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The online appendix provides technical details. Section 1 gives the equations for
the integrated, mean–centered, cosine basis. Section 2 describes the MCMC algorithms.
Section 3 proves the theorems. Section 4 provides additional information about the
simulation studies, and includes simulations for BSARS and Spike–and–Slab priors.

S1 Integrated, Mean–centered Cosine Basis

We use the cosine basis functions on [0, 1]: ϕ0(x) = 1 and ϕj(x) =
√
2 cos(πjx) for j ≥ 0.

The cosine basis functions are integrated and mean–centered in Section 3.1. Define:

ϕaj,k(x) =

∫ x

0

ϕj(s)ϕk(s)ds−
∫ 1

0

∫ s

0

ϕj(t)ϕ̄k(t)dt ds for j, k ≥ 0.

The integrals of the cosine basis functions for BSARM are:

ϕa0,0(x) = x− 0.5

ϕa0,j(x) = ϕaj,0(x) =

√
2

πj
sin(πjx)−

√
2

(πj)2
[

1− cos(πj)
]

for j ≥ 1,

ϕaj,j(x) =
sin(2πjx)

2πj
+ x− 0.5 for j ≥ 1,

ϕaj,k(x) =
sin [π(j + k)x]

π(j + k)
+

sin [π(j − k)x]

π(j − k)

−1− cos[π(j + k)]

[π(j + k)]2
− 1− cos[π(j − k)]

[π(j − k)]2
, for j 6= k and j, k ≥ 1.

Define:

ϕbj,k(x) =

∫ x

0

∫ s

0

ϕj(t)ϕk(t)dt ds−
∫ 1

0

∫ x

0

∫ s

0

ϕj(t)ϕk(t)dt ds dx.
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For the cosine basis the ϕbj,k for BSARMC are:

ϕb0,0(x) =
3x2 − 1

6

ϕb0,j(x) = ϕbj,0(x) = −
√
2

(πj)2
cos(πjx) for j ≥ 1

ϕbj,j(x) = −cos(2πjx)

(2πj)2
+

3x2 − 1

6
for j ≥ 1

ϕbj,k(x) = −cos[π(j + k)x]

[π(j + k)]2
− cos[π(j − k)x]

[π(j − k)]2
, for j 6= k and j, k ≥ 1.

S2 Supplemental Material: MCMC

S2.1 MCMC for BSARM and BSARMC

This supplementary material summarizes the MCMC algorithm for the monotone and
concave/convex models in Section 3.1 of the paper. The differences among the models
are the integrated basis functions ϕa, ϕb, and ϕc and the linear term α for convex or
concave models. In the appendix, we will use φ generically for ϕa, ϕb, and ϕc and
ΦJ(x) for the matrices of integrated basis functions Φa

J (x), Φ
b
J(x), and Φc

J(x). The
supplementary material displays the algorithm for one f . Multiple f ’s merely add a set
of loops.

We use the notation:

y = (y1, . . . , yn)
⊺ and W = (w1, . . . ,wn)

x = (x1, . . . , xn)
⊺ and ǫ = (ǫ1, . . . , ǫn)

⊺

θJ = (θ0, θ1, . . . , θJ )
⊺ and θJ−0 = (θ1, . . . , θJ )

⊺

fJ(x) = δθ⊺

JΦJ(x) + α(x− 0.5) and fJ = (fJ(x1), . . . , fJ (xn))
⊺

Γ = J × J diagonal matrix with exp(−jγ) as (j, j) element.

Note that θJ−0 is θJ without θ0. The combined models can be written as:

Y = Wβ + fJ + ǫ

We use the following notation for the MCMC algorithm. We use superscripts (m)
and ∗ to distinguish current and candidate values for the focal parameters in the full
conditional distributions. Parameters that are conditional in the full conditional distri-
butions will not have superscripts (m) or ∗. These parameters are set to their current
values on iteration m. We also refer to these conditional parameters as “Rest.” After
initializing the parameters, the MCMC algorithm has the following steps.
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Generate θJ

We generate θJ by random walk Metropolis where the random walk variance is propor-
tional to the model variance of θJ . We found that the performance of the algorithm
depends on the proportionality factor η, and good values of η depend on the true f
and the number of observations. The random walk Metropolis algorithm with fixed η
is standard. We could let the user pick η by trial and error but that plan puts a large
burden on the user. Instead, we propose an adaptive Metropolis (Haario et al. (2001))
method to make the algorithm more robust and less reliant on the user specification of
η. We assume that η follows a random walk from an inverse gamma distribution, and
the proposal distribution for η adapts to past values of η. We use a Metropolis step to
accept or reject candidate values of η along with those of θJ . If we integrate over η, we
are essentially generating θJ from a random walk with multivariate T error terms, and
the random walk variance adapts to previous values.

