deviation, skewness, and kurtosis

functionals are of this type, for example, with k = 2, 3, 4, respectively. Another

example is the probability of observing a variable in a specified interval: Let A

be the identity function, k = 1, and h1 be the indicator function for this interval.

Functionals based solely on quantiles are also of interest. Any quantile function

G−1(p) is within this class, along with functions of quantiles like the interquartile

and interdecile range, and the midhinge (the average of the first and third quar-

tile). The nonparametric skew (mean − median)/sd (Hotelling and Solomons

(1932)) involves both means and a quantile, and may be handled by our scheme.

For this full class, the nonparametric estimator is µ̂np = A(h, ζ̂) where h

and ζ̂ have elements hj = n−1
∑n

i=1 hj(Yi) and ζ̂l = Ĝ−1
n (pl), for j = 1, . . . , k

and l = 1, . . . ,m. Similarly, the parametric estimators are of the form µ̂pm =

A(ξ(θ̂), ζ(θ̂)), where ξ(θ) and ζ(θ) have elements ξj(θ) =
∫
hj(y) dFθ(y) and

ζl(θ) = F−1
θ (pl) for j = 1, . . . , k and l = 1, . . . ,m. For this class, the influence

function is given by

IF(y;G) =

k∑
j=1

a0,j{hj(y)− ξj}+
m∑
l=1

a1,l
pl − 1{y≤G−1(pl)}

g(G−1(pl))
, (3.2)

where a0,j = ∂A(ξ, ζ)/∂ξj , a1,l = ∂A(ξ, ζ)/∂ζl and 1{·} denotes the indicator

function. While the part of the influence function related to the means is easily

estimated by plugging in Ĝn for G and hence replacing ξj and ξ by hj and h,

the part relating to the quantiles is more delicate. By Proposition 2, we need

consistent estimators for quantities of the form g(G−1(p)). Such can be most

easily constructed using ĝn(G̃
−1
n (p)), say, involving a kernel density estimator for

g and a possibly smoothed version G̃n of the empirical distribution function Ĝn

for G. Details securing consistency with the right sequence of bandwidths are

found in e.g. Sheather and Marron (1990).

The following proposition shows that the class of smooth functions of means

and quantiles are applicable to our scheme.

Proposition 3. Let µ = T (G) be of the form (3.1), with all partial derivatives

of A(ξ, ζ) finite and g positive and continuous in all G−1(pl), l = 1, . . . ,m. Then

(C1) and (C3) hold. If all partial derivatives of ξ(θ0) and ζ(θ0) are finite, and

EG{hj(Yi)2} is finite for all j = 1, . . . , k, then also (C2) and (C4) hold, and

Proposition 1 is in force.
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As an illustration, suppose data Y1, . . . , Yn are observed on the positive half-

line, and the skewness γ = EG{(Yi − M1)
3/σ3} of the underlying distribution

needs to be estimated; here Mj = EG(Y
j
i ) and σ are the j-th moment and the

standard deviation, respectively. This is a smooth function of means only, as

γ = h(M1,M2,M3) =
(M3 − 3M1M

2
2 + 2M3

1 )

(M2 −M2
1 )

3/2
.

The nonparametric estimate is γ̂np = h(M̂1, M̂2, M̂3), involving the averages of

Yi, Y
2
i , Y

3
i , and has the FIC score

FICnp =
v̂np
n

, v̂np =
1

n

n∑
i=1

{k̂1(Yi −M1) + k̂2(Y
2
i −M2) + k̂3(Y

3
i −M3)}2,

in terms of certain coefficient estimates k̂1, k̂2, k̂3. A simple parametric alternative

fits the Gamma distribution with density {βα/Γ(α)}yα−1 exp(−βy), for which

the skewness is 2/α1/2. With FIC it is easy to determine, for a given data set,

whether the best estimate of the skewness is the nonparametric one or the simpler

and less variable parametric 2/α̂1/2. Thus, one is not necessarily interested in

how well the gamma model fits the data overall, but concentrates on judging

whether 2/α̂1/2 is a good estimator or not for the skewness, completely ignoring

β̂.

To learn which models are good for modelling different aspects of a distribu-

tion, one approach consults the FIC scores obtained when the FIC is sequentially

applied to all focus parameters in a suitable set. One may for instance run the

FIC through the c.d.f. by sequentially considering each focus parameter of the

form µ(y) = G(y) for y ∈ R, or the quantile function µ(p) = G−1(p) for each

p ∈ (0, 1). One may similarly run the FIC through a set of moments or cumulants

or, say, the moment-generating function µ(t) = EG{exp(tYi)} for t close to zero.

The supplementary material (Jullum and Hjort (2017a)) provides an illustration

of this concept by running through the c.d.f. for a data set with SAT writing

scores.

3.2. Other types of focus parameters and data frameworks

The class of smooth functions of means and quantiles is as mentioned a widely

applicable class, but there are also focus parameters outside this class that are

Hadamard differentiable and thus fit our scheme. In this regard, the chain rule for

Hadamard differentiability (van der Vaart (2000, Thm. 20.9)) is helpful. The me-

dian absolute deviation (MAD) is the median of the absolute deviation from the
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median of the data: med(|med(G)−G|). This can be written in functional form

as T (G) = H−1
G (1/2), where HG(x) = G(ν+x)−G((ν−x)−) and ν = G−1(1/2).

This functional has a precise influence function and, under some conditions,

Hadamard differentiability is ensured by van der Vaart (2000, Thm. 21.9). The

trimmed mean, in functional form T (G) = (1 − 2α)−1
∫ 1−α
α G−1(y) dy is, un-

der similar conditions, also Hadamard differentiable (see van der Vaart (2000,

Exmp. 22.11)).

