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Abstract: We develop a new framework for modeling the impact of sub-cluster

structure of data on regression. The proposed framework is specifically designed

for handling situations where the sample is not homogeneous in the sense that the

response variables in different regions of covariate space are generated through dif-

ferent mechanisms. In such situation, the sample can be viewed as a composition

of multiple data sets each of which is homogeneous. The traditional linear and

general nonlinear methods may not work very well because it is hard to find a

model to fit multiple data sets simultaneously. The proposed method is flexible

enough to ensure that the data generated from different regions can be modeled

using different functions. The key step of our method incorporates the k-means

clustering idea into the traditional regression framework so that the regression and

clustering tasks can be performed simultaneously. The k-means clustering algo-

rithm is extended to solve the optimization problem in our model that groups the

samples with similar response-covariate relationship together. General conditions

under which the estimation of the model parameters is consistent are investigated.

By adding appropriate penalty terms, the proposed model can conduct variable

selection to eliminate the uninformative variables. The conditions under which the

proposed model can achieve asymptotic selection consistency are also studied. The

effectiveness of the proposed method is demonstrated through simulations and real

data analysis.

Key words and phrases: Asymptotic consistency, heterogeneous problem, k-means

clustering, LASSO, regression.

1. Introduction

Our method is motivated by a collection of problems as illustrated by a

simulated example in which x ∈ R20, y ∈ R and y only depends on the first co-

ordinate x1. Figure 1 shows the dependence of y on x1. Clearly x can be divided

into three regions according to x1, and the relationships between y and x are

different in different regions. This situation emerges often in practice when the

response variables depend on the covariates via a number of distinct mechanisms,

with different mechanisms applying in different regions of the feature space. For

example, breast cancer data reveal distinct genomic sub-types and different sub-

types display different clinical outcomes (Parker et al. (2009)). Our method can
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Figure 1. Scatter plots of y versus x1 for a simulated example with three
different regression curves shown using solid lines. Here the covariate x ∈
R20 and x1 is the first coordinate. Note the proposed method gives a major
improvement in performance.

be particularly applied to the analysis of the quantitative structure-activity re-

lationship (QSAR) in which the structural characteristics of the polychlorinated

biphenyl influence their potency and mechanism of action (Andersson (2000)).

Section 5 applies our method to a QSAR example.

In such situations, the traditional linear and general nonlinear methods may

not work well. A linear model was used to fit these data, see the left panel of

Figure 1. The middle panel of Figure 1 shows a full quadratic fit. Our goal is to

fit the data drawn from different regions using different functions, the right panel

of Figure 1 results from fitting our model. It can not only improve the goodness

of the fit but also find distinct sub-groups within the data set.

We incorporate k-means clustering into the traditional regression framework

such that the regression and clustering tasks can be performed simultaneously.

Assume that the feature space contains K regions and we conduct K linear

regressions, one for each region. Our method is especially useful for high dimen-

sional data with distinct sub-group structures. If there is only one covariate, as

in Figure 1, it is easy to find the sub-structure through visualization and to apply

traditional nonparametric techniques, such as piecewise splines, to improve the

goodness of fit. In high dimensions, it is hard to identify the data structure.

Traditional nonparametric methods are mainly designed for estimating the un-

known function of one or a few variables. When y is an unknown function of

many variables, our proposed method is flexible and appealing.

Aside from inhomogeneous data with potential sub-cluster structures that

are the main motivation here, our method can also be applied when the de-

pendence between the response and input variables is not linear. Our method

can effectively partition the feature space into approximately linear regions and

replace the nonlinear function with a linear approximation in each region (see
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Simulations 3 and 4 in Section 4.1). In contrast to general nonlinear methods, our

method has a much simpler function space and thus retains most of the good par-

simony of linear methods. The advantages of our method over general nonlinear

methods include less tendency for overfitting in high dimensional settings, and

the capability of variable selection, since its coefficients have clear interpretation

as in the linear case.

A new classification method, Bi-Dimensional Discrimination, has been de-

veloped recently (Huang, Liu and Marron (2012)) that shares the same spirit.

It generalizes linear classification from one hyperplane to two or more. Our

framework is more general and applies to both classification and regression.

The remainder of this article is organized as follows. Section 2 describes the

proposed penalized composite regression model and introduces its computational

algorithm. Some asymptotic properties of our method are provided in Section 3.

We test the performance of our method on simulated data in Section 4, and on

real data in Section 5. The article concludes with a discussion in Section 6. The

technical conditions and details of proofs are relegated to the appendix and the

online supplementary material.

2. Method

2.1. Formulation

Suppose we are given a training dataset consisting of n observations (xi, yi)

for i = 1, . . . , n. Here xi ∈ Rd represents an input vector, and yi ∈ R denotes the

corresponding response value. Assume that each (xi, yi) is an independent ran-

dom vector distributed according to some unknown distribution function P (x, y).