At iteration m of the MCMC, the current value of θJ and η are θ
(m)
J and η(m).

At iteration m + 1, we draw a candidate value η∗ from an inverse gamma distribution,
IG(aT , bT,m). The shape parameter aT is constant over iterations, and it is larger than
2 so that the variance of η exists. In the empirical examples, we use aT = 3. The
scale parameter bT,m adapts to previous draws of η. The mean of η at iteration m is:
E(ηm) = bT,m/(aT −1). Given the mean, the scale parameter is: bT,m = (aT −1)E(ηm).
We specify the mean as a convex combination with equal weights of the current value of η
and a rolling estimate of the mean η̄m based on previous draws: E(ηm) = 0.5η(m)+0.5η̄m.
In empirical studies, we found the convex combination works better than E(ηm) = η(m)

or E(ηm) = η̄m. We initialize η0 and η̄0 to small constants, say 0.01. We then run the
MCMC with fixed η̄0 for B0 iterations. In the examples, B0 = 1000. After B0 iterations,
we allow η̄m and bT,m to adapt to previous draws of η.

At iteration m+ 1 we generate candidates θj∗ and η∗:

η∗ ∼ IG(aT , bm,T )

θ∗0 ∼ N(θ
(m)
0 , 5.66η∗σv2θ0)I(θ0 ≥ 0)

θ∗j ∼ N(θ
(m)
j , 5.66η∗στ2 exp(−jγ)) for j ≥ 1.

The constant 5.66 was recommended in Haario et al. (2001). We use the inverse CDF
transform to generate draws from univariate, truncated distributions.
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The jump probability is given by:

logα
(

θ∗

J ,θ
(m)
J

)

=
1

2σ2

(

y −Wβ − f
(m)
J

)

⊺
(

y −Wβ − f
(m)
J

)

− 1

2σ2

(

y −Wβ − f∗

J

)

⊺
(

y −Wβ − f∗

J

)

+

(

θ
(m)2
0 − θ∗20

)

2σv2θ0
+

1

2στ2

(

θ
(m)⊺
J−0 Γ

−1θ
(m)
J−0 − θ∗⊺

J−0Γ
−1θ∗

J−0

)

+ ln

[

1− ZCDF

(

− θ
(m)
0√
σV0

)]

− ln

[

1− ZCDF

(

− θ
(∗)
0√
σV0

)]

− (aT − 1) ln[η(m)]− bT,∗/η
(m) + (aT − 1) ln[η∗] + bT,m/η

∗

where ZCDF is the standard normal cumulative distribution function, and b∗T = (aT −
1)(0.5η∗ + 0.5η̄m). If the candidates are accepted, then we update the running mean of
η:

η̄m+1 = η̄m + (ηm+1 − η̄m)/N

where N is the number of times that η∗ is accepted after the initial B0 iterations. If
the candidates are rejected, then we do not update the running mean of η: η̄m+1 = η̄m.
Because the shape parameter aT is fixed across iterations, adapting the inverse gamma
distribution to the mean is equivalent to adapting it to the variance because the variance
is proportional to the square of the mean.

As a general rule of thumb, one is better off starting η̄0 too small than too large. The
Inverse Gamma distribution has a “dead zone” around 0 where its density is essentially
zero. This dead zone is to the left of the mean. If η̄0 is much larger than the optimal
value for η, then the optimal value will be in the dead zone, and the adaptive algorithm
will have trouble marching towards η. Conversely, if the optimal value of η is outside
the dead zone, then the adaptive algorithm quickly converges on it.

We also monitor the process to ensure that the acceptance rate has reasonable
values. We run the MCMC B0 iterations before adaptation, and B0 iterations after
adaptation where B0. If the proportion of times that θJ is accepted in the adaptation
period is between 0.3 and 0.6, then we use the current values of the parameters to start
the actual MCMC. If the proportion is less than 0.3, the jumps in the random walk for
η are too large, and we reduce the η̄0 by a factor of 10 and restart the procedure. If the
proportion is greater than 0.6, then the jumps are too small, and we increase η̄0 by a
factor of 10 and restart the procedure.