We concentrate on univariate observations, but the derivations of Section 2,

and especially the joint limiting distribution in (2.3) and the FIC formulae in

(2.8), hold also in the more general case of multivariate i.i.d. data.

The Egyptian life-time data in the introduction were not of the standard

i.i.d. type that has been dealt with here. There were two samples or populations,

and the focus parameter was µ = med(M)−med(F). This is handled by a simple

extension of the criterion. Consider more generally a focus parameter of the

form µ = T1(G1) − T2(G2) for individual functionals T1, T2 defined for different

samples or populations G1 and G2. If there is no interaction between the two

distributions, µ is naturally estimated by µ̂ = µ̂1 − µ̂2 = T1(Ĝ1) − T2(Ĝ2) and

has mean squared error mse(µ̂) = EG[{(µ̂1 − µ̂2) − (µ1 − µ2)}2]. Here this is

estimated by FICpm = max{0, (̂b1− b̂2)
2− κ̂1/n1− κ̂2/n2}+ v̂pm,1/n1+ v̂pm,2/n2

for parametric models. When one or both of the models are nonparametric,

the formula is the same, except b̂j and κ̂j are set to zero for j nonparametric,

and v̂pm,j is replaced by v̂np,j . One can model G1 and G2 differently and mix

parametrics and nonparametrics. When data are of a similar type it is however

natural to only consider pairs of the same model type. Similar schemes can

be established for comparisons of more than two samples, products of focus

parameters, etc.

4. Weighted FIC

The above apparatus is geared towards optimal selection for a single µ. One

is often interested in more than one parameter simultaneously, however, say not

merely the median but also other quantiles, or several probabilities Pr(Yi ∈ A)

for an ensemble of A sets. We develop a suitable average weighted focused in-

formation criterion AFIC that selects one model aimed at estimating the whole

set of weighted focus parameters with lowest risk (cf. Claeskens and Hjort (2003,

Sec. 7) and Claeskens and Hjort (2008, Chap. 6)). Suppose these focus param-

eters are listed as µ(t), for t in some index set. Thus, there is a nonparametric
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estimator µ̂np(t) and one or more parametric estimators µ̂pm(t) for each µ(t). As

an overall loss measure when estimating the µ(t) with µ̂(t), we use

L =

∫
{µ̂(t)− µ(t)}2 dW (t),

with W some cumulative weight function, chosen to reflect the relative impor-

tance of the different µ(t). The risk or expected loss may hence be expressed

as
risk = EG(L) =

∫
mse(t) dW (t),

with mse(t) = EG{µ̂(t) − µ(t)}2. Our previous results leading to both the joint

limit (2.3) and our FIC scores (2.8) hold for each such µ(t) with the same quan-

tities, indexed by t, under the same set of conditions. To estimate the risk we

can plug-in FIC scores as estimates of mse(t), but choose to truncate the squared

bias generalisation to zero after integration as we are no longer seeking natural

estimates for the individual mses, but for the integrated risk. This leads us to

the weighted or averaged FIC (AFIC) scores

AFICnp =
1

n

∫
v̂np(t) dW (t),

AFICpm = max

[
0,

∫ {
b̂(t)2 − κ̂(t)

n

}
dW (t)

]
+

1

n

∫
v̂pm(t) dW (t).

(4.1)

The quantities b̂(t), v̂np(t), v̂pm(t), and κ̂(t) are estimators of b(t), vnp(t), vpm(t),

and κ(t), the t-indexed modifications of the corresponding (unindexed) quantities

introduced in Section 2.

In the above reasoning, we have essentially worked with known, non-stochastic

weight functions. When the weight function W depends on one or more unknown

quantities, the natural solution is to simply insert the empirical analogues of

these. Replacing W by some estimate Ŵ in (4.1) is perfectly valid in the sense

that one is still estimating the same risk. A special case of this is touched in

Section 5.2. If W itself is stochastic, the risk function changes and new deriva-

tions, which ought to result in different AFIC formulae, are required. A practical

illustration of the AFIC in action is given in the supplementary material (Jullum

and Hjort (2017a)).

5. Properties, performance, and relation to goodness-of-fit

In this section we investigate the behaviour of the developed FIC and AFIC

schemes in a few model frameworks. This sheds light on certain implied goodness-

of-model tests associated with the FIC. We also briefly discuss simulation results
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from the supplementary material (Jullum and Hjort (2017a)) comparing the per-

formance of the FIC and AFIC to competing selection criteria.

5.1. Behaviour of FIC

When to use a given parametric model rather than the nonparametric option

involves the quantity Zn = nb̂2, where b̂ = µ̂pm − µ̂np, cf. (2.6), along with

η̂ = v̂np − v̂c. Recalling that κ̂ = v̂pm + v̂np − 2v̂c, and re-arranging terms in

the inequality FICpm ≤ FICnp, it is seen that this is equivalent to max(κ̂, Zn) ≤
2η̂. For the untruncated version which uses b̂sq0 instead of b̂sq to estimate the

squared bias, we have FIC∗
pm ≤ FICnp if and only if Zn ≤ 2η̂. Assuming that the

estimated variance of the nonparametric estimator is no smaller than that of the

simpler parametric alternative, which typically is true, we have κ̂ ≤ 2η̂. Hence,

for both the truncated and non-truncated versions, a parametric model is chosen

over the nonparametric when Zn ≤ 2η̂. The ranking among different parametric

models may change depending on which version of the scheme is used; it is only

the individual comparison with the nonparametric candidate that is identical for

the two versions.

Assume the nonparametric candidate competes against k different paramet-

ric models pmj with limiting bias bj , j = 1, . . . , k, defined as before but now

for the different competing models. Let the quantities ηj and κj be the natural

nonzero limiting quantities of η̂j and κ̂j for these candidate models. To gain

further insight one investigates the selection probability for a specific parametric

model, say pmj ,

αn(G, j) = PrG(FIC selects pmj) (5.1)

under different conditions.