To estimate the relationship between y and x, the commonly used LASSO pe-

nalized linear regression (Tibshirani (1996)) solves the optimization problem

min
β

{
1

n

n∑
i=1

(yi − xT
i β)

2 +

d∑
j=1

pλn(|βj |)
}
, (2.1)

where β = (β1, . . . , βd)
T ∈ Rd and pλn(·) is a penalty function indexed by the

tuning parameter λn. We propose a composite model that uses different linear

expressions to fit the data drawn from different regions in feature space. This

kind of idea has appeared in computer science works (Stanforth, Kolossov and

Mirkin (2007); Manwani and Sastry (2012)), designed solely for clustering with-

out considering statistical inference and feature selection. We extend it to sparse

statistical inference and study its various asymptotic properties.

In the composite model, we divide the feature space into K domains and ap-

ply a linear function in each domain. Consider linear functions βk, k = 1, . . . ,K,

and the problem
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Figure 1. Scatter plots of y versus x1 for a simulated example with three
different regression curves shown using solid lines. Here the covariate x ∈
R20 and x1 is the first coordinate. Note the proposed method gives a major
improvement in performance.
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lationship (QSAR) in which the structural characteristics of the polychlorinated

biphenyl influence their potency and mechanism of action (Andersson (2000)).

Section 5 applies our method to a QSAR example.
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not work well. A linear model was used to fit these data, see the left panel of

Figure 1. The middle panel of Figure 1 shows a full quadratic fit. Our goal is to

fit the data drawn from different regions using different functions, the right panel

of Figure 1 results from fitting our model. It can not only improve the goodness

of the fit but also find distinct sub-groups within the data set.

We incorporate k-means clustering into the traditional regression framework

such that the regression and clustering tasks can be performed simultaneously.

Assume that the feature space contains K regions and we conduct K linear

regressions, one for each region. Our method is especially useful for high dimen-

sional data with distinct sub-group structures. If there is only one covariate, as

in Figure 1, it is easy to find the sub-structure through visualization and to apply

traditional nonparametric techniques, such as piecewise splines, to improve the

goodness of fit. In high dimensions, it is hard to identify the data structure.

Traditional nonparametric methods are mainly designed for estimating the un-

known function of one or a few variables. When y is an unknown function of
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are the main motivation here, our method can also be applied when the de-
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can effectively partition the feature space into approximately linear regions and
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Simulations 3 and 4 in Section 4.1). In contrast to general nonlinear methods, our

method has a much simpler function space and thus retains most of the good par-

simony of linear methods. The advantages of our method over general nonlinear

methods include less tendency for overfitting in high dimensional settings, and

the capability of variable selection, since its coefficients have clear interpretation

as in the linear case.

A new classification method, Bi-Dimensional Discrimination, has been de-

veloped recently (Huang, Liu and Marron (2012)) that shares the same spirit.

It generalizes linear classification from one hyperplane to two or more. Our

framework is more general and applies to both classification and regression.

The remainder of this article is organized as follows. Section 2 describes the

proposed penalized composite regression model and introduces its computational

algorithm. Some asymptotic properties of our method are provided in Section 3.

We test the performance of our method on simulated data in Section 4, and on

real data in Section 5. The article concludes with a discussion in Section 6. The

technical conditions and details of proofs are relegated to the appendix and the

online supplementary material.

2. Method

2.1. Formulation

Suppose we are given a training dataset consisting of n observations (xi, yi)

for i = 1, . . . , n. Here xi ∈ Rd represents an input vector, and yi ∈ R denotes the

corresponding response value. Assume that each (xi, yi) is an independent ran-

dom vector distributed according to some unknown distribution function P (x, y).

To estimate the relationship between y and x, the commonly used LASSO pe-

nalized linear regression (Tibshirani (1996)) solves the optimization problem

min
β
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1
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n∑
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2 +
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pλn(|βj |)
}
, (2.1)

where β = (β1, . . . , βd)
T ∈ Rd and pλn(·) is a penalty function indexed by the

tuning parameter λn. We propose a composite model that uses different linear

expressions to fit the data drawn from different regions in feature space. This

kind of idea has appeared in computer science works (Stanforth, Kolossov and

Mirkin (2007); Manwani and Sastry (2012)), designed solely for clustering with-

out considering statistical inference and feature selection. We extend it to sparse

statistical inference and study its various asymptotic properties.

In the composite model, we divide the feature space into K domains and ap-

ply a linear function in each domain. Consider linear functions βk, k = 1, . . . ,K,
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min
C(·),β1,...,βK

[
1

n

n∑
i=1

{
(yi − xT

i βC(i))
2 + τ∥xi − µC(i)∥2

}
+

K∑
k=1

d∑
j=1

pλn(|βkj |)
]
,

(2.2)

where τ > 0 is a fixed constant, ∥ · ∥ is the standard Euclidean norm, µk is

the centroid of the kth domain, and C(·) : {1, . . . , n} → {1, . . . ,K} is a cluster

assignment function with C(i) ∈ {1, . . . ,K} representing the cluster membership

for the ith subject. The second term here enforces proximity of points in the

same cluster that may have the same relationship with the response variable.