Generate τ2

For the T Smoother, the prior distribution for τ2 is inverse Gamma, which is also its full
conditional distribution:

τ2|Rest ∼ IG
(rn,τ

2
,
sn,τ
2

)

rn,τ = r0,τ + J and sn,τ = s0,τ +
1

σ
θ⊺

J−0Γ
−1θJ−0.
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For the Lasso Smoother, the prior distribution for τ2 is Exponential with rate u0.
Its full conditional distribution is:

p(τ2| Rest) ∼ τ−J exp
(

−u0τ2 −
s

2τ2

)

s =
1

σ
θ⊺

J−0Γ
−1θJ−0

We use slice sampling (Damien et al. (1999) and Neal (2003)) to generate τ2. Slice
sampling introduces an auxiliary uniform random variable U into the full conditional
distribution to break it into two factors:

p(U, τ2| Rest) ∝ I
[

0 ≤ U ≤ exp
(

− u0τ
2
)]

τ−J exp
(

− s

2τ2

)

Integration of p(U, τ2| Rest) over U gives p(τ2| Rest). The right–hand factor is propor-
tional to the inverse Gamma distribution for τ2. Given τ (m)2 at iteration m, U (m+1) is
generated from a unform distribution:

U (m+1) ∼ U
(

0, exp
[

− u0τ
(m)2

])

.

Given U (m+1), the draw of τ2 on iteration m+ 1 is constrained above by:

τ2 < − log
(

U (m+1)
)

/u0.

Then τ2 given U (m+1)? is generated from a truncated inverse Gamma distribution:

τ2 ∼ IG

(

J − 2

2
,
s

2

)

I
[

τ2 < − log(U (m+1))/u0

]

,

or τ−2 is generated from a truncated Gamma distribution.

Generate γ

The full conditional density of γ > 0 is given by

p(γ| Rest ) ∝ exp







wJγ − 1

τ2

J
∑

j=1

cj exp(γj)







(S2.1)

wJ =
1

2

J
∑

j=0

j − w0 and cj =
θ2j

2στ2
.

We use slice sampling to generate γ, as in Lenk (1999), which introduces J latent variables
(U1, . . . , UJ ) from uniform distributions:

p(U1, . . . , UJ , γ| Rest ) ∝
J
∏

j=1

I
(

0 < Uj < exp {−cj exp(jγ)}
)

exp {wJγ} .
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Slice sampling first generates U
(m+1)
j given γ(m):

U
(m+1)
j ∼ U

(

0, exp
{

−cj exp(jγ(m))
}

)

for j = 1, . . . J

Given these U
(m+1)
j , γ(m+1) has to satisfy constraint:

U
(m+1)
j ≤ exp

{

−cj exp(jγ(m+1))
}

for j = 1, . . . , J

or

0 ≤ γ(m+1) ≤ b where b = min

{

1

j
log

[

1

cj
log
(

U
(m+1)
j

)

]}

.

The full conditional distribution of γ given {U (m+1)
j }is:

p(γ) ∝ exp(wJγ) for 0 ≤ γ ≤ b.

Using the inverse CDF, we obtain:

γ(m+1) = b+
1

wJ
log
[

U + exp(−wJb)(1− U)
]

where U ∼ U(0, 1).

Generate σ2

The scale-invariant priors for the spectral coefficients break the conditional conjugacy of
the inverse Gamma distribution for σ2. Its full conditional distribution is:

p(σ2| Rest ) ∝ exp (−cJ/σ)
(

σ2
)−( rn,σ

2 +1)
exp

(

−sn,σ
2σ2

)

cJ =
1

2v2θ0
θ20 +

1

2τ2
θ⊺

J−0Γ
−1θJ−0

rn,σ = r0,σ + n+ p+ (J + 1)/2 + dim(α)

sn,σ = s0,σ +
(

y −Wβ − fJ
)

⊺
(

y −Wβ − fJ
)

+ (β −m0,β)
⊺

V −1
0,β (β −m0,β)

+ (α−m0,α)
2/v20,α.

where the last line is absent for monotone restriction and present for convex or concave
restrictions. We use a uniform variable U in the full conditional of σ2:

p(U, σ2| Rest ) ∝ I
[

0 ≤ U ≤ exp (−cJ/σ)
]

×
(

σ2
)−( rn,σ

2 +1)
exp

(

−sn,σ
2σ2

)

.

Given σ(m) on iteration m, we generate:

U (m+1) ∼ U
[

0, exp
(

−cJ/σ(m)
)

]
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Given U , draws of σ2 must satisfy:

(

cJ/ log(U
(m+1))

)2

≤ σ2.

We generate σ2,(m+1) given U (m+1) from:

σ2 ∼ IG
(rn,σ

2
,
sn,σ
2

)

I

[

(

cj/ log
(

U (m+1)
)

)2

≤ σ2

]

.

Generate β

If p > 0 and there are covariates W , then the full conditional distribution of β is:

β|Rest ∼ N(mn,β , σ
2V n,β)

V n,β =
(

V −1
0,β +W ⊺W

)−1

mn,β = V n,β

[

V −1
0,βm0,β +W ⊺ (y − fJ)

]

.