Lemma 1. Under the conclusions of Propositions 1 and 2, if bj ̸= 0, then

αn(G, j) → 0, and if bj = 0, vpm,j ≤ vnp, and bl ̸= 0 for l ̸= j, then αn(G, j) →
Pr(χ2

1 ≤ 2ηj/κj), both for the truncated and the untruncated version of the FIC.

Corollary 1. Assume that the conclusions of Propositions 1 and 2 hold, that

the j-th model is in fact fully correct, and that bl ̸= 0 for l ̸= j, and let Θ(j)

be some neighbourhood of the least false parameter value of the j-th model. If

(C1–C4) hold for this j-th model and supθ∈Θ(j) ∥u(Yi; θ)∥, supθ∈Θ(j) ∥I(Yi;G) +

u(Yi; θ)u(Yi; θ)
t∥ and |IF(Yi;G)| supθ∈Θ(j) ∥u(Yi; θ)∥ have finite means, then cj =

dj , ηj = κj, and αn(G, j) → Pr(χ2
1 ≤ 2)

.
= 0.843.

The limiting behaviour of the FIC scheme is not surprising. As seen from

(2.8), when the parametric models are biased (i.e. having b ̸= 0), the nonpara-
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metric, by its nature being correct in the limit, is eventually chosen by the FIC as

the sample size grows. However, when a parametric model produces asymptoti-

cally unbiased estimates (i.e. when b = 0), the FIC selects this parametric model

rather than the nonparametric with a positive probability. The precise probabil-

ity depends on the model structure and focus through ηj/κj , except when the

unbiasedness is caused by the parametric model being exact – then the prob-

ability is 0.843. It is no paradox that the probability of choosing an unbiased

parametric model is smaller than 1. In that situation, the nonparametric model

is correct in the limit and is thereby selected with a positive probability.

When several parametric models have the above unbiasedness property, the

limiting selection probabilities are generally smaller for all candidate models.

The precise probabilities depend on the focus parameter, whether the truncated

or untruncated version of the FIC is used, and how these models are nested or

otherwise related to each other. Consider for instance the case in which an ex-

ponential model is correct, the focus parameter is the median, and the Weibull

and exponential models are considered as parametric options. The asymptotic

probabilitites for FIC selecting, respectively, the nonparametric, Weibull, and

exponential models are then 0.085, 0.125 and 0.789 for the truncated version and

0.085, 0.183 and 0.731 for the untruncated version. Thus, the probability of se-

lecting the nonparametric is the same for the two versions, while the probabilities

for the parametric candidates are different. These probabilities were obtained by

simulating in the limit experiment as discussed in Remark 1 of Jullum and Hjort

(2017a).

Remark 1. The implied FIC test has level 0.157. It is worth noting clearly

that the FIC is a selection criterion, constructed to compare and rank candidate

models based on estimated precision, and not a test procedure per se. One can

nevertheless choose to view FIC with two candidate models, the nonparametric

and one parametric model, as an ‘implicit testing procedure’. FIC is then a

procedure for checking the null hypothesis that the parametric model is adequate

for the purpose of estimating the focus parameter with sufficient precision. When

testing the hypothesis, βn(G) = 1 − αn(G) is the power function of the test,

tending to 1 for each G with non-zero bias b. For G = Fθ0 , the probability

βn(Fθ0) is the probability of rejecting the parametric model when it is correct,

i.e. the significance level of the test. This implied level is close to 1−0.843 = 0.157

for large n. Our view is that the FIC approach has a conceptual advantage over

the goodness-of-fit testing approach, as the risk assessment starting point delivers

an implicit test with a certain significance level, found to be 0.157, as opposed
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to fixing an artificially pre-set significance level, like 0.05.

5.2. Behaviour of AFIC

Based on arguments similar to those used for the FIC, the behaviour of

the AFIC of Section 4 is related to the goodness-of-fit type statistic Z∗
n =

n
∫
b̂2(t) dW (t). In particular, as long as

∫
v̂pm(t) dW (t) ≤

∫
v̂np(t) dW (t) (which

is typically the case), the parametric model is preferred over the nonparametric

model when

Z∗
n = n

∫
{µ̂pm(t)− µ̂np(t)}2 dW (t) ≤ 2η̂∗, (5.2)

for η̂∗ =
∫
{v̂np(t)− v̂c(t)}dW (t). From the first part of Lemma 1, when b(t) ̸= 0

for some set of t values with positive measure (with respect toW ), then PrG(Z
∗
n ≤

2η̂∗) → 0 as n → ∞, i.e. the nonparametric is chosen with probability tending

to 1. This result holds independently of whether truncation of the squared bias

is done after integration as in (4.1), before integration, or not at all.

We investigate the limiting behaviour of AFIC when a parametric model is

fully correct. Even if the decisive terms appear similar to those for the FIC, such

an investigation is more complicated for AFIC and depends both on the type of

focus parameters and the weight functionW . We shall therefore limit ourselves to

the rather unfocused case where the focus parameter set is the complete c.d.f. and

we consider weight functions W1 and W2 specified through dW1(y) = dF (y; θ0)

and dW2(y) = 1 dy. The former is estimated by inserting θ̂ for the unknown

θ0. In these cases Z∗
n equals, respectively, C1,n =

∫
Bn(y)

2 dF (y; θ̂) and C2,n =∫
Bn(y)

2 dy, for Bn(y) =
√
n{Ĝn(y)−F (y; θ̂)}. These have corresponding η∗ es-

timates given by η̂∗1 =
∫
{v̂np(y)− v̂c(y)} dF (y; θ̂) and η̂∗2 =

∫
{v̂np(y)− v̂c(y)}dy.

