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Supplementary Material

This note contains technical proofs of Theorems 1 and 2.

Proof of Theorem 1

We first need to show that Ân(K) lie in a sufficiently large closed ball in R2d, i.e. we

need to show that both the estimated regression coefficients and the estimated cluster

centers lie in a closed ball B(R) centered at the origin and of radius R when n is

large enough. Note that since n1/2λn → 0, the minimization of (8) is equivalent to the

minimization of

Φ(A,Pn), s.t.

K∑
k=1

d∑
j=1

|βkj|
|β̃kj|

≤ sn, (S1)

where sn → ∞ as n → ∞. By the fact that sn → ∞, it is enough if we can establish

the asymptotic consistency for the estimation in the unpenalized framework.

Note that we need to prove the finiteness of both the estimated regression co-

efficients and the estimated cluster centers. For cluster centers, we can employ the

techniques used in Pollard (1981) for proving the consistency of cluster centers in k-
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means clustering algorithm. For regression coefficients, special care need to be con-

sidered. Let An denote the optimal subset which satisfy Φ(An, Pn) = mK(Pn). Then

An is the solution of the unpenalized composite regression model (3) since solving

min
C(·),(β1,µ1),··· ,(βK ,µK)

∑n
i=1{(yi−xTi βC(i))

2 + τ‖xi−µC(i)‖2}/n is equivalent to

finding a A ∈ AK such that Φ(A,Pn) is minimized. We need to first show that there

exists a sufficiently large closed ball which contains all the estimated parameters An

when n is sufficiently large. Then the desired strong consistent results can be obtained

using the property of uniform convergence of Φ(A,Pn) to Φ(A,P ) within the closed

ball.

According to strong law of large number (SLLN), for any fixedA, we have Φ(A,Pn)

→ Φ(A,P ). The first step is to show that there is at least one point of An contained in

a closed ball. By definition Φ(An, Pn) ≤ Φ(A,Pn) ∀A ∈ AK . Choose A = A0 which

consists of a single point at the origin, i.e. β0 = 0 and µ0 = 0. Then

Φ(A0, Pn) =

∫
(y2 + ‖x‖2)Pn(dx, dy)→

∫
(y2 + ‖x‖2)P (dx, dy) = Φ(A0, P ).(S2)

For any given An = {(β1,µ1), · · · , (βK ,µK)} ∈ AK . Denote C(·) the corre-

sponding partitioning of samples into K groups. The feature space Rd can be divided

into K distinct regions Bk, k = 1, · · · , K such that if xi ∈ Bk then C(i) = k. If, for

infinity many values of n, no point of the estimated cluster centers (µ1, · · · ,µK) were
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contained in B(M), then

Φ(An, Pn) =
1

n

K∑
k=1

∑
C(i)=k

{(yi − xTi βk)
2 + τ‖xi − µk‖2}

>
τ

n

K∑
k=1

∑
C(i)=k

‖xi − µk‖2

=
τ

n

K∑
k=1

∑
C(i)=k

(
‖xi‖2 − 2xTi µk + ‖µk‖2

)
>

τ

n

K∑
k=1

∑
C(i)=k

(
‖µk‖2 − 2‖xi‖‖µk‖

)
> Φ(A0, P )

for large enoughM since 1
n

∑n
i=1 |xi| is finite. This would make Φ(An, Pn) > Φ(A0, Pn)

infinitely often: a contradiction. Denote uk = βk/|βk| ∈ O the unit vector for

βk. Define cluster index k?n = argmaxk
(∑

C(i)=k |xTi uk|2
)

and function φ(x, An) =∑K
k=1 |xTuk|2I(x ∈ Bk). If for infinity many values of n, no point of the estimated

regression coefficients (β1, · · · ,βK) were contained in B(M), then

Φ(An, Pn) =
1

n

K∑
k=1

∑
C(i)=k

{(yi − xTi βk)
2 + τ‖xi − µk‖2} >

1

n

∑
C(i)=k?n

(yi − xTi βk?n)2

≥ 1

n

∑
C(i)=k?n

{y2i − 2|yi|‖xi‖‖βk?n‖+ (xTi βk?n)2} ≥ 1

n

∑
C(i)=k?n

‖βk?n‖
2|xTi uk?n|

2 − a‖βk?n‖

≥ 1

K

1

n

K∑
k=1

∑
C(i)=k

‖βk?n‖
2|xTi uk|2 − a‖βk?n‖ =

‖βk?n‖
2

K

∫
φ(x, An)Qn(dx)− a‖βk?n‖

=
‖βk?n‖

2

K

{∫
φ(x, An)(Qn(dx)−Q(dx)) +

∫
φ(x, An)Q(dx)