This approach can also be useful if the response variable y depends on x in

a nonlinear fashion. It effectively partitions the feature space into approximately

linear regions and replaces the nonlinear function with a linear approximation in

each region. If K = 1, (2.2) reduces to (2.1). As K increases, more sub-cluster

structures are discovered and the model approaches a general nonlinear model.

The first term in (2.2) measures the within-cluster residual sum of squares

(RSS), the second measures the within-cluster distance from each observation

to its corresponding cluster center in feature space. The tuning parameter τ

decides relative weight of the two terms. One is not restricted to quadratic loss,

other choices include L1 loss, Huber’s loss (Huber (1964)), Tukey’s bisquare, and

Hampel’ ψ, among others.

2.2. Penalty function

The regularization term in (2.2) can be the LASSO penalty pλn(|βkj |) =

λn|βkj | (Tibshirani (1996)) or the adaptive LASSO penalty pλn(|βkj |) = λnwkj

|βkj | (Zou (2006)), where λn is tuning parameter and wkj (k = 1, . . . ,K; j =

1, . . . , d) are known weights. We use the adaptive LASSO penalty here and set

ŵkj = 1/|β̃kj |, where β̃kj is an estimate of βkj when solving

min
C(·),β1,...,βK

[
1

n

∑
i=1

{
(yi − xT

i βC(i))
2 + τ∥xi − µC(i)∥2

}]
. (2.3)

If we want to treat each direction in a grouped manner, we can apply the group

LASSO penalty (Yuan and Lin (2006)) or the adaptive group LASSO penalty

(Wang and Leng (2008)). We can also use other penalty functions such as the

Lp-penalty with 0 < p < 1 (Frank and Friedman (1993)), or the SCAD penalty

(Fan and Li (2001)).

2.3. Computational algorithm

For (2.2), we adopt an iterative scheme as in solving the k-means clustering

problem. We update (βk,µk) and C(i) separately at each iteration, holding the

other one fixed. At the t+ 1-th iteration, when (β
(t)
k ,µ

(t)
k ) are fixed, C(t+1)(i) =
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argmink{(yi − xT
i β

(t)
k )2 + τ∥xi − µ

(t)
k ∥2}. When C(i+ 1) is fixed, µk is updated

as the mean of the updated kth cluster and

β
(t+1)
k = argminβk

{
1

n

∑

C(t+1)(i)=k

(yi − xT
i βk)

2 + λn

d∑
j=1

ŵkj |βkj |
}
. (2.4)

This can be solved using the coordinate descent algorithm as described in Zou

(2006).

The details of the proposed algorithm are as follows.

Step 1. Obtain initial estimates of the cluster membership by applying the stan-

dard k-means clustering algorithm on the data X = (x1, . . . ,xn)
T .

Step 2. Using the initial estimates of the cluster membership, obtain the cluster

means and regression coefficients for each cluster by minimizing (2.4).

Step 3. Conditional on the given coefficients for each cluster, find the cluster

assignment.

Step 4. Reiterate Steps 2 and 3 until all cluster memberships are unchanged.

As with k-means clustering, the optimization for (2.2) is not a convex prob-

lem, so results depend on the initial cluster membership generated by the stan-

dard k-means algorithm. To overcome the sensitivity to initialization, the stan-

dard k-means clustering is randomly done multiple times and the one which gives

the smallest final objective value is selected.

2.4. Prediction

Our model can predict the response value for any given new input, but the

prediction process is complicated due to the fact that there is more than one linear

function involved. We use a classification algorithm to estimate the cluster label

en route to the prediction, as follows

Step 1. Use the training data to build a classifier on the feature space. Many clas-

sification algorithm can be used at this stage, for example, the multiclass

Support-Vector-Machine (Lee, Lin and Wahba (2004)) or the multiclass

Distance-Weighted-Discrimination (Huang et al. (2013)).

Step 2. Predict to which cluster the test sample belongs based on the classifier

created in Step 1.

Step 3. Compute the response value for the test sample using the linear function

corresponding to the cluster label predicted from Step 2.
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sification algorithm can be used at this stage, for example, the multiclass
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2.5. Related work

Other nonparametric approaches in the literature also have the potential
to address the problem as shown by Figure 1. Piecewise polynomial and spline
methods can fit the data where the sample is inhomogeneous, but they only work
for low dimensional situations (Wahba (1983); Heckman (1986); Chen (1988);
Speckman (1988); Cuzick (1992); Hastie and Loader (1993)). Classification and
Regression Trees (CART) and more advanced tree methods make use of the
assumption that nearby observations should have the same relationship with the
response (Breiman et al. (1984)), but are less flexible for general inhomogeneous
structures.