Generate α

With convex/concave restrictions the full conditional distribution of α is:

α|Rest ∼ N(mn,α, σ
2v2n,α)I(δα > 0)

v2n,α ∼
[

v−2
0,α + (x− x̄1)⊺(x− x̄1)

]−1

mn,α0
∼ v2n,α

[

v−2
0,αm0,α + (x− x̄1)⊺

(

y −W ⊺β − fJ + α(m)(x− x̄1)
)]

.

S2.2 MCMC for BSARU and BSARS

This supplementary material summarizes the MCMC algorithm for the U–Shape and S–
Shape restrictions of Section 3.2 of the paper. Other than ω and ψ, all of the parameter
are generated as those in BSARM and BSARMC. There is a slight complication in
computing fJ because the integrals of Z2

Jh do not have closed-form expressions. Given
the spectral coefficients, we compute Z2

Jh over a fine grid on [0, 1] and apply Simpson’s
Rule to the integrals at the grid points. To compute the integrals at an observation xi,
we first find the largest grid point x̃i that is smaller than xi, and add the area of the
trapezoid between x̃i and xi to the definite integral up to x̃i. Also, we use the double
integral at the grid points to approximate ξ.

We use truncated random walks to generate candidate values for ω and ψ.

ω∗ ∼ N(ω(m), V 2
1 )I(0 ≤ ω ≤ 1) where V 2

1 ∼ IG(aT , bT )

ψ∗ ∼ N(ψ(m), V 2
2 )I(ψ > 0) where V 2

2 ∼ IG(aT , bT )
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The jump probability is:

logα
[(

ω∗, ψ∗
)

,
(

ω(m), ψ(m)
)]

=
1

2σ2

(

y −Wβ − fJ
(m)
)

⊺
(

y −Wβ − fJ
(m)
)

− 1

2σ2

(

y −Wβ − fJ
∗
)

⊺
(

y −Wβ − fJ
∗
)

+
1

2v20,ω
(ω(m) −m0,ω)

2 − 1

2v20,ω
(ω∗ −m0,ω)

2

+
1

2v20,ψ
(ψ(m) −m0,ψ)

2 − 1

2v20,ψ
(ψ∗ −m0,ψ)

2

+ log
[

ZCDF
(

{1− ω(m)}/V1
)

− ZCDF
(

−ω(m)/V1

)]

− log [ZCDF ({1− ω∗}/V1)− ZCDF (−ω∗/V1)]

+ log
[

1− ZCDF
(

−ψ(m)/V2

)]

− log [1− ZCDF (−ψ∗/V2)]

In some examples, the MCMC seems to become stuck when ω is at one of the
endpoints of the domain of x. To avoid this, we randomly generate ω from its prior
distribution 10% of the time, and modify the jump probability:

logα
[(

ω∗, ψ∗
)

,
(

ω(m), ψ(m)
)]

=
1

2σ2

(

y −Wβ − fJ
(m)
)

⊺
(

y −Wβ − fJ
(m)
)

− 1

2σ2

(

y −Wβ − fJ
∗
)

⊺
(

y −Wβ − fJ
∗
)

+
1

2v20,ψ
(ψ(m) −m0,ψ)

2 − 1

2v20,ψ
(ψ∗ −m0,ψ)

2

+ log
[

1− ZCDF
(

−ψ(m)/V2

)]

− log [1− ZCDF (−ψ∗/V2)]

The Metropolis algorithms for ω and ψ are sensitive to the mean of the inverse
Gamma distribution of the proposal distribution. We found that increasing or decreasing
this mean depending on the acceptance probabilities in test runs improves the MCMC.

S2.3 MCMC for Spike–and–Slab Prior

The MCMC for the Spike–and–Slab Prior adds several steps to the previous MCMC
algorithms. All of the parameters are generated as before with the following changes.
Recall that Z̃, the latent Z, has a Gaussian process, while the Z used in f truncates Z̃:
Z(x) = Z̃(x) if Z̃2 > χ and Z(x) = 0 if Z̃2 < χ. We make the following modification
in the Metropolis algorithm for generating the spectral coefficients. After obtaining the
candidate draw θ∗

J , compute the candidate latent Z̃∗(x) =
∑

θ∗jϕ(x), and preform the
truncation to obtain the candidate Z∗. Use the candidate Z∗ in the model of f to
compute the likelihood function the jump probability.

We also generate the truncation parameter χ with a random walk Metropolis using
truncated normal distributions on the non-negative numbers.
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S3 Supplemental Material: Proofs of Theorems

S3.1 Proof of Theorem 1

Proof of Theorem 1 is based on the argument that characterizes the differentiable function
with the nonnegative first order derivative in terms of the integral representation using
the piecewise continuous function, similar to those from Shively et al. (2009) and Ramsay
(1998).

