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S1 Example IV.

In this example, we generate a mixture of eight components with mixing probabilities πi =

0.125, i = 1, · · · , 8, mean vectors µ1 = µ2 = [2, 2]T , µ3 = µ4 = [−2, 2]T µ5 = µ6 = [2,−2]T ,

µ7 = µ8 = [−2,−2]T , and covariance matrices

Σi =

[
1.05 0.95

0.95 1.05

]
for i = 1, 3, 5, 7, and Σi =

[
1.05 −0.95

−0.95 1.05

]
for i = 2, 4, 6, 8.

In fact, all these eight components are obtained by rotating and shifting the Gaussian density

N (0, diag(2, 0.1)).

We consider three different sample sizes n = 800, 1200, 1600 and run our proposed methods

for 300 times for each sample size. The maximum number of components M is set to be 20 or

50. The initial value for the modified EM algorithm is estimated by K-means clustering, and

the tuning parameter λ is selected by our proposed BIC method. Figure 1 shows the evolution

of the modified EM algorithm for (2.3) with the initial maximum number of components as 20

for one simulated data set. Table 1 shows that our proposed method can identify the number of

components with high probability and performs much better than the AIC and BIC methods.

Table 2 shows that the modified EM algorithm gives accurate estimates for both parameters

and mixing probabilities.

S2 Real Data Analysis.

We apply our proposed method to an image segmentation data set at UCI Machine Learning

Repository (http://archive.ics.uci.edu/ml/

datasets/Image+Segmentation). This data set was created from a database of seven outdoor

images (brickface, sky, foliage, cement, window, path, and grass). Each image was hand-

segmented into instances of 3×3 regions, and 230 instances were drawn. For each instance, there

are 19 attributes. We here only focus on four images, brickface, sky, foliage, and grass, and two

attributes, extra red and extra green. Our objective is to estimate the joint probability density
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Figure 1: One typical run of Example IV. (a) a simulated data set. (b) initialization

for M = 20 components, (c-d) two intermediate estimates for M = 15, 10, respectively,

(e) the final estimate for M = 8, (f) the penalized log likelihood function for this run.

Table 1: Order selection for Example IV

Penalized AIC BIC

SS 800 1200 1600 800 1200 1600 800 1200 1600

M = 20

m = 8 0.7733 0.9500 0.9733 0.1500 0.1267 0.1000 0.1500 0.1267 0.0933

|m− 8| = 1 0.2200 0.0500 0.0233 0.1800 0.2100 0.1800 0.1800 0.2000 0.1767

|m− 8| ≥ 2 0.0067 0 0.0033 0.6700 0.6633 0.7200 0.6700 0.6733 0.7300

M = 50

m = 8 0.7333 0.9400 0.9300 0.1500 0.1267 0.1000 0.1500 0.1267 0.0933

|m− 8| = 1 0.2633 0.0600 0.0667 0.1800 0.2100 0.1800 0.1800 0.2000 0.1767

|m− 8| ≥ 2 0.0033 0 0.0033 0.6700 0.6633 0.7200 0.6700 0.6733 0.7300



S2. REAL DATA ANALYSIS.

Table 2: Exp IV: Parameter estimation with standard deviation by maximizing (2.3)

Mixing Probability Mean Covariance (eigenvalue)

Component1 TRUE 0.125 2 2 0.1 2

SS = 800
M = 20 -.0010(.0151) .0226(.1971) .0223(.2016) -.0040(.0196) -.0135(.6148)

M = 50 -.0003(.0149) .0295(.1876) .0267(.1930) -.0040(.0199) -.0477(.5675)

SS = 1200
M = 20 -.0003(.0088) .0052(.1171) .0067(.1176) -.0018(.0162) -.0007(.3863)

M = 50 -.0003(.0088) .0074(.1160) .0088(.1156) -.0013(.0160) -.0134(.3691)

SS = 1600
M = 20 -.0007(.0072) .0102(.0973) .0102(.0954) -.0027(.0141) -.0094(.3183)

M = 50 -.0005(.0073) .0093(.0941) .0084(.0927) -.0027(.0142) -.0078(.3205)