The change-point detection methods aim to identify changes at unknown
times and to estimate the location of changes in stochastic processes (Page (1954);
Yao (1993a,b); Ombao, von Sachs and Guo (2005); Aue et al. (2009); Muggeo
(2008); Jeng, Cai and Li (2010); Fryzlewicz and Rao (2014); Frick, Munk and
Sieling (2014), among many others). State of the art work on change-point detec-
tion, e.g. Fryzlewicz (2014), can deal with high dimensions, and the number of
change points can be estimated automatically (Schroeder and Fryzlewicz (2013)).

Khalili and Chen (2007) proposed a finite mixture of regression (FMR)
method to model data arising from heterogeneous populations. There, the con-
ditional density function of y given x has the form

f(y;x,Ψ) =
K∑
k=1

πkg(y;x
Tβk, ϕk), (2.5)

where g(y;xTβk, ϕk) is a parametric density function depending on linear predic-
tor xTβk and dispersion parameter ϕk. The model allows the response variable
to follow a mixture distribution and the contributions of covariates to the re-
sponse variable vary from one component to another, but the same πk and βk

are used over the entire x region.

3. Asymptotic Properties

3.1. Asymptotic estimation consistency

Assuming the number of clusters K is pre-specified, we examine the asymp-
totic consistency of the parameters in our model as the number of the samples
goes to infinity. Strong consistency of the standard k-means clustering was es-
tablished in Pollard (1981), who specified a set of sufficient conditions for the em-
pirical cluster centers to converge to the true cluster centers almost surely. Sun,
Wang and Fang (2012) studied the consistency of a penalized k-means clustering
model in which an adaptive penalized term is added to the standard k-means
clustering formula. Here we employ similar techniques to study the consistency
of the composite regression problem (2.2).
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Let (x1, y1), . . . , (xn, yn) be independent and identically distributed observa-

tions from an unknown joint distribution P (x, y), and let Pn(x, y) be the associ-

ated empirical measure. Let A = {(β1,µ1), . . . , (βK ,µK)} be a finite subset of

R2d containing K points, and take

gA(x, y) = min
(βk,µk)∈A

{(y − xTβk)
2 + τ∥x− µk∥2}.

For any given probability measure Ω(·, ·) on Rd ×R, let

Φ(A,Ω) =

∫
gA(x, y)Ω(dx, dy). (3.1)

Write AK = {A : A contains K points in R2d} and take

mK(Ω) = inf
A∈AK

{Φ(A,Ω)}. (3.2)

Let Ā(K)={(β̄1, µ̄1), . . . , (β̄K , µ̄K)} denote the subsets that satisfy Φ(Ā(K), P )

= mK(P ).

We choose the adaptive LASSO penalty pλn(|βkj |) = λn|βkj |/|β̃kj |, where β̃kj
is the solution of (2.3). Regarding (2.2) as a function of regression coefficients,

cluster centers and empirical measure Pn, the penalized composite regression

finds a set A = {(β1,µ1), . . . , (βK ,µK)) to minimize

W (A,Pn) = Φ(A,Pn) + λn

K∑
k=1

d∑
j=1

|βkj |
|β̃kj |

(3.3)

over A ∈ AK . Once A is fixed, the cluster assignment of each subject is also

fixed. Let Ân(K) = {(β̂(n)

1 , µ̂
(n)
1 ), . . . , (β̂

(n)

K , µ̂
(n)
K )} be the estimated coefficients

solving (3.3).

Theorem 1. If Conditions 1−4 in Appendix A hold, and n1/2λn → 0, then

Ân(K) → Ā(K) almost surely.

3.2. Asymptotic selection consistency

We study the asymptotic selection property of our model, investigating

whether, under proper choice of λn, the uninformative variables in the regression

can be eliminated with probability tending to one as n goes to infinity.

Denote the informative variable set with B: all index pairs (k, j), k =

1, . . . ,K and j = 1, . . . , d, such that β̄kj ̸= 0; and the informative variable set

with Bc: all index pairs (k, j) such that β̄kj = 0.

Theorem 2. If Conditions 1−6 in Appendix A hold, nλn → ∞, and n1/2λn → 0,

P
(
β̂
(n)
kj = 0

)
→ 1 for any (k, j) ∈ Bc.
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2 + τ∥x− µk∥2}.

For any given probability measure Ω(·, ·) on Rd ×R, let

Φ(A,Ω) =

∫
gA(x, y)Ω(dx, dy). (3.1)

Write AK = {A : A contains K points in R2d} and take

mK(Ω) = inf
A∈AK

{Φ(A,Ω)}. (3.2)
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1 , µ̂
(n)
1 ), . . . , (β̂

(n)
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(n)
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P
(
β̂
(n)
kj = 0

)
→ 1 for any (k, j) ∈ Bc.
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The assumptions on λn here are the same as in Zou (2006), except for a

scale 1/n. The condition nλn → ∞ is the minimum amount of penalization

needed for variable selection, while n1/2λn → 0 ensures consistent estimation of

large coefficients. The data dependent ŵkj = 1/|β̃kj | are the key ingredient: the

sample size grows, the corresponding weights approach infinity for zero coefficient

whereas they converge to a finite constant for nonzero coefficient.