Here C1,n corresponds to the classic Cramér–von Mises goodness-of-fit test statis-

tic with estimated parameters, see e.g. Durbin, Knott and Taylor (1975).

Durbin (1973) studied the limiting behaviour of the process B0
n(u) =

√
n

{Ĝn(F
−1(u; θ̂)) − F−1(u; θ̂)} for u ∈ [0, 1]. Results achieved there may be ex-

tended to deal with the Bn process and consequently also the convergence of C1,n

and C2,n.

Lemma 2. Take G = Fθ0, with
∫
G(y){1 − G(y)}dy finite. Suppose that for

some neighbourhood Θ∗ around θ0, F (y; θ) has a density f(y; θ) with c(y; θ) =

∂F (y; θ)/∂θ =
∫ y
−∞ f(x; θ)u(x; θ) dx continuous in θ. If EG{supθ∈Θ∗ ∥u(Yi; θ)∥}

is finite, then Bn =
√
n{Ĝn−F (· ; θ̂)} converges in distribution to B, a Gaussian

zero-mean process with covariance function

Cov{B(y1), B(y2)}=F (min(y1, y2); θ0)−F (y1; θ0)F (y2; θ0)−c(y1; θ0)
tJ−1c(y2; θ0).
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Also,

C1,n
d→ C1 =

∫
B(y)2 dG(y) =

∫ 1

0
B(G−1(r))2 dr,

C2,n
d→ C2 =

∫
B(y)2 dy =

∫ 1

0

B(G−1(r))2

g(G−1(r))
dr.

This result takes care of the left side of (5.2) for W1 and W2. The cor-

responding right sides concern η̂∗1 and η̂∗2, as estimates of, respectively, η∗1 =∫
{vnp(y)− vc(y)}dF (y; θ0) =

∫
{vnp(y)− vpm(y)} dF (y; θ0) and η∗2 =

∫
{vnp(y)−

vc(y)}dy =
∫
{vnp(y) − vpm(y)}dy. These estimates need to be consistent with

η∗1 and η∗2 finite. However, since vpm(y) ≤ vnp(y) when G = Fθ0 and the addi-

tional conditions of Corollary 1 hold, then η∗1 ≤ 2
∫
G(y){1−G(y)}dG(y) ≤ 1/2

and η∗2 ≤ 2
∫
G(y){1 − G(y)}dy. The latter integral is assumed to be finite in

the above lemma. Thus, under these conditions, and with v̂np(y) and v̂pm(y)

consistent for each single y (as per the conditions of Proposition 2), we then have

η̂∗1 →pr η
∗
1 and η̂∗2 →pr η

∗
2, with both limits finite.

Under specific model assumptions and setups one can compute the limiting

probability of selecting a correct parametric model over the nonparametric when

using AFIC with the above weight functions. The distribution of C1 and C2

may be approximated by sampling the Gaussian B processes on a dense grid of

u ∈ [0, 1] followed by Riemann integration, while η∗1 and η∗2 can be computed by

numerical integration.

By sampling 107 B processes on a grid of size 2,000, we approximated the

limiting probability for the event that AFIC selects N(ξ, σ2) (when both ξ and

σ are unknown) over the nonparametric alternative. We obtained probabilities

of 0.938 and 0.951 for, respectively, W1 and W2, corresponding to implied test

levels of respectively 0.062 and 0.049. Such tests are parameter independent,

but different families of distributions give different probabilities. For example,

repeating the simulations, holding first ξ and then σ fixed while the other is being

estimated, gives limiting test levels equal to 0.071 and 0.116 for W1, and 0.062

and 0.106 for W2.

Remark 2. A new interpretation of the Pearson chi-squared test. Consider

counts N = (N1, . . . , Nk) from a multinomial model with probability vector

(p1, . . . , pk), where
∑k

j=1 pj = 1 and
∑k

j=1Nj = n. Pearson (1900) introduced

the test statistic
∑k

j=1(Nj − npj)
2/(npj) = n

∑k
j=1(p̄j − pj)

2/pj and showed its

convergence to the χ2
k−1, where p̄j = Nj/n. If the null distribution has a para-

metric form, say pj = fj(θ) in terms of a parameter θ of dimension say q ≤ k−2,

then the modified Pearson test statistic is Xn = n
∑k

j=1{p̄j−fj(θ̂)}2/fj(θ̂), tend-
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ing under that model to a χ2
df , with df = k−1−q. This holds for both maximum

likelihood and minimum-chi-squared estimators.

Since categorical i.i.d. data are just a special case of the general i.i.d. theory,

all of the developed FIC and AFIC theory holds here. This is dealt with in the

supplementary material (Jullum and Hjort (2017a)), with particular attention to

the AFIC case where interest is in all probabilities p1, . . . , pk, with loss function

weights 1/p1, . . . , 1/pk, so that the loss function is
∑k

j=1(p̂j−pj)
2/pj . In the AFIC

scheme, one learns that a parametric model and its estimates fj(θ̂) are preferred

to the nonparametric with its p̄j when Xn ≤ 2{k − 1 − Tr(Ĵ−1K̂∗)}, with K̂∗

a q × q-dimensional matrix defined in the supplementary material (Jullum and

Hjort (2017a)). This makes AFIC directly related to the Pearson chi-squared,

but derived via assessment of risk. If the parametric model is correct, AFIC

selects that model with probability tending to Pr(χ2
df ≤ 2 df). This generalises

the implied test of Remark 1 when we have categorical data, and sheds new light

on the Pearson chi-squared test, both regarding interpretation and the implied

significance levels. The test level decreases with increasing df and is, for instance,

0.157, 0.135, 0.112, 0.092, 0.075 for df = 1, . . . , 5.