}
− a‖βk?n‖,

where a is defined in Condition 2. Because
∫
φ(x, An)Q(dx) < ∞ and the sample

paths of Qn can get uniformly closer to Q, the first term
∫
φ(x, An)(Qn(dx)−Q(dx))
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approaches to 0 for large enough n . Therefore according to the definition of wK(Q) in

(10) and Condition 1,

Φ(An, Pn) >
‖βk?n‖

2

K

∫
φ(x, An)Q(dx)− a‖βk?n‖

≥ wK(P )

K
‖βk?n‖

2 − a‖βk?n‖ > Φ(A0, P )

for large enough M . This would also make Φ(An, Pn) > Φ(A0, Pn) infinitely often: a

contradiction.

We use inductive method. The theorem can be proved for K = 1. Assume the

conclusions of the theorem are valid for 1, 2, · · · , K − 1 clusters. For K > 1 clusters,

if some points in An are not eventually contained in B(M), we can obtain a set of

K − 1 or less points by assigning the data belonging to the clusters outside B(M) to

the cluster inside B(M). From previous results, the closed ball B(M) of radius M

and centered at the origin contains at least one point of An for n large enough. Choose

ε > 0 to satisfymK(P )+ε < mK−1(P ). Denote fk(x, y) = (y−xTβk)
2+τ‖x−µk‖2

for k = 1, · · · , K. Without loss of generality, assume (β1,µ1) is inside B(M) and µK

or βK is outsideB(M), then the increasing due to assigning data in clusterK to cluster

1 is at most

En =

∫
f1(x, y)I (f1(x, y) > fK(x, y))Pn(dx, dy)

=

∫
f1(x, y)I (f1(x, y) > fK(x, y)) {I(‖x‖2 + y2 > S)

+I(‖x‖2 + y2 < S)}Pn(dx, dy) (S3)

Since ‖β1‖ < M and ‖µ1‖ < M , the first term of (S3) is smaller than ε/2 when S is
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large enough according to Condition 2. For the second term, we can show that

f1(x, y)I(‖x‖2 + y2 < S)

≤ {(S + SM)2 + τ(‖x‖2 + 2SM +M2)}I(‖x‖2 + y2 < S)

and

fK(x, y)I(‖x‖2 + y2 < S) ≥ {τ(‖x‖2 − 2S‖µK‖+ ‖µK‖2)}I(‖x‖2 + y2 < S).

If µK is outside B(M), the second term of (S3)

∫
f1(x, y)I (f1(x, y) > fK(x, y)) I(‖x‖2 + y2 < S)Pn(dx, dy)

≤
∫
f1(x, y)I

(
(S + SM)2/τ + (M + S)2 > (|µK | − S)2

)
I(‖x‖2 + y2 < S)Pn(dx, dy)

which is 0 when |µK | > C1 = S +
√

(S + SM)2/τ + (M + S)2. Similarly we can

show

f1(x, y)I(‖x‖2 + y2 < S) ≤ {y2 + 2S2M + S2M2 + τ(S +M)2}I(‖x‖2 + y2 < S)

and

fK(x, y)I(‖x‖2 + y2 < S) ≥ (y2 − 2S|xTβK |+ |xTβK |2)I(‖x‖2 + y2 < S).
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If βK is outside B(M), the second term of (S3) is

∫
f1(x, y)I (f1(x, y) > fK(x, y)) I(‖x‖2 + y2 < S)Pn(dx, dy) (S4)

≤
∫
f1(x, y)I

{
S2(M + 1)2 + τ(S +M)2 > (|xTβK | − S)2

}
I(‖x‖2 + y2 < S)Pn(dx, dy)