In the proofs of consistency, we treat τ ≥ 0 as a fixed parameter. The

parameter λn controls the variable selection, but changing τ does not change the

consistency result. Empirically τ has a large impact on the results and it needs

to be well tuned in a numerical study.

4. Simulation

We carried out some Monte Carlo simulations to study the performance of

our method in comparison with other approaches. We took K fixed and treated

τ and λn as the tuning parameters. We considered K = 3 and K = 4. Each

simulation included a training set, a tuning set, and a test set with sample

sizes ntrain = 200, ntuning = 200 and ntest =1,000, respectively. To analyze the

performance of different methods, we repeated each example 100 times.

In each simulation, we first used the training and tuning sets to select the

optimal tuning parameters τ and λn. To achieve this, we did a two-dimensional

grid search. The range for log λn was from -5 to 5. For τ , we first rescaled the sum

of square terms at (2.2) to make them comparable–we divided the first term by

the estimated residual sum of squares from a single linear regression, then chose

the range for the relative weight τ/(1+τ) from 0 to 1. For each value, we applied

our method to the training set to get the estimate of the cluster label for each

data point, as well as the linear regression coefficients for each cluster, using the

algorithm described in Section 2.3. Then based on the estimated cluster label,

we constructed a classifier in the feature space x ∈ Rd using the multiclass SVM

method that allowed us to predict the cluster label for each tuning data point.

The response value y for each tuning data point was computed based on the

regression formula estimated for the corresponding cluster to which it belonged.

The criterion we used for evaluating the performance of a model was based on

the distance between the predicted y value and the corresponding true y value,√∑ntuning

i=1 (yi − ŷi)2/ntuning, where ŷi is the estimated value for the i-th tuning

point. We calculated this distance for each τ and λn, and selected the τ and

λn arrives the smallest distance as the optimal tuning parameters used in the

prediction of the response value y for the test set.

For comparison, we include the results from the LASSO method, and from a

regularized full quadratic model with L1 penalty. It is of interest to compare our

method with CART and change point detection methods. For CART, we used the

REGRESSION IN HETEROGENEOUS PROBLEMS 9

R package tree; for change point, we used the R package segmented. In segmented,

we took both the “segmented” variables and the number of breakpoints from their

true values. For example, in Simulation 1, we input the “segmented” variable as

x1, and the number of breakpoints as three.

4.1. Scenario I: three clusters K = 3

In the first scenario, we took the response value y to depend only on the first

covariate, y = f(x1) + ϵ, where ϵ is standard normal. Here x1 was drawn from a

uniform [0,18] distribution and the remaining d− 1 variables were sampled from

a standard normal. We considered four simulation settings.

• Simulation 1 (d = 20, upper left panel of Figure 2):

f(x1) =




2x1 0 ≤ x1 ≤ 6,

0 6 < x1 ≤ 12,

−5 + x1 12 < x1 ≤ 18.

• Simulation 2 (d = 100, upper right panel of Figure 2):

f(x1) =




x1 0 < x1 ≤ 6,

12− x1 6 < x1 ≤ 12,

−12 + x1 12 < x1 ≤ 18.

(4.1)

• Simulation 3 (d = 20, lower left panel of Figure 2):

f(x1) =
10 exp(0.5x1)

1 + exp(0.5x1)
.

• Simulation 4 (d = 20, lower right panel of Figure 2):

f(x1) =
10 exp(x1)

1 + exp(x1)
.

Table 1 lists the normalized test errors for each simulation setting using

different methods. For Simulation 1, CART is best, and for the other three sim-

ulations, change point is best. Our proposed method, Composite, is close to best

for all simulation settings. The performances from the the linear and quadratic

methods are poor. The change point method does well in most of the situations

because of the right choice for the “segmented” variable. The current version of

segmented package cannot handle situations where all d variables are considered

as the “segmented” variables, it crashes or takes forever to run. Fryzlewicz (2014)

developed a sparsed-version change point method that can do variable selection

but we did not find an existing R package.

Figure 2 shows the scatter plots and the predicted curves using the different

methods for the simulated test example under different settings. Clearly, the
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segmented package cannot handle situations where all d variables are considered

as the “segmented” variables, it crashes or takes forever to run. Fryzlewicz (2014)

developed a sparsed-version change point method that can do variable selection

but we did not find an existing R package.
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Table 1. Summary table of the normalized test error
√∑ntest

i=1 (yi − ŷi)2/ntest

over 100 replications based on different methods for Simulations 1−4. The
mean and the standard error (in parenthesis) are reported.