For assessing independence in an r × s table, one finds the following AFIC

recipe: Accept independence when Xn ≤ 2(r−1)(s−1), where Xn =
∑

i,j(Ni,j−
nα̂iβ̂j)

2/Ni,j is the chi-squared test, with α̂i = Ni,·/n and β̂j = N·,j/n. Here

Ni,· =
∑

j Ni,j and similarly with N·,j .

5.3. The original vs. the new FIC

Local misspecification frameworks are often used to study test power, see

e.g. Lehmann (1998, Chap. 3.3). Their frequent use in such studies is due to the

fact that they bring variance and squared biases on the same asymptotic scale.

Although we left the local misspecification framework when deriving the FIC,

such a framework may be useful for studying limiting properties and especially

comparing the FIC methodology in the present paper with the original FIC

scheme of Claeskens and Hjort (2003). Taking the true density or probability

mass function to be gn(y) = f(y; θ0, γ0 + δ/
√
n), the comparison is restricted

to nested parametric models ranging from an unbiased ‘wide’ model with large

variance to a locally biased ‘narrow’ model with minimal variance, where the

wide model plays the role of the nonparametric model. Under suitable regularity

conditions this framework deems the two FIC regimes asymptotically equivalent

when vnp = vwide (with the nonparametric and wide models being equivalent

in the new FIC scheme). The more typical case of vwide < vnp reflects in some
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local asymptotics sense that the new FIC includes an additional uncertainty level

outside the wide model, and replaces wide model variances with nonparametric

model variances. In this regard, the new FIC scheme may be thought of as the

most model robust. Further details with precise formulae, regularity conditions,

and proofs are given in the supplementary material (Jullum and Hjort (2017a)).

5.4. Summary of simulation experiments

The supplementary material (Jullum and Hjort (2017a)) describes some sim-

ulation studies investigating the performance of various versions of our FIC and

AFIC schemes for the case in which none of the parametric models are fully

correct.

We checked the performance of estimators which used the models ranked the

best by various FIC and AFIC schemes. When concentrating on µ = G(y) for a

wide range of y-values, the truncated and untruncated squared bias versions of

the FIC performed similarly. Their performance was clearly better than the BIC

and comparably or slightly better than the AIC. Versions of the AFIC covering

the whole distribution performed comparably with the AIC and BIC.

For various other focus parameters, the full version of the FIC (with the

nonparametric candidate included) performed better than the AIC, the BIC, a

constructed Kolmogorov–Smirnov criterion, and the nonparametric estimator it-

self, for moderate to large samples. For small samples, the AIC and BIC typically

performed somewhat better.

6. Model Averaging

An alternative to relying on a specific model for estimation of the focus pa-

rameter is to use an average over several candidate models. Model averaging

uses as a final estimator a weighted average across all candidate models, say

µ̂final =
∑

j ajµ̂j , where the weights aj sum to 1 and typically depend on as-

pects of the data. Mixing parametrics and nonparametrics in such a setting is

conceptually appealing as it mixes nonzero bias and low variance with zero bias

and higher variance. Motivated by the form of model averaging schemes for AIC,

BIC, and similar (see e.g. Claeskens and Hjort (2008, Chap. 7)), we suggest using

aj =
exp(−λFICj/FICnp)∑
k exp(−λFICk/FICnp)

, (6.1)

for some specified tuning-parameter λ. This weight function has the property of

producing the same weights independently of the scale of the focus parameter.
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The size of λ relates to the emphasis on relative differences in mean squared errors

and may be set based on cross-validation or similar ideas. As λ → 0 in (6.1), all

estimators are weighted equally. When λ → ∞ all weight is concentrated on the

model and estimator with the smallest FIC score, bringing the scheme back to

regular model selection based on FIC. A corresponding model averaging scheme

can be created based on the AFIC in Section 4.

A local misspecification framework is useful when working with model av-

eraging. When the parametric models are nested, one can derive local limit

distributions for model average estimators with weight functions like (6.1), anal-

ogous to Hjort and Claeskens (2003, Thm. 4.1). Such limiting distributions may

be used to address post-selection uncertainties of the model average estimators

similarly to Hjort and Claeskens (2003). Details and proof for the limiting dis-

tribution of the model averaging scheme are given in the supplementary material

(Jullum and Hjort (2017a)). See also Hjort and Claeskens (2003) and Claeskens

and Hjort (2008, Chap. 7) for further remarks on model averaging based on AIC,

BIC, and the original FIC.

7. Other Data Frameworks

Proposition 1 and the joint limiting distribution structure of (2.3) form the

basis for deriving the FIC and AFIC methods presented in this paper. Versions of

(2.3) hold also for cases outside the i.i.d. regime we have been working within. In

particular, below we touch on FIC and AFIC methods for hazard rate and time

series models. In other situations, structures more complicated than (2.3) arises,

for example when comparing nonparametric and parametric density estimation

and regression, leading in their turn to certain necessary refinements.