Component5 TRUE 0.125 2 2 0.1 2

SS = 800
M = 20 .0007(.0118) -.0055(.1312) .0009(.1279) -.0026(.0218) -.0429(.3535)

M = 50 -.0002(.0125) -.0081(.1351) -.0008(.1356) -.0026(.0235) -.0443(.3644)

SS = 1200
M = 20 -.0008(.0078) .0042(.0994) .0032(.0994) -.0026(.0154) -.0193(.3082)

M = 50 -.0008(.0080) .0046(.1001) .0034(.1002) -.0027(.0154) -.0231(.3091)

SS = 1600
M = 20 .0001(.0068) -.0061(.0878) .0007(.0871) -.0016(.0146) -.0003(.2550)

M = 50 .0001(.0068) -.0042(.0864) .0021(.0852) -.0015(.0147) .0022(.2557)
Similar results for other components.

function of the two attributes (See Figure 2(a)) using a Gaussian mixture model with arbitrary

covariance matrices. In other words, we implement our proposed method to identify the number

of components, and to simultaneously estimate the unknown parameters of bivariate normal

distributions and the mixing probabilities. Although we consider only four images, Figure 2(a)

suggests that a five-component Gaussian mixture is more appropriate and the brickface image

is better represented by two components.
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Figure 2: (a) Scatter plot of scaled real data. Brickface (blue), Sky (green), Foliage

(red), Grass (light blue); (b-c) Histograms of marginal density. (b) Extra red, and (c)

Extra green.

As in the simulation studies, we run our proposed method for 300 times. For each run, we

randomly draw 200 instances. The maximum number of components is set to be 10, and the

initial value of the modified EM algorithm is estimated by the K-means clustering. Because
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there is little difference between numerical results of the two proposed methods (2.3) and (2.4),

here we only show the numerical results obtained by maximizing (2.3). Figure 3 shows the

evolution of the modified EM algorithm for one run. Figure 4 shows that our proposed method

selects five components with high probability. For a five-component Gaussian mixture model,

we summarize the estimation of parameters and mixing probabilities in Table 4.

¸Figure 3: One typical run. (a) Initialization with M = 10 components, (b) and (c)

two intermediate estimates for M = 7 and M = 6, respectively, (d) the final estimate

M = 5.
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Figure 4: Histogram of estimated numbers of components. (a) the proposed method

(2.3), (b) BIC, (c) AIC. (d) The penalized log likelihood function for one typical run.



S3. PROOF OF THEOREM 2 AND 3

Table 3: Parameter Estimation with standard deviation, M̂ = 5

Component Underlying Mixing Probability Mean Standard Deviation

(Ex-red, Ex-green) (Ex-red, Ex-green)

1 Sky & Foliage .4153 -27.7689 -13.7343 12.0464 7.3739

(0.0555) (2.3336) (1.1377) (1.1726) (0.3745)

2 Grass .2617 -9.3724 13.4992 3.6393 3.5632

(0.0523) (0.8588) (4.0740) (1.2160) (1.3567)

3 Foliage & Brickface .1447 -4.9511 -3.3625 3.1584 1.6728

(0.0425) (1.3913) (3.5537) (0.7102) (0.4004)

4 Brickface .0824 -1.3474 -12.0906 2.5780 1.3302

(0.0487) (0.8417) (7.2158) (1.5227) (0.7854)

5 Brickface .0936 3.5476 -8.4996 1.5110 1.3293

(0.0717) (1.4703) (2.1980) (1.2288) (1.6460)

S3 Proof of Theorem 2 and 3

Proof of Theorem 2: To prove Theorem 2, similar as the proof of Theorem 1, we first show

that there exists a maximizer (θ,β) such that θ = Op(1/
√
n) when λ = C/

√
n. It is sufficient

to show that, for a large constant C1, `(θ,β) < `(0,β) where θ = C1/
√
n and β is in a local

compact area Ω = {β : (αi,µi,Σi) ∈
⋃q
l=1 Ωl, i = 1, . . . ,M−q} where Ωl is defined in the proof

of Proposition 1. Let θ = C1/
√
n, we then have

`p(θ,β)− `p(0,β) ≤
n∑
i=1

{log f(xi, θ,β)− log g0(xi)}

−nλDf
M∑

m=M−q+1

[log(ε+ πm)− log(ε+ π0
m−M+q)]

=̂ I1 + I2.