≤
∫
f1(x, y)I

(
|xTβK | < C2)

)
I(‖x‖2 + y2 < S)

{(Pn(dx, dy)− P (dx, dy)) + P (dx, dy)},

where C2 = S +
√
S2(M + 1)2 + τ(S +M)2. The first term of (S4) approaches to

zero for large enough n. According to Condition 3 the second term of (S4) is smaller

than ε/2 if |βK | > C2/δ0. Therefore from (S3), we get En < ε if either µK or βK is

outside of the closed ball B(R) with R = max(C1, C2/δ0). The set A?n obtained by

deleting from An all points outside B(R) is a candidate for minimizing Φ(·, Pn) over

sets of K − 1 of fewer points; it is therefore beaten by the optimal set Bn of K − 1

points. Thus

Φ(A?n, Pn) ≥ Φ(Bn, Pn), (S5)

which by the inductive hypothesis, converges almost surely to mK−1(P ). If An /∈

B(R) along some subsequence {ni} of values of n, we therefore get

mK−1(P ) = lim Φ(Bni
, Pni

) ≤ lim inf
ni

Φ(A?ni
, Pni

) ≤ lim sup
ni

{Φ(Ani
, Pni

) + Eni
}

≤ lim sup
ni

Φ(Ā, Pni
) + ε = mK(P ) + ε,
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which is a contradiction to mK(P ) + ε < mK−1(P ). Therefore, B(R) contains all the

estimated parameters An when n is sufficiently large.

Now we prove the uniform SLLN. Define EK = {A ∈ B(R) : A contains K

points} the collection of all finite subsets of B(R) which contains K points. For n

large enough, it suffices to search for An ∈ EK . Now we can show that the function

Φ(A,P ) is continuous on EK . The convergence is determined by the Hausdorff metric

H(·, ·). For A,A′ ∈ EK , if H(A,A′) < δ, to each (β,µ) ∈ A, there is a point

(β′(β),µ′(µ)) ∈ A′ such that ‖β′(β) − β‖ < δ and ‖µ′(µ) − µ‖ < δ. Define

f
(β,µ)

(x, y) = (y − xTβ)2 + τ‖x− µ‖2. Then

Φ(A,P )− Φ(A′, P )

=

∫ {
min

(β′
,µ′)∈A′

f
(β′

,µ′)
(x, y)− min

(β,µ)∈A
f
(β,µ)

(x, y)

}
P (dx, dy)

≤
∫

max
(β,µ)∈A

[
f
(β′

(β),µ′(µ))
(x, y)− f

(β,µ)
(x, y)

]
P (dx, dy)

≤
∫
{2R‖x‖2δ + ‖x‖2δ2 + 2‖x‖|y|δ + τ(2‖x‖δ + δ2 + 2Rδ)}P (dx, dy)

≤ 2Raδ + aδ2 + aδ + τ(2aδ + δ2 + 2Rδ), (S6)

which is less than ε if δ is chosen small enough. Here a is defined in (12). The other

inequality needed for proving the continuity is obtained by exchanging the roles of A

andA′. Similarly we can prove the continuity for empirical measure Pn when n is large

enough.

Define Fδ a finite subset of B(R) such that each point of B(R) is within a distance

δ of at least one point of Fδ. Write EK,δ for {A ∈ EK ;A ⊆ Fδ}. Given a A =

{(β1,µ1), · · · , (βK ,µK)} in EK , there exists a A′ = {(β′1,µ′1), · · · , (β′K ,µ′K)} in
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EK,δ with H(A,A′) < δ. Corresponding to each function

φA(x, y) = min
(β,µ)∈A

f
(β,µ)

(x, y),

define two functions

φ̄A(x, y) = min
(β,µ)∈A′

{(|y − xTβ|+ δ1)
2 + τ(‖x− µ‖+ δ1)

2}

φ
A

(x, y) = min
(β,µ)∈A′

{(|y − xTβ| − δ1)2 + τ(‖x− µ‖ − δ1)2}.