7.1. Hazard rate models

The Kaplan–Meier and Nelson–Aalen nonparametric estimators are exten-

sively used in practical applications involving censored data for, respectively,

survival curves and cumulative hazard rates, even in cases when a paramet-

ric approach would have been better; see e.g. Miller (1981), who asks “what

price Kaplan–Meier?”. The cumulative hazard A(t) at a point t may be esti-

mated by the nonparametric Nelson–Aalen estimator Ânaa(t) or a parametric

candidate Âpm(t) = A(t; θ̂). Here A(t; θ) is θt for the constant hazard rated

exponential model, (θ1t)
θ2 for the Weibull, and (θ1/θ2){exp(θ2t) − 1} for the

Gompertz, etc. Under suitable regularity conditions, mainly those in Andersen

et al. (1993, Thm. IV.1.2) and Hjort (1992, Thm. 2.1), in addition to A(t; θ)



974 MARTIN JULLUM AND NILS LID HJORT

being smooth w.r.t. θ at a certain least false θ0, we have joint convergence of√
n{Ânaa(t)−A(t)} and

√
n{Âpm(t)−A(t; θ0)} to a zero-mean Gaussian distribu-

tion with a certain covariance matrix. A delta method argument for exp{−A(t)}
reveals the analogue for a survival probability which also holds when using the

nonparametric Kaplan–Meier estimator rather than the asymptotically equiva-

lent exp{−Ânaa(t)}. Hence, with consistent estimation of that covariance matrix,

FIC and AFIC schemes may be put up both for cumulative hazard and for sur-

vival probability estimation. The survival probability schemes may then be used

to give a possibly more fine-tuned and focused answer to Miller’s rhetorical ques-

tion than those given by Miller (1981) and Meier et al. (2004).

7.2. Proportional hazard regression

Suppose covariate vectors xi are recorded along with (possibly censored) sur-

vival times Yi. One may then ask ‘what price semiparametric Cox regression?’.

This question is more complicated. With αi(s) the hazard rate for individual i,

the traditional proportionality assumption is that αi(s) = α0(s) exp(x
t
iβ), with

α0(s) and β unknown. The most appropriate modelling schemes are (i) the

semiparametric Cox method, which estimates β by maximising the partial like-

lihood, say β̂cox, and the baseline hazard A0(t) =
∫ t
0 α0(s) ds by the Breslow

estimator Âbr(t) (Breslow (1972)); and (ii) fully parametric candidates, which

with a suitable α0(s; θ) exp(x
t
iβ) use the full maximum likelihood estimators

(θ̂, β̂) in consequent inference. These approaches give rise to the semiparametric

Âbr(t) exp(x
tβ̂cox) and the parametric A(t; θ̂) exp(xtβ̂), for estimating the cu-

mulative hazard rate A(t |x) for a given individual, and similarly also for the

survival probabilities S(t |x) = exp{−A(t |x)}. Under regularity conditions, in-

cluding those for the standard hazard rate models above, one can establish joint

convergence for(√
n{Âbr(t) exp(x

tβ̂cox)−A(t |x)},
√
n{A(t; θ̂) exp(xtβ̂)−A(t; θ0) exp(x

tβ0)}
)
,

involving certain least false parameters (θ0, β0). With appropriate efforts this

leads to FIC and AFIC formulae for choosing between semiparametric and para-

metric hazard models, in terms of precision of estimators for either cumulative

hazards or survival curves. This is indeed the main theme in Jullum and Hjort

(2017b).

7.3. Stationary time series

In the time series culture, there seems to be more or less two separate
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schools, when it comes to modelling, estimation and prediction: the paramet-

ric and the nonparametric. For the following very brief explanation of how the

FIC might be put to work also here, consider a zero-mean stationary Gaussian

time series process with spectral distribution function G on [−π, π]. A class of

focus parameters take the form µ(G) = A(
∫
h(ω) dω), where A is smooth and

h = (h1, . . . , hk)
t is a vector of univariate bounded functions hj on [−π, π], each

having at most a finite number of discontinuities. This class includes all co-

variances, correlations, natural predictors, and threshold probabilities, and have

natural parametric and nonparametric estimators µ̂pm = A(
∫ π
−π h(ω)f(ω; θ̂) dω)

and µ̂np = A(
∫ π
−π h(ω)In(ω) dω). Here In(ω) is the classical periodogram, f(· ; θ)

is a spectral density function parametrised by θ, and θ̂ is the maximiser of the

Gaussian log-likelihood (or of its Whittle approximation). Then, under mild

regularity conditions, we have joint convergence in distribution for
√
n(µ̂np − µ)

and
√
n(µ̂pm − µ0) to certain zero-mean Gaussian distributions. Once again µ0

is a parametric least false variant of µ. This may be used to establish FIC and

AFIC formulae also for this framework, leading to selection and averaging meth-

ods when comparing e.g. autoregressive models of different order along with the

nonparametric.

7.4. Parametric or nonparametric density estimation

Although a joint limiting distribution like that of (2.3) holds in a wide range

of situations, frameworks involving nonparametric smoothing are typically differ-

ent. One such is density estimation for i.i.d. data. In this situation, nonparamet-

ric estimators typically converge no faster than n−2/5 (see e.g. Brown and Farrell

(1990)), being slower than the usual n−1/2 that still works for the parametric

candidates; hence, there is no direct analogue of (2.3) of Proposition 1. This

complicates constructions of FIC formulae, both for nonparametrics and para-

metrics, but such can nevertheless be reached. We provide a brief investigation

into these matters when interest is in estimation of µ = g(y) for a particular y.

The traditional nonparametric density estimator with i.i.d. observations Y1,

. . . , Yn is the kernel-based

ĝn(y) = n−1
n∑

i=1

h−1
n M(h−1

n (y − Yi)), (7.1)

with bandwidth hn and kernel function M . Let k2 =
∫
x2M(x) dx,RM =∫

M(x)2 dx, with g′′(y) the second order derivative of g(y). With bandwidth

of the optimal size hn = an−1/5, for some constant a, one finds that
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n2/5{ĝn(y)− g(y)}√
n{f(y; θ̂)− f(y; θ0)}

)
d→

(
X1

X2

)
,

with X1 ∼ N(12k2a
2g′′(y), RMg(y)/a) and X2 ∼ N(0, vpm(y)), where the latter

has variance vpm(y) = f(y; θ0)
2u(y; θ0)

tJ−1KJ−1u(y; θ0). The covariance be-

tween the two variables on the left hand side is of size O(n−1/10), but in the

large-sample limit this disappears, rendering X1 and X2 independent. We con-

centrate on leading terms only, discarding terms of lower order, like the negative

g2(y)/n term often included in the nonparametric variance. The more compli-

cated parallels to (1.4) are then

msenp =
1

4
k22h

4
ng

′′(y)2 +
RMg(y)

nhn
,

msepm = b(y)2 + n−1vpm(y),

with b(y) = f(y; θ0)−g(y). These quantities can be estimated from data, though

with certain complications and perhaps separate fine-tuning for g′′(y)2 and the

variance of b̂(y) = f(y; θ̂) − ĝn(y), where the latter is used for correcting b̂(y)2

for overshooting bias when estimating b(y)2.