For I2, because of θ = C1/
√
n and by the restriction condition on ρl, l = 1, . . . , q, we have

|πm − π0
m−M+q| ≤ C1/

√
n when m > M − q. By the property of the penalty function, we then

have

|I2| = | − nλDf
M∑

m=M−q+1

[log(ε+ πm)− log(ε+ π0
m−M+q)]|

=

∣∣∣∣∣−nλDf
M∑

m=M−q+1

[
(πm − π0

m−M+q)

ε+ π0
m−M+q

· (1 + o(1))

]∣∣∣∣∣
= O(

√
n) · qC1√

n
(1 + o(1)) = O(C1).

For I1, similar as the proof of Theorem 1, we have

I1 =
C1√
n
·OP (

√
n)− C2

1

n
·Op(n).
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When C1 is large enough, the second term of I1 dominates I2 and the other terms in the

penalized likelihood ratio function. Then we have

`p(θ,β)− `p(0,β) < 0

with probability tending to one. Hence there exists a maximizer (θ,β) with probability tending

to one such that

θ = Op(
1√
n

).

Next we show that there exists a maximizer (θ̂, β̂) satisfying θ̂ = Op(
1√
n

) such that q̂ = q

or π̂m = 0,m = 1, . . . ,M − q.
First, we show that for any maximizer of `p(θ

∗,β∗) with |θ∗| ≤ C1/
√
n, if there is k ≤M−q

such that C1/
√
n ≥ π∗k > 1/(

√
n logn), then there should exist another maximizer of `p(θ,β) in

the area of |θ| ≤ C1/
√
n. It means that the extreme maximizer of `p(θ,β) in the compact area

of |θ| ≤ C1/
√
n should satisfy that πk <

1√
n logn

for any k < M − q + 1. Hence it is equivalent

to show that for any such kind maximizer of `p(θ
∗,β∗) with |θ∗| ≤ C1/

√
n, we always have

`p(θ
∗,β∗) < `p(0, β

∗) with probability tending to one. Similar to the analysis above, we have

`p(θ
∗,β∗)− `p(0,β∗) ≤

n∑
i=1

{log f(xi, θ
∗,β∗)− log g0(xi)}

−nλDf
M∑

m=M−q+1

[log(ε+ π∗m)− log(ε+ π0
m−M+q)]

−nλDf
M−q∑
k=1

log
ε+ π∗k
ε

=̂ I1 + I2 + I3.

As shown before, we have I1 + I2 = Op(C
2
1 ). For I3, because of ε = o( 1√

n logn
) we have

|I3| = O(n · C/
√
n) · log

ε+ π∗k
ε

= O(
√
n).

Notice that I3 is always negative and dominates the terms in I1 and I2, and therefore we have

`p(θ
∗,β∗) < `p(0, β

∗).

In the following step, we need only consider the maximizer of `p(θ̂, β̂) with |θ̂| ≤ C1/
√
n

and π̂k < 1/(
√
n logn) for k < M − q + 1.

A Lagrange multiplier β is taken into account for the constraint
∑M
m=1 π̂m = 1. It is then

sufficient to show that
∂`∗(θ)

∂π̂m
< 0 for π̂m <

1√
n logn

(S3.1)

with probability tending to one for the maximizer (θ,β) where `∗(θ) = `p(θ)−β(
∑M
m=1 πm−1).

To show the equation above, we consider the partial derivatives for π̂m, m > M − q, and have

the following equations,

∂`∗(θ)

∂π̂m
=

n∑
i=1

φm(µm,Σm)∑M
i=1 π̂iφi(µi,Σi)

− nλDf
1

ε+ π̂m
− β = 0. (S3.2)
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It is obvious that the first term in the equation above is of order Op(n) by the law of large

numbers. If m > M − q and θ = Op(
1√
n

), it is easy to know that π̂m = π0
m−M+q +Op(1/

√
n) >

1
2
· min(π0

1 , . . . , π
0
q), and then the second term should be Op(nλ) = op(n), and moreover β =

Op(n).