The continuity of Φ(A,P ) allows us to choose appropriate δ1 such that

∫
φ
A

(x, y)P (dx, dy) ≤
∫
φA(x, y)P (dx, dy) ≤

∫
φ̄A(x, y)P (dx, dy),

and

∫
φ
A

(x, y)Pn(dx, dy) ≤
∫
φA(x, y)Pn(dx, dy) ≤

∫
φ̄A(x, y)Pn(dx, dy)

when n is large enough. Therefore for any A ∈ EK , we have

∣∣∣∣∫ φAdPn −
∫
φAdP

∣∣∣∣ ≤ max

{∣∣∣∣∫ φ̄AdPn −
∫
φ
A
dP

∣∣∣∣ , ∣∣∣∣∫ φ̄AdP −
∫
φ
A
dPn

∣∣∣∣}
≤
∣∣∣∣∫ φ̄AdP −

∫
φ
A
dP

∣∣∣∣+ max

{∣∣∣∣∫ φ̄AdPn −
∫
φ̄AdP

∣∣∣∣ , ∣∣∣∣∫ φ
A
dPn −

∫
φ
A
dP

∣∣∣∣} .
From the fact that φ̄A, φA are from EK,δ which is a finite set, the second term can be

made less that ε/2 for large enough n. The first term can be made less than ε/2 by
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choosing small enough δ1. This completes the proof of uniform SLLN

sup
A∈Ek
|Φ(A,Pn)− Φ(A,P )| → 0. (S7)

From assumption, we have

Φ(An, Pn) ≤ Φ(Ā, Pn). (S8)

The right hand side Φ(Ā, Pn) → Φ(Ā, P ). Apply uniform SLLN (S7) to the left hand

side, we have Φ(An, Pn) − Φ(An, P ) → 0. Therefore Φ(An, P ) ≤ Φ(Ā, P ) for n

large enough. On the other hand, according to assumption, Φ(An, P ) ≥ Φ(Ā, P ). So

Φ(An, Pn) → Φ(Ā, P ) and An → Ā. This completes the proof of the consistency

for the estimation in the unpenalized framework. By Condition 4 and the fact that

sn →∞, the solution Ân based on the penalized formula (8) will eventually approach

to An and thus to Ā.

Proof of Theorem 2

First we need to prove that the mapA→ Φ(A,P ) has a second derivative. The function

Φ(·, ·) defined in (6) can be equivalently expressed as

Φ(A,P ) =

∫ K∑
k=1

φk(x, y)I(Bk)P (dx, dy)

=
K∑
k=1

∫
φk(x, y)

∏
j 6=k

I(Gkj(x, y) > 0)P (dx, dy).
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Use a 2Kd dimensional vector

∆(A,P ) = {(∆β1
(A,P ),∆µ1(A,P )), · · · , (∆βK(A,P ),∆µK(A,P ))}

to denote the first derivative of Φ(A,P ) over A such that

∆βk(A,P ) ≡ ∂Φ(A,P )

∂βk
=

∫
I(Bk)

∂φk(x, y)

∂βk
P (dx, dy),

∆µk(A,P ) ≡ ∂Φ(A,P )

∂µk

=

∫
I(Bk)

∂φk(x, y)

∂µk

P (dx, dy).

Now take the second derivative with respect to β, we have

∂2Φ(A,P )

∂βk∂βk
=

∫
I(Bk)

∂2φk(x, y)

∂βk∂β
T
k

P (dx, dy)

−
∑
j 6=k

σkj

(
∂φk(x, y)

∂βk

∂φk(x, y)

∂βTk

f(x, y)

|mkj(x, y)|

)
,

∂2Φ(A,P )

∂βk∂βj
= −σkj

(
∂φk(x, y)

∂βk

∂φj(x, y)

∂βTj

f(x, y)

|mkj(x, y)|

)
,

where f(x, y) is the density function of the distribution P (x, y) and σkj is the inte-

gration over the boundary surface between Bk and Bj . Similarly, we have the second

derivative with respect to µ

∂2Φ(A,P )

∂µk∂µk

=

∫
I(Bk)

∂2φk(x, y)

∂µk∂β
T
k

P (dx, dy)