Matters simplify somewhat when we employ suitable bias-reduction methods

for estimating g(y) in the first place, e.g. along the lines of Jones, Linton and

Nielsen (1995); Hjort and Jones (1996). Some of these methods lead to density es-

timators, say g̃n(y), with the ability to reduce the bias significantly without mak-

ing the variance much larger. Specifically, n2/5{g̃n(y)− g(y)} d→ N(0, SMg(y)/a)

holds, with SM a constant depending only on M and equal to or a bit bigger than

RM above. A variation of these methods, due to Hengartner and Matzner-Løber

(2009), involving a pilot estimator with a separate bandwidth, indeed satisfies

the above with SM = RM . With any of these methods,

msenp =
SMg(y)

nhn
and msepm = b(y)2 + n−1vpm(y).

With b̃(y) = f(y; θ̂)−g̃n(y), we find n2/5{b̃(y)−b(y)} d→ N(0, SMg(y)/a), basically

since g̃n(y) is more variable than f(y; θ̂). With h = hn, this leads to the FIC

formulae

FICnp =
SM g̃n(y)

nh
,

FICpm = max{0, b̃(y)2 − SM g̃n(y)

nh
}+ n−1v̂pm.

As opposed to the cases g(y) and g′′(y), the integrated squared density∫
g(y)2 dy and the density roughness

∫
g′′(y)2 dy turn out to be estimable at
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a
√
n rate, under suitable smoothness conditions, see Fan and Marron (1992).

Hence, these cases fall under our framework associated with (2.3). The latter

quantity is involved in the penalisation terms for smoothing methods, etc., and

the first appears e.g. when assessing the accuracy of the Hodges–Lehmann esti-

mator for location. In both of these cases nonparametric methods are associated

with significant estimation variability. It is hence tempting to use the FIC to

decide whether we should bypass these and go for a parametric option instead.

In particular, such a FIC step could determine whether one should follow a com-

plicated nonparametric recipe for choosing the bandwidth in (7.1) or a simple

normal-based rule-of-thumb bandwidth. The FIC methods above may also be

extended to suitable AFIC versions, determining from data whether one should

use a kernel estimator for g or one from a list of parametric candidate models,

over some interval [a, b].

7.5. Parametric or nonparametric regression

For the classical regression framework, the situation, as per construction of

FIC formulae for comparing nonparametrics and parametrics, is partly similar

to the case for density estimation. Again, the nonparametric method typically

converges at a slower speed than parametric options, but to the correct quantity.

For this situation, assume pairs (xi, Yi) are observed from the model Yi = m(xi)+

εi, with the εi being i.i.d. N(0, σ2). For simplicity of presentation we take the

xi to all be on the unit interval, stemming from a design density gX(x) there.

Of interest is to select among different parametric models for the regression line

E(Y |x), say m(x;β), and the nonparametric model which simply takes m(x) to

be unknown and smooth. These questions can be put up for a single position x,

or, with AFIC, for an interval of x values.

Making this operational demands choosing one of many available nonpara-

metric smoothers. Here we take the local linear m̂(x) = âx + b̂xx, with (âx, b̂x)

chosen to minimise Qx(a, b) =
∑n

i=1Mh(xi − x)(yi − a − bxi)
2, for Mh(u) =

h−1M(h−1u), with a kernel M (say the standard normal) and bandwidth h.

Then, with h = hn tending to zero and nhn growing to infinity,

E {m̂(x)} .
= m(x) +

1

2
k2h

2m′′(x) and Var {m̂(x)} .
=

σ2RM

nhgX(x)
,

with k2 and RM constants depending on the kernel, and m′′(x) the second deriva-

tive of m(x). Thus

msenp(x)
.
=

1

4
k22h

4m′′(x)2 +
σ2RM

nhgX(x)
.
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This may be estimated from data, via (i) a kernel density estimator for gX(x); (ii)

a separate smoother with a separate bandwidth for m′′(x); and (iii) an estimator

for σ2 which does not involve any parametric models, but uses n−1
∑n

i=1{yi −
m̂(xi)}2 or similar. The corresponding mse for a parametric m(x;β) takes the

form

msepm(x)
.
= b(x)2 + ṁ(x;β0,n)

tΣnṁ(x;β0,n).

Here b(x) = m(x;β0,n)−m(x), involving the least false β0,n, minimising
∑n

i=1{m
(xi;β)−m(xi)}2; Σn is the variance matrix of the maximum likelihood estimator

β̂, defined as the minimiser of Qn(β) =
∑n

i=1{yi − m(xi;β)}2; and ṁ(x;β) =

∂m(x;β)/∂β.

Spelling out details for estimating msepm(x) from data takes a bit of care,

with ingredients rather similar to those for density estimation. It can be accom-

plished, but with additional fine-tuning questions to tend to.