Next, consider

∂`∗(θ)

∂π̂m
=

n∑
i=1

φm(µm,Σm)∑M
i=1 π̂iφi(µi,Σi)

− nλDf
1

ε+ π̂m
− β, (S3.3)

where m ≤ M − q and π̂m < 1√
n logn

. It is obvious that the first term and the third term in

(S3.2) are of order Op(n). For the second term, because π̂m = Op(
1√

n logn
), λ = C/

√
n and

ε = o( 1√
n logn

), we have{
nλDf

1

(ε+ πm)

}/
n = λDf

1

ε+ πm
= Op(λ ·

√
n logn)→∞,

with probability tending to one. Hence the second term in (S3.3) dominates the first and the

third terms. Therefore we prove the equation (S3.1), or equivalently π̂m = 0,m = 1, . . . ,M − q
with probability tending to one when n→∞. �

Proof of Theorem 3: To prove this theorem, we follow similar steps as in the proof of Theorem

2 in Wang, Li and Tsai (2007).

First, given λ∗ =
√

logn
n

, by Theorem 1, we know there exists a maximizer such that q̂ = q

with probability tending to one and that π̂M−q+m,m = 1, . . . q are the consistent estimates of

π0
i , i = 1, . . . , q. Hence with probability tending to one, we have

`P (θ̂λ∗) = `(θ̂λ∗)− nλ∗Df · q · log
ε+ aλ∗

ε
,

where θ̂λ∗ is the estimator of parameters of the multivariate Gaussian mixture model. On

the other hand, when q is known, we know that the maximum likelihood estimate θ̂MLE is

consistent. Hence we have

`P (θ̂MLE) = `(θ̂MLE)− nλ∗Df
q∑

m=1

[log(ε+ p∗λ(π̂m,MLE))− log(ε)]

= `(θ̂MLE)− nλ∗Df · q · log
ε+ aλ∗

ε
≥ `P (θ̂λ∗),

where π̂m,MLE is the maximum likelihood estimate of π0
m,m = 1, . . . , q. Then by the definition

of `P (θ̂λ∗), when λ∗ =
√

logn
n

, we have the oracle property, i.e., the penalized likelihood estimate

θ̂λ∗ is equal to θ̂MLE with probability tending to one.

Next we identify two different cases, that is, the under-fitted model and the over-fitted

model.

Case 1: Under-fitted model, i.e., q̂λ < q. By the definition of BIC, we have

BICλ = `(θ̂λ)− 1

2
q̂λDf logn ≤ `(θ̂q̂λ,MLE)− 1

2
q̂λDf logn,
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where θ̂q̂,MLE is the maximum likelihood estimate of the finite Gaussian mixture model when

the number of the components is q̂λ. By the law of large numbers and some cumbersome

calculations, we can show that

1

n

{
`(θ̂q̂λ,MLE)− `(θ̂q,MLE)

}
=

1

n

{
`(θ̂q̂λ,MLE)− `(θ̂λ∗)

}
→ inf

gλ∈Gq̂λ
−K(g0, gλ) = −K(g0,Gq̂λ)

where −K(g0, gλ) is the Kullback distance between g0, and gλ and Gq̂λ is the finite Gaussian

mixture model space with q̂ mixture components. Then we have

BICλ −BICλ∗ ≤ `(θ̂q̂λ,MLE)− `(θ̂q̂λ∗ ,MLE)− 1

2
q̂λDf logn+

1

2
q̂λ∗Df logn

= `(θ̂q̂λ,MLE)− `(θ̂q,MLE)− 1

2
q̂λDf logn+

1

2
qDf logn

= −nK(g0,Gq̂λ)(1 + op(1)) +
1

2
(q − q̂λ)Df logn

< 0,

This implies that

Pr( sup
λ:q̂λ<q

BICλ > BICλ∗)→ 0. (S3.4)

Case 2: Over-fitted model, i.e., q̂λ > q. If we can show that

`(θ̂q̂λ,MLE)− `(θ̂q,MLE) = Op(1), (S3.5)

then we have

BICλ −BICλ∗ ≤ `(θ̂q̂λ,MLE)− `(θ̂q̂λ∗ ,MLE)− 1

2
q̂λDf logn+

1

2
q̂λ∗Df logn

= `(θ̂q̂λ,MLE)− `(θ̂q,MLE)− 1

2
q̂λDf logn+

1

2
qDf logn

= Op(1) +
1

2
(q − q̂λ)Df logn

< 0,

and this implies that

Pr( sup
λ:q̂λ>q

BICλ > BICλ∗)→ 0. (S3.6)

Therefore Theorem 3 follows (S3.4) and (S3.6).