If f(x) ∈ C(q)+, then let u(x) =
√

f (q)(x) and set a = f(0). Then, it follows that
u(x) ∈ C1[0, 1], which yields the representation. Conversely, if f (q−1)(x) = a+

∫ x

0
u2(t)dt

and u(x) ∈ C1[0, 1], then it follows that f (q)(x) = u2(x) ≥ 0, and that it is piecewise
continuous.

S3.2 Proof of Theorem 2

Proof of posterior consistency in Theorem 2 adapts general theorems of Choi and Schervish
(2007) and Shively et al. (2009). The idea for proving Theorem 2 is to bound the numer-
ator and denominator of the posterior probability ofWǫ,n, Π{WC

ǫ,n|(x1, Y1), . . . , (xn, Yn)}
separately in the following way :

Let ϑ0 = (f0, σ0) and let Pnϑ0
and pnϑ0

stand for the joint distribution and the
probability density of Y n = (Y1, Y2, . . . , Yn) when the true model of Y n is nonparametric
regression parametrized by ϑ, and ϑ0 is the true value of ϑ. The posterior distribution

Π{WC
ǫ,n|(x1, Y1), . . . , (xn, Yn} is written by Π(WC

ǫ,n|Y n) =
J

ϑ0

WC
ǫ,n

(Y n)

Jϑ0 (Y n)
, where

Jϑ0

WC
ǫ,n

(Y n) =

∫

WC
ǫ,n

pnϑ(Y
n)

pnϑ0
(Y n)

π(dϑ), and Jϑ0(Y n) =

∫

pnϑ(Y
n)

pnϑ0
(Y n)

π(dϑ).

Prior positivity of neighborhoods

To obtain the exponentially increasing lower bound of Jϑ0(Y n), from the sufficient con-
dition (A1) of Theorem 1 in Choi and Schervish (2007), we verify that ϑ0 is in the
Kullback-Leibler support of the prior Π, and that Π assigns a positive probability on a
specific set in which conditions for applying law of large numbers are satisfied.

For this purpose, define Λi(ϑ0, ϑ) = log
pϑ0

(Yi)

pϑ(Yi)
, where pϑ(yi) is a normal density

with mean f(xi) and variance σ2. Also define the mean of Λi, i.e. the Kullback-Leibler
divergence between pϑ0

(yi) and pϑ(yi) and the variance of Λi, Ki(ϑ0, ϑ) = Eϑ0
(Λi(ϑ0, ϑ))
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and Vi(ϑ0, ϑ) = Varϑ0
(Λi(ϑ0, ϑ)). Then, direct calculations shows that

Ki(ϑ0;ϑ) =
1

2
log

σ2

σ2
0

− 1

2

(

1− σ2
0

σ2

)

+
1

2

[f0(xi)− f(xi)]
2

σ2
, and

Vi(ϑ0, ϑ) = 2

[

−1

2
+

1

2

σ2
0

σ2

]2

+

[

σ2
0

σ2
[f(xi)− f0(xi)]

]2

.

Let u(x) and u0(x) be two piecewise continuous functions on [0, 1], i.e. u(x), u0(x) ∈
C1[0, 1] that corresponds to f(x) and f0(x) respectively, f(x) =

∫ x

0
u2(t)dt and f0(x) =

∫ x

0
u20(t)dt as given in Theorem 1. Define

Cδ =

{

(u, σ) : ‖u− u0‖∞ < δ ,

∣

∣

∣

∣

σ

σ0
− 1

∣

∣

∣

∣

< δ

}

,

where ‖ · ‖∞ denotes the supremum norm. Then, it follows from the integral represen-
tation in Theorem 1 that for every ǫ > 0, there exists δ > 0 such that ∀ (u, σ) ∈ Cδ,

Ki(ϑ0, ϑ) < ǫ for all i. and that (ii)

∞
∑

i=1

Vi(ϑ0, ϑ)

i2
< ∞, ∀ (u, σ) ∈ Cδ, assuming u(t)

and u0(t) are uniformly bounded. Hence, if the prior, Π assigns positive probability
to Cδ for each δ > 0, then the prior positivity condition of Choi and Schervish (2007)
holds. Note that the nonparametric prior for f we considered based on cosine series is a
Gaussian process prior as described in Section 2.1 using the Karhunen-Lóeve expansion
and Mercer’s theorem), with a reproducing kernel Hilbert space. Thus, it follows from
Choi and Schervish (2007) and van der Vaart and van Zanten (2008) that for every δ > 0,
Π(Cδ) > 0.