LASSO Quadratic CART Change Point Composite

Simulation 1 4.52(0.01 ) 4.19(0.01 ) 1.53(0.019) 2.73(0.11 ) 1.8 (0.05 )
Simulation 2 2.82(0.02 ) 32.14(2.93 ) 1.36(0.01 ) 1.23(0.01 ) 1.30(0.01 )
Simulation 3 1.34(0.004) 1.42(0.005) 1.17(0.004) 1.12(0.005) 1.14(0.008)
Simulation 4 1.88(0.005) 2.00(0.007) 1.15(0.002) 1.12(0.007) 1.14(0.007)

Figure 2. Scatter plots of y versus x1 for four simulated test examples.
Predicted curves using the Composite, Linear, and Quadratic methods are
shown.

estimated curves from the Composite method are much closer to the true points

than both linear and quadratic methods.

4.2. Scenario II: four clusters K = 4

In the second scenario, we took the response variable y to depend on the first

two covariates, y = f(x1, x2) + ϵ with ϵ being standard normal. In Simulation 5,

x1 and x2 were drawn from a uniform [0,12] distribution and the remaining d−2
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Table 2. Summary table of the normalized test error over 100 replications
based on different methods for Simulations 5-6. The mean and the standard
deviation (in parenthesis) are reported.

LASSO Quadratic CART Change Point Composite

Simulation 5 2.79(0.008) 1.32(0.004) 1.76(0.02 ) 1.06(0.003) 1.21(0.008)
Simulation 6 2.71(0.008) 2.64(0.007) 2.08(0.034) 2.54(0.008) 1.09(0.008)

variables were sampled from a standard normal. In Simulation 6, x1 and x2 were

drawn from a uniform [-5,5] distribution and the remaining 18 variables were

sampled from a standard normal. We had f(x1, x2) change in the coordinate

directions in Simulation 5, and in a rotated direction in Simulation 6.

• Simulation 5 (d = 20)

f(x1, x2) =




x1 + x2 0 ≤ x1 ≤ 6 & 0 ≤ x2 ≤ 6,

12 + x1 − x2 0 ≤ x1 ≤ 6 & 6 < x2 ≤ 12,

12− x1 + x2 6 < x1 ≤ 12 & 0 ≤ x2 ≤ 6,

24− x1 − x2 6 < x1 ≤ 12 & 6 < x2 ≤ 12.

• Simulation 6 (d = 20)

f(x1, x2) =

{
10− x1 − x2 x1 + x2 ≥ 0,

10 + x1 + x2 x1 + x2 ≤ 0.

The performances of the different methods for Simulations 5 and 6 are sum-

marized in Table 2. Our proposed Composite method delivered superior results

against the other methods in terms of the test errors for Simulation 6. The poor

performance of both CART and change point here is because they are designed

to split in coordinate directions. In Simulation 5, change point is the best and

our method is the second best, we take the “segmented” variables using the true

variables x1 and x2, but in practice they are not known.

4.3. Variable selection

To study variable selection and interpretability, we show in Figure 3 the

relative contributions of each variable considered in the Composite method for

Simulation 2. Figure 3 indicates that our method correctly picks the first variable.

Table 3 lists the estimated coefficients for the intercept and first variable of the

three linear regressions seen in the Composite method. They are close to the

true values. We also studied the variable selection property of our method for

the other simulation settings in both scenarios. The results are similar and not

reported here.
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The performances of the different methods for Simulations 5 and 6 are sum-

marized in Table 2. Our proposed Composite method delivered superior results

against the other methods in terms of the test errors for Simulation 6. The poor

performance of both CART and change point here is because they are designed

to split in coordinate directions. In Simulation 5, change point is the best and

our method is the second best, we take the “segmented” variables using the true

variables x1 and x2, but in practice they are not known.

4.3. Variable selection

To study variable selection and interpretability, we show in Figure 3 the

relative contributions of each variable considered in the Composite method for

Simulation 2. Figure 3 indicates that our method correctly picks the first variable.

Table 3 lists the estimated coefficients for the intercept and first variable of the

three linear regressions seen in the Composite method. They are close to the

true values. We also studied the variable selection property of our method for
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reported here.
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Figure 3. The averages, shown as solid lines with ± 2 standard deviations
shown as dotted lines, over 100 replications of the absolute values of the
regression coefficients for the regression functions in Simulation 2.

Table 3. Summary table of the estimated coefficients for the first variable
over 100 replications based on the Composite method for Simulation 2.

Intercept 1 Slope 1 Intercept 2 Slope 2 Intercept 3 Slope 3

True Value 0 0.89 12 -1 -12 1
Mean 0.48 0.88 7.54 -0.44 -8.56 0.78

Standard Error (1.34) (0.11) (1.25) (0.19) (1.77) (0.13)

5. A Real Data Example

We applied the proposed composite regression method to the analysis of

quantitative structure-activity relationships (QSAR) used in the chemical and

biological sciences. QSAR models study the relationship between chemical struc-

tures and biological activity, and use it to predict the activities of new chemicals.

The predictors consist of physico-chemical properties or theoretical molecular de-

scriptors of chemicals and the response-variable is a biological activity. The data

consists of dihydrofolate reductase inhibitors and have been prepared by Klebe

and Abraham (1999) and studied by Sutherland, OBrien and Weaver (2004).