−
∑
j 6=k

σkj

(
∂φk(x, y)

∂µk

∂φk(x, y)

∂µT
k

f(x, y)

|mkj(x, y)|

)
,

∂2Φ(A,P )

∂µk∂µj

= −σkj
(
∂φk(x, y)

∂µk

∂φj(x, y)

∂µT
j

f(x, y)

|mkj(x, y)|

)
.
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The cross term is

∂2Φ(A,P )

∂βk∂µj

= −σkj
(
∂φk(x, y)

∂βk

∂φj(x, y)

∂µT
j

f(x, y)

|mkj(x, y)|

)
.

According to Condition 6, all the integrations exist. This completes the proof that

the map A → Φ(A,P ) has a second derivative. For empirical measure Pn, we can

decompose

Φ(An, Pn) = Φ(An, P ) + Φ(An, Pn − P ). (S9)

Denote rn = ‖v(An) − v(Ā)‖, where v(An) and v(Ā) are vectorized An and Ā.

According to the differentiability of Φ(A,P ), the first term of (S9) can be written as

Φ(An, P ) = Φ(Ā, P ) + (v(An)− v(Ā))T∆(Ā, P )

+
1

2
(v(An)− v(Ā))TΓ(v(An)− v(Ā)) + o(r2n). (S10)

The second term in (S10) vanishes because Ā minimizes Φ(A,P ). Here Γ is a 2Kd×

2Kd matrix representing the second order derivative of Φ(A,P ) over A evaluated at

Ā. Define Xn = n1/2(Pn − P ) as the empirical process associated with the empirical

measure Pn. The second term of (S9) can be written as

Φ(An, Pn − P )

= n−1/2Φ(An, Xn)

= n−1/2[Φ(Ā,Xn) + (v(An)− v(Ā))T∆(Ā,Xn) + o(rn)]. (S11)
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Define vector Z(n) = −∆(Ā,Xn) which has an asymptotic normal distribution with

mean vector

−∆(Ā, P ) = 0

and variance matrix V is

V = P{∆(Ā, ·)∆(Ā, ·)T}. (S12)

Substitute (S9), (S10) and (S11) into (8), we have

W (Ân, Pn) = W (Ā, Pn)− n−
1
2 Z(n)T (v(Ân)− v(Ā))

+
1

2
(v(Ân)− v(Ā))TΓ(v(Ân)− v(Ā))

+
K∑
k=1

d∑
j=1

λn
|β̂(n)
kj | − |β̄kj|
|β̃(n)
kj |

+ op(n
− 1

2 rn) + op(r
2
n)

≤ W (Ā, Pn). (S13)

From Theorem 1, we have v(Ân)− v(Ā) = o(1) and rn = o(1). Therefore

Op(n
− 1

2 rn) +Op(r
2
n) + op(n

− 1
2 rn) + op(r

2
n) +

∑
(k,j)∈B

λn
|β̂(n)
kj | − |β̄kj|
|β̃(n)
kj |

≤ 0

which leads to

Op(n
− 1

2 rn) +Op(r
2
n) +Op(λnrn) ≤ 0.
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From the fact that n
1
2λn → 0, we have rn = Op(n

− 1
2 ). For (k, j) ∈ Bc, β̄kj = 0,

β̃
(n)
kj = Op(n

− 1
2 ), we have λn

β̃
(n)
kj

= O(n
1
2λn). Assume β̂(n)

kj 6= 0, taking the derivative

over β̂(n)
kj on both side of (S13) gives

∂W (Ân, Pn)

∂β̂
(n)
kj

= −n−
1
2Z

(n)
kj + Γkj(β̂

(n)
kj − β̄kj) +

λn

β̃
(n)
kj

sign(β̂
(n)
kj ) + op(n

− 1
2 )

= n−
1
2 [Op(1) +Op(1) +Op(nλn)sign(β̂

(n)
kj )].

Since nλn →∞, the third term is bigger than the first two terms, this is a contradiction

to Karush-Kuhn-Tucker condition, thus β̂(n)
kj = 0 for all (k, j) ∈ Bc. This proves the

oracle property of the estimator.
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