8. Concluding Remarks

We have concentrated on studying the simplest data frameworks and classes

of models, and have chosen to give detailed analysis regarding those, rather than

broadening the concepts and ideas further. Some extensions follow along the

same lines as those carried out here, only with more involved theory, while oth-

ers require adjustments in our proposed construction strategy. An example of

the former is the extension to relying on M-estimators (van der Vaart (2000,

Chap. 5)) for estimating the parameters in the parametric models, typically for

robustness reasons, rather than using maximum likelihood. Under regularity

conditions essentially analogous to those for maximum likelihood theory, (2.3)

still holds with appropriately modified quantities. In particular, such an ex-

tended FIC apparatus makes it possible to rank different estimates of the same

focus parameter, derived from the same parametric model (say the ML and some

competing M-estimators).

Our theory typically also works for other parametric estimation routines,

provided they have the same convergence rate, such as the estimator gotten

by any finite number of steps of the EM algorithm. It is also possible to use

the same procedure for other types of data, as described in Section 7. Similarly,

other nonparametric estimation methods may be worked with. We also point out

that other nonparametric estimation methods might be first-order large-sample

equivalent to using µ̂np = T (Ĝn), for certain classes of problems, such as when

using the empirical likelihood (Hjort, McKeague and Van Keilegom (2009)).
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A nice property of our model selection criteria is that they are all invari-

ant under parametrisation: two parametric classes having identical model forms

and flexibility, but with differing parametric distributional expressions, produce

identical estimates of µ and can be treated identically by our criteria.

Our focused approach is built on the concept that changing focus may change

the ranking of candidate models. However, when a focus parameter may be

expressed as a linear function of another focus parameter, all the new FIC scores

are proportional to the corresponding FIC scores before transformation. This

results in identical ranking for the FIC and AFIC. Another consequence is that

the rankings often are the same when a transformation of the focus parameter is

almost linear.

When constructing our FIC we have used the squared error loss function,

where the risk is expressed as squared bias plus variance. Other loss functions

may be worked with, though these would often lead to risks being harder to

estimate unbiasedly. In particular, a FIC can be put up for the so-called linex

loss function, where loss is measured as {exp(a∆)− 1− a∆}/a with ∆ = µ̂− µ

and a some tuning parameter.

R-scripts and functions presenting FIC and AFIC tables and plots upon

specification of data, parametric competitors and one or more focus parameters,

are prepared for the cases handled in the paper. The programs are currently

available on request from the authors, but are planned to be included in an

R-package.

Supplementary Materials

The supplementary material (Jullum and Hjort (2017a)) contains proofs of

results in the main paper, another illustration, details of simulation studies, some

details on FIC and AFIC for categorical data, and some local asymptotics results.
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Hjort, N. L. and Claeskens, G. (2003). Frequentist model average estimators [with discussion

contributions]. Journal of the American Statistical Association 98, 879–899.

Hjort, N. L. and Claeskens, G. (2006). Focused information criteria and model averaging for

the Cox hazard regression model. Journal of the American Statistical Association 101,

1449–1464.

Hjort, N. L. and Jones, M. C. (1996). Locally parametric nonparametric density estimation.

Annals of Statistics 24, 1619–1647.

Hjort, N. L., McKeague, I. W. and Van Keilegom, I. (2009). Extending the scope of empirical

likelihood. Annals of Statistics 37, 1079–1111.



PARAMETRIC OR NONPARAMETRIC 981

Hjort, N. L. and Pollard, D. B. (1993). Asymptotics for minimisers of convex processes. Technical

report, Department of Mathematics, University of Oslo.

Hotelling, H. and Solomons, L. M. (1932). The limits of a measure of skewness. Annals of

Mathematical Statistics 3, 141–142.

Huber, P. J. (1981). Robust Statistics. Wiley, New York.

Jones, M. C., Linton, O. and Nielsen, J. P. (1995). A simple bias reduction method for density

estimation. Biometrika 82, 327–338.

Jullum, M. and Hjort, N. L. (2017a). Supplement to “Parametric or nonparametric: The FIC

approach”. Statistica Sinica. online http://www3.stat.sinica.edu.tw/statistica/

Jullum, M. and Hjort, N. L. (2017b). What price semiparametric Cox regression? Submitted

for publication.

Lehmann, E. L. (1998). Elements of Large-Sample Theory. Springer-Verlag, Berlin.

Liu, W. and Yang, Y. (2011). Parametric or nonparametric? A parametricness index for model

selection. Annals of Statistics 39, 2074–2102.

Meier, P., Karrison, T., Chappell, R. and Xie, H. (2004). The price of Kaplan-Meier. Journal

of the American Statistical Association 99, 890–896.

Miller, R. G. (1981). What price Kaplan–Meier? Biometrics 39, 1077–1081.

Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the

case of a correlated system of variables is such that it can be reasonably supposed to have

arisen from random sampling. Philosophical Magazine, Series 5 50, 157–176.

Pearson, K. (1902). On the change in expectation of life in man during a period of circa 2000

years. Biometrika 1, 261–264.

Shao, J. (2003). Mathematical Statistics [2nd edition]. Springer-Verlag, Berlin.

Shao, J. and Tu, D. (1996). The Jackknife and Bootstrap. Springer-Verlag, New York.

Sheather, S. J. and Marron, J. S. (1990). Kernel quantile estimation. Journal of the American

Statistical Association 85, 410–416.

van der Vaart, A. (2000). Asymptotic Statistics. Cambridge University Press, Cambridge.

White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica 50,

1–25.

Zhang, X. and Liang, H. (2011). Focused information criterion and model averaging for gener-

alized additive partial linear models. Annals of Statistics 39, 174–200.

Department of Mathematics, University of Oslo, 0316, Norway

E-mail: jullum@nr.no

Department of Mathematics, University of Oslo, 0316, Norway

E-mail: nils@math.uio.no

(Received October 2015; accepted July 2016)

http://www3.stat.sinica.edu.tw/statistica/
mailto:jullum@nr.no
mailto:nils@math.uio.no