The response variable is called pIC50 values for rat liver enzyme ranging from

3.3 to 9.8. The predictors include the connection table of molecules, the physico-

chemical properties of molecules in their bio-active conformation, as well as the

traditional molecular descriptors, such the χ indices, counts of rotatable bonds,

and molecular weight. After removing the missing data and highly correlated

variables, the final data set used in the analysis included 273 subjects and 44

dimensions.
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Table 4. Summary table of the test errors for the QSAR data over 100
random splitting based on different methods.

LASSO Quadratic CART FMR Composit Composit
K = 2 K = 3

Mean 0.629 0.741 0.691 0.644 0.609 0.646
S. E. 0.006 0.014 0.013 0.013 0.008 0.008

We studied the generalization properties of our method using cross-validation.

The data set was randomly split into a training set (80%), a tuning set (10%),

and a test set (10%). The tuning set is used for the selection of the tuning pa-

rameters τ and λn. The division of the data was randomly repeated 100 times

and Table 4 reports the summary of the test errors over 100 replications for

different methods. Here we considered three options for the composite model

with K = 1, 2, 3, respectively. The linear model is equivalent to the composite

model with K = 1. We did not apply the change point method here because the

package cannot run for situations with more than one “segmented” variable. We

included FMR method with K = 2 for comparison. From Table 4, the composite

model with K = 2 gives the lowest test error followed by the LASSO and FMR

methods. The worst two methods are Quadratic and CART. The results indicate

that it is appropriate to divide the data into two groups and to apply separate

linear regressions to each group.

We applied the composite model with K = 2 to the entire data set and

chose the tuning parameters τ and λn to be those which gave the smallest BIC

value
∑n

i=1(yi − xT
i β̂Ĉ(i))

2/(nσ̂2) + ν̂ log(n), where ν̂ is the estimated model de-

gree of freedom, equal to the total number of nonzero coefficients. Our method

automatically divided the data into two clusters including 140 and 133 sam-

ples. Here 17 active variables contributed to the regression for the first group:

S aaCH, S sCl, N aasC, IC, BIC, Rotlbonds, Hbond.acceptor, AlogP98, RadOf-

Gyration, Jurs.PPSA.1, Jurs.PNSA.1, Jurs.RNCS, Shadow.XZ, Shadow.XYfrac,

Shadow.XZfrac, Shadow.nu, and Shadow.Ylength, while 10 active variables

contributed to the regression for the second group: Order, S aasC, IC, BIC,

Hbond.donor, SC.3 C, Jurs.PNSA.1, Jurs.PNSA.2, Jurs.FPSA.3, and Jurs.RPCS.

We applied our method to several other QSAR data sets and obtained some sim-

ilar results.

6. Conclusion

This article proposes a generalization of the linear regression with high flex-

ibility and data adaptability. The proposed approach is able to automatically

divide the data into multiple regions and apply different regression models in
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Gyration, Jurs.PPSA.1, Jurs.PNSA.1, Jurs.RNCS, Shadow.XZ, Shadow.XYfrac,

Shadow.XZfrac, Shadow.nu, and Shadow.Ylength, while 10 active variables

contributed to the regression for the second group: Order, S aasC, IC, BIC,

Hbond.donor, SC.3 C, Jurs.PNSA.1, Jurs.PNSA.2, Jurs.FPSA.3, and Jurs.RPCS.

We applied our method to several other QSAR data sets and obtained some sim-

ilar results.

6. Conclusion

This article proposes a generalization of the linear regression with high flex-

ibility and data adaptability. The proposed approach is able to automatically

divide the data into multiple regions and apply different regression models in
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different regions. The inclusion of the penalty terms allows us to perform vari-

able selection simultaneously. It is shown that such a technique has an oracle

property. Numerical studies show that our method outperforms some commonly

used methods in certain situations where the data are heterogeneous.

In most real applications, the number of clusters of the samples K is not

known. A major challenges in clustering analysis is to estimate the number of

clusters. The main difficulty is the absence of an objective measure to compare

the quality of various clusterings of the same dataset. A number of methods have

been proposed for estimating the number of clusters, see Milligan and Cooper

(1985); Gordon (1999); Sugar (1998); Sugar, Lenert and Olshen (1999); Tibshi-

rani, Walther and Hastie (2001); Tibshirani and Walther (2005), among many

others. It is difficult to find a method that works uniformly better in most

situations.

Our composite model includes the response variables and thus enables us to

directly assess the performance of different methods by evaluating how close the

predicted response value is to the true value. In practice we can also treat K

as tuning parameter in addition to to τ and λn. However, a three-dimensional

search is computationally expensive. For this reason, we here assume the number

of clusters K fixed, and treat different K as different models. Our method was

designed for situations in which K is not too large (typically not more than 5).

If K is large, the general nonlinear model is more appropriate.