Existence of tests

To obtain the upper bound of the numerator Jϑ0

WC
ǫ,n

(Y n),WC
ǫ,n and ϑ0 need to be strongly

separated Choi and Ramamoorthi (2008), which can be formulated in terms of uniformly
consistent tests (see, e.g. Choi and Schervish (2007) and Ghosal and van der Vaart
(2007).

To verify (A2) of Theorem 1 in Choi and Schervish (2007), we first construct a
sieve and then construct a test for each element of the sieve. Let Mn = O(nα1), where
2δ + 1

2
< α1 < 1 for some 0 < δ < 1/2 and define Θn = Θ1n × R

+, where Θ1n =

{u(·) : ‖u‖∞ < Mn}. Note that by the integral representation of f(x) as in Theorem
1, we need a sieve only based on the supremum norm of u(x) (cf. Choi and Schervish
(2007)).

The nth test is constructed by combining a collection of tests, one for each of finitely
many elements of Θn. Note that there exists a constant K ′ such that the ǫ-covering
number N(ǫ,Θ1n, ‖ ·‖∞) of Θ1n satisfies logN(ǫ,Θn, ‖ ·‖∞) ≤ K′Mn

ǫ
, which follows from

Theorem 2.7.1. of van der Vaart and Wellner (1996). When the values of the covariate
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in [0, 1] are equally spaced, there exist test functions {Φn} such that

∞
∑

n=1

Eθ0Φn < ∞

and sup
θ∈WC

ǫ,n

⋂
Θn

Eθ(1 − Φn) ≤ exp (−C ∗ n) for a constant C∗ > 0, which follows from

Theorem 2 of Choi and Schervish (2007). Note that when the empirical norm Qn is
used, it is obvious that there exists γ > 0 such that

∑n
i=1 |f(xi)− f0(xi)| > γn, which is

essential in the construction of uniformly consistent tests (Choi and Schervish (2007)).
The remaining thing is to show that ΘCn has an exponentially small prior probability,
which also follows from Section 6 of Choi and Schervish (2007).

Hellinger neighborhood

As shown in Shively et al. (2009), the numerator Jϑ0

WC
ǫ,n

(Y n) is upper-bounded by the

properties of maximum likelihood estimators under monotone constraints using Theorem
3 in Walker and Hjort (2001). This upper-bound holds as long as the regression function
is monotone increasing which is applied to the proposed BSAR with shape restriction.
Alternatively, the uniformly consistent tests can also be constructed as in Choi and
Schervish (2007). Since the exponentially increasing lower bound of the denominator
Jϑ0

WC
ǫ,n

(Y n) is obtained regardless of the neighborhood under consideration as shown in

C.1., it is easy to see that posterior consistency with Hǫ also holds.

S3.3 Proof of Theorem 3

Proof of Theorem 3 is based on the argument that characterizes the sample paths of the
qth derivative to be almost surely piecewise continuous and has a unique root at ω, using
a similar reasoning to Theorem 1 with L’Hospital’s Theorem.

By the definitions of h, f1 and f2, it is obvious that f
(1)
1 (x) and f

(2)
2 (x) are contin-

uous and have unique zeros at x = ω. Conversely, define

g(x) =

{

f(q)(x)
h(x) , 0 < x < 1, x 6= ω

−2f(q+1)(ω)
ψ

, x = ω.
(S3.2)

Then, g(x) is continuous for all 0 < x < 1, x 6= ω by definition and is also contin-
uous at x = ω, which follows from the differentiability of f (q)(x) and h(x) at x = ω
as well as L’Hospital’s theorem. In addition, it is obvious that g(x) is positive for all
0 < x < 1 by construction since f (q)(x) is assumed to have a unique zero at x = ω
from being positive-to-negative, which implies that f (q+1)(x) is negative at x = ω, and
h(x) is positive if x < ω and negative if x > ω. Thus, as in the same argument of
Theorem 1, there exists u(x) ∈ C1[0, 1] such that u(x) =

√

g(x). Hence, it follows that
f (q)(x) = u2(x)h(x) and that f (q)(ω) = −u2(ω)ψ/2, which corresponds to g(ω) in (S3.2).
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S4 Simulation Studies

S4.1 Details for Comparing Models

The models for the first simulation study are:

Linear: Y = x+ ǫ (S4.3)

Sinusoid: Y = 2πx+ sin(2πx) + ǫ (S4.4)

Expo: Y = exp(6x− 3) + ǫ (S4.5)

QuadCos: Y = 16x2 − 4

π2
cos(2πx)− 1

π2
cos(4πx)

− 32

9π2
cos(3πx)− 32

π2
cos(πx) +

365

9π2
+ ǫ (S4.6)