To prove (S3.5), note that given the bounded q̂, where q̂ > q, by conditions P1 and P2, and

similar to the proof of Proposition 1, the class of functions log f(x, θ,β) is P-Glivenko-Cantelli

and P-Donsker. Hence we have

sup
(θ,β)∈Θ

∣∣∣∣ 1n`(θ)− E log f(x, θ,β)

∣∣∣∣ = sup
(θ,β)∈Θ

∣∣∣∣∣ 1n
n∑
i=1

log f(xi, θ,β)− E log f(x, θ,β)

∣∣∣∣∣ P→ 0,

where Θ is a compact parameter space which satisfies conditions P1 and P2 and contained in⋃q
l=1 Ωl where Ωl is defined in the proof of Proposition 1. Similar as the proof of Theorem 1,

we know there is a maximizer in Θ.
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First, notice for any β and by the properties of the likelihood function, we have

E log f(x, θ,β) < E log f(x, 0,β).

when θ > ε and ε is a small constant. Similar to the proof of Theorem 5.7 in van der Vaart

(1998), we can then show that the maximum likelihood estimate of θ converges to 0 in proba-

bility.

Next, similar as the proof of Theorem 1 for I1, we have

E{log f(x, θ,β)− log f(x, 0,β)} = −1

2
θ2E

(
f ′(x, 0,β)

g0(x)

)2

(1 + op(1)).

According to conditions P1 and P2, and Proposition 1, β is in a compact space and
(
f ′(x,0,β)

g0(x)

)2

is a continuous function of β; hence E
(
f ′(x,0,β)

g0(x)

)2

can be bounded by a constant, and moreover,

for a sufficiently small θ < δ → 0,

E{log f(x, θ,β)− log f(x, 0,β)} ≤ −Cθ2.

Let Gn(θ,β) = 1/
√
n

n∑
i=1

{log f(xi, θ,β)− E log f(xi, θ,β)}. Consider Gn(θ,β)−Gn(0,β);

for |θ| < δ where δ is a sufficient small value, following the proof of Theorem 1, and by conditions

P1 and P2, we have

Gn(θ,β)−Gn(0,β) =
1√
n

n∑
i=1

{log f(xi, θ,β)− log f(xi, 0,β)}

−
√
nE{log f(x, θ,β)− log f(x, 0,β)}

=
1√
n

{
n∑
i=1

θ
f ′(xi, 0,β)

g0(xi)
− 1

2

n∑
i=1

θ2

(
f ′(xi, 0,β)

g0(xi)

)2
}

(1 + op(1))

+

√
n

2
θ2E

(
f ′(x, 0,β)

g0(x)

)2

(1 + op(1)).

By Proposition 1 and the properties of the Donsker class, for δ = C/
√
n with a large enough

constant C, we have

E sup
θ<δ,β

|Gn(θ,β)−Gn(0,β)| < C1δ +
√
nC2δ

2 +
√
nC3δ

2 = O(
√
nδ2).

As shown before, the maximum likelihood estimate of θ is consistent under the constraint

conditions P1 and P2 and Proposition 1. Then following the proof of Theorem 5.55 of van der

Vaart (1998), we have

θ̂q̂λ,MLE = Op(1/
√
n),

and moreover, by straightforward calculations, we can show that

`(θ̂q̂λ,MLE)− `(θ̂q,MLE) =
√
n{Gn(θ̂q̂λ,MLE , β̂q̂λ,MLE)−Gn(θ̂q,MLE , β̂q,MLE)}

+nE{log f(x, θ̂q̂λ,MLE , β̂q̂λ,MLE)− log f(x, θ̂q,MLE , β̂q,MLE)}

= Op
(√
n(C4δn +

√
nC5δ

2
n)
)

= Op(1).
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(S.11) has been proved and the proof of Theorem 3 is complete. �
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