The main computational burden for the current algorithm is from solving

LASSO problem (2.4) in Step 2. We currently use coordinate descent algo-

rithm that works fine for moderately high dimension. For a simulated Example

2 with n = 200, d = 100, and K = 3 in a computer with RAM 16GB and

processor 3.5GHz, it took less than 2 minutes to run the analysis, including

the two-dimension grid search for the tuning parameters. In order to apply to

high-dimensional data, we need to improve the LASSO solver for (2.4) using fast

algorithms such as recently developed iterative shrinkage and thresholding algo-

rithm (Beck and Teboulle (2009)) or alternative direction method of multipliers

algorithm (Tseng (1991)).

As pointed out by one reviewer, in many applications, different regression

relationships cannot be well separated based on feature space at all. For example,

subjects may react differently to the dosage increase of certain drug, resulting

in several different regression lines that may or may not cross each other. To

deal with such situations, we can extend the proposed method to more general

mixture regression setups. One possible solution is to split feature space into M

regions and extend the FMR method (2.5) to allow for different πk and βk in

different regions. If K = 1, this general model reduces to our composite model;

if M = 1, it reduces to the FMR model (2.5). It is quite challenging to study

this general model for theoretical properties and numerical implementation.

REGRESSION IN HETEROGENEOUS PROBLEMS 15

Another direction would extend the current framework to the task of clas-

sification. This is quite straightforward and we only need to replace the L2 loss

function in (2.2) with such classification loss functions as hinge loss or logistic

loss.
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The online supplement materials contain proofs of Theorems 1 and 2.
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Appendix A: Regularity Conditions

Assume the data (x ∈ Rd, y ∈ R) are sampled from the distribution P and the

marginal distribution of x is Q. Let Pn, Qn be the corresponding empirical mea-

sures. Let O = {u ∈ Rd : ∥u∥2 = 1} and U = {u1, . . . ,uk, . . . ,uK} be a subset of

O containing K points, uk ∈ O. For fixed U , take hU (x) = minuk∈U{(xTuk)
2}.

Let UK = {U : U contains K points in O}, and for a probability measure Q, de-

fine

wK(Q) = inf
U∈UK

{∫
hU (x)Q(dx)

}
. (A.1)

Let ϕk(x, y) = (y − xTβk)
2 + τ∥x − µk∥2. For any given A = {(β1,µk), . . .,

(βK ,µK)}, the space Rd × R can be divided into K distinct regions Bk, k =

1, . . . ,K, such that if (x, y) ∈ Bk, ϕk(x, y) < ϕj(x, y) for any j ̸= k. Then for

the indicator function I(·), we have

I(Bk) =
∏
j ̸=k

I (ϕk(x, y) < ϕj(x, y)) . (A.2)

Take Gkj(x, y) = ϕj(x, y)− ϕk(x, y), and denote by mkj(x, y) the Jacobian

mkj(x, y) = det

(
∂2Gkj(x, y)

∂x∂y

)
.

Denote by σkj(F (x, y)) the integral of function F (x, y) over the boundary surface

between Bk and Bj .

Condition 1. The joint distribution P (x, y) satisfies

a =

∫
(∥x∥2 + y2)P (dx, dy) < ∞. (A.3)
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(
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.
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(∥x∥2 + y2)P (dx, dy) < ∞. (A.3)
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Condition 2. For each k = 1, . . . ,K, the solution to the populational distribu-

tion Ā(k) is unique lies in a compact region of R2d.

Condition 3. The marginal distribution Q(x) satisfies wK(Q) > 0.

Condition 4. For any ϵ > 0, there exists a δ0 > 0 such that, with I(·) an

indicator function,

sup
u∈O

∫
∥x∥2I(|xTu| < δ0)Q(dx) < ϵ. (A.4)

Condition 5. The joint distribution P has a continuous density f(x, y) with

respect to d+ 1 dimensional Lebesgue measure.

Condition 6. For each k and j, there exists

σkj

(
{(y − xTβk)x+ τ(x− µk)}{(y − xTβj)x+ τ(x− µj)}T

|mkj(x, y)|
f(x, y)

)
.

Condition 1 explicitly depicts the boundedness of the second order moment

of both the joint distribution P (dx, dy) and the marginal distribution Q(dx).

Condition 2 indicates that for each k = 1, . . . ,K, there is a unique set Ā(k) for

which Φ(Ā(k), P ) = mk(P ). Similar to the argument given in Pollard (1981)

for k-means clustering, the uniqueness on Ā(k) implies that m1(P ) > m2(P ) >

· · ·mK(P ). Condition 3 ensures that the distribution of x spreads over all di-

rections. Condition 4 assures that the marginal distribution Q(x) gives zero

probability to every d− 1 dimensional hyperplane in Rd.

Conditions 5 and 6 are to insure that the loss function in (2.2) has a second

order derivative over parameters (βk,µk), and thus can be approximated locally

by a quadratic form. Particularly, Condition 6 ensures that the integrals of

functions ∂ϕk(x, y)/∂βk and ∂ϕk(x, y)/∂µk exist over the boundary surface.
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