LogX: Y = log(1 + 10x) + ǫ (S4.7)

where ǫ ∼ N(0, 1), and the values of X are equally spaced on 0 to 1. The true f mean–
centers the functions given in (S4.3–S4.7), and adds the integral to the intercept. The
first two functions (S4.3) and (S4.4) are increasing, the next two functions (S4.5)-(S4.6)
are increasing and convex, whereas LogX in (S4.7) is increasing and concave. BSARMC
sets α = 0 to focus attention on the spectral representation. After an initial period to
identify satisfactory variances for the adaptive Metropolis algorithm, the MCMC chain
ran for 11,000 iterations, and the last 1000 were used for estimation.

S4.2 S–Shaped Functions and BSARS

To test BSARS we consider a cubic function (CubicX) that has an inflection point ω =
−1:

Y = (x+ 1)3 + ǫ where ǫ ∼ N(0, σ2) and x ∈ [−5, 5]. (S4.8)

For this simulation, the low information condition is n = 100 and σ = 10, and the high
information condition is n = 200 and σ = 5. We fit the data based on BSARS. Numer-
ical comparison of BSARS is made with BSAR and BSARM with Gamma Priors and
BBPM with monotone restriction. In Table 1 BSARS outperforms the other approaches
according to average RMISE. The proposed BSARS fits the true inflection point −1
reasonably well.

S4.3 Spike–and–Slab Prior

We next compare the Gamma Prior to the Spike-and-Slab Prior for BSARM and BSARMC.
We simulated 100 observations from yi = 20 + f(xi) + ǫi where xi ∼ U(0, 10); ǫi ∼
N(0, 40) and

f(x) =







−24.15 if 0 ≤ x ≤ 2
exp[.7(x− 2)]− 25.15 if 2 < x ≤ 7
7.96 + 23.18x if 7 < x ≤ 10.
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Table 1: Simulation results for CubicX
Average RMISE BSARS BSARM BRSM BBPM
n = 100, σ = 10 2.359 2.638 2.772 2.933

(s.e.) (0.0917) (0.0899) (0.0948) (0.0982)
n = 200, σ = 5 1.039 1.504 1.253 1.091

(s.e.) (0.0438) (0.0953) (0.0310) (0.0306)
Inflection Point (ω = −1) BSARS BSARM BRSM BBPM

n = 100, σ = 10 -0.8300 NA NA NA
(s.e.) (0.0389) NA NA NA

n = 200, σ = 5 -0.9270 NA NA NA
(s.e.) (0.0330) NA NA NA
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Figure 1: Gamma versus Spike-and-Slab Priors. Dots are parametric residuals, solid lines are posterior
means, and shaded areas between dashed lines are 95% credible intervals. Panel A: BSARM with Gamma
Prior. Panel B: BSARM with Spike-and-Slab Prior. Panel C: BSARMC with Gamma Prior. Panel D:
BSARMC with Spike-and-Slab Prior.
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The true f is constant from 0 to 2, exponential from 2 to 7, and linear from 7 to 10.
f is on the boundary of BSARM and BSARMC when 0 < x < 2, and it is on the
boundary of BSARMC when 7 < x < 10. It is not on the boundary of either function
space between 2 < x < 7. Figure (1) plots the true function and its four estimators.
Each of the models contains the true function within its 95% HPD intervals. Table (2)
presents fit statistics and estimates for BSARM and BSARMC along with BSAR. The
largest improvement in the LIL and RMISE results from going from the unconstrained
BSAR to the constrained models. Spike-and-Slab BSARM has the largest LIL, followed
by Gamma BSARM, Spike-and-Slab BSARMC, and Gamma BSARMC. The RMISE
is better for the Gamma Priors than the Spike-and-Slab Priors when using monotone
and convex restrictions. The R-Squares and estimated model parameters are nearly the
same. In this example, the Spike-and-Slab Prior helps recover the boundary conditions.

Table 2: Comparing Gamma to Spike-and-slab Priors

BSAR BSARM BSARM BSARMC BSARMC
Gamma Spike & Slab Gamma Spike & Slab

LIL -585.0068 -546.6553 -537.1292 -554.8863 -544.3778
RMISE 17.9629 3.9932 8.4022 4.0332 5.9708
R-Square 0.7374 0.7057 0.7131 0.7008 0.7031
σ 20.5229 20.6560 20.5539 20.5393 20.5493
STD DEV 1.5919 1.4606 1.4518 1.4425 1.4623
Intercept 18.9562 19.1642 19.0543 19.0794 19.0252
STD DEV 2.0971 2.1706 2.0709 2.0559 2.0558
Cutoff 14.7185 4.3785
STD DEV 3.5100 2.7632

S4.4 Bayesian Hypothesis Testing Details

Our simulation study considers five true models: one for each set of constraints and use
the Gamma Prior of Sections 3.1 and 3.2. The simulation models are:

M1: Yi = 200(xi − 0.1)(xi − 0.6)(xi − 0.8) + ǫi (S4.9)

M2: Yi = 10
exp[15(xi − 0.4)]

exp[15(xi − 0.4)] + 1
+ exp[20(xi − 0.9)] + ǫi (S4.10)

M3: Yi = 20 exp[5(xi − 0.9)] + ǫi (S4.11)

M4: Yi = 20 exp
[

−15(xi − 0.7)2
]

+ ǫi (S4.12)

M5: Yi = 10
exp[10(xi − 0.4)]

exp[10(xi − 0.4)] + 1
+ ǫi (S4.13)

where ǫi ∼ N(0, 1) and x ∼ U(0, 1). Equation (S4.9) is only consistent with the
unrestricted BSAR. Equation (S4.10) is increasing and consistent with the monotone
BSARM and the unrestricted BSAR. Equation (S4.11) is increasing and convex and
consistent with monotone and convex BSARMC, monotone BSARM, and unrestricted
BSAR. Equation (S4.12) is inverted U shaped and consistent with U-shaped BSARU
and unrestricted BSAR. Equation (S4.13) is S–shaped and consistent with S–shaped
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BSARS, monotone BSARM, and unrestricted BSAR. Also, BSARU and BSARS can
mimic monotonic models by sending ω towards the end point 0 or 1.

The simulations have a low information condition with 50 observations and a high
information condition with 200 observations. Fifty data sets were generated for each
function and information condition. BSAR, BSARM, BSARMC, BSARU, and BSARS
are fitted to each of the simulated data sets. The simulations did not include the in-
tegration parameter α, and ψ was set to 1000 for the U and S shaped functions. The
simulations used the same prior parameters. The MCMC used a burn-in period of 20,000
iterations and an estimation period of 10,000 iterations. We use Gelfand and Dey (1994)
to approximate the log-integrated likelihood (LIL). Tables (3) to (7) report the mean
and standard deviation of the LIL for the 50 simulated data sets in each condition, and
the proportion of times that the LIL was maximum for each model.

Table 3: LIL Simulation: Unrestricted Function M1
50 Observations BSAR BSARM BSARMC BSARU BSARS

LIL: Mean -168.114 -192.767 -201.994 -220.503 -209.099
LIL: STD DEV 5.254 6.365 5.664 133.533 22.954
LIL: Choice 1.000 0.000 0.000 0.000 0.000

RMISE: Mean 0.598 2.407 3.850 3.231 4.137
RMISE: STD DEV 0.088 0.213 0.286 0.433 0.266
200 Observations BSAR BSARM BSARMC BSARU BSARS

LIL: Mean -501.123 -655.949 -701.773 -690.688 -710.554
LIL: STD DEV 9.502 14.521 13.855 14.869 14.639
LIL: Choice 1.000 0.000 0.000 0.000 0.000

RMISE: Mean 0.339 2.257 3.229 2.918 3.337
RMISE: STD DEV 0.044 0.100 0.149 0.227 0.274

Table 4: LIL Simulation: Monotone Function M2
50 Observations BSAR BSARM BSARMC BSARU BSARS

LIL: Mean -159.346 -145.007 -158.733 -159.162 -153.302
LIL: STD DEV 5.711 7.663 6.920 9.929 6.697
LIL: Choice 0.000 0.840 0.020 0.020 0.120

RMISE: Mean 0.549 0.398 1.273 0.649 1.091
RMISE: STD DEV 0.086 0.104 0.102 0.326 0.119
200 Observations BSAR BSARM BSARMC BSARU BSARS

LIL: Mean -492.962 -480.329 -550.351 -499.800 -526.203
LIL: STD DEV 6.718 9.639 11.235 19.697 14.076
LIL: Choice 0.040 0.920 0.000 0.040 0.000

RMISE: Mean 0.336 0.221 1.185 0.300 0.779
RMISE: STD DEV 0.049 0.044 0.036 0.175 0.078
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Table 5: LIL Simulation: Monotone and Convex Function M3
50 Observations BSAR BSARM BSARMC BSARU BSARS

LIL: Mean -161.931 -142.352 -140.618 -152.399 -147.947
LIL: STD DEV 4.992 6.254 7.096 6.953 6.345
LIL: Choice 0.000 0.380 0.540 0.000 0.080

RMISE: Mean 0.509 0.336 0.318 0.376 0.374
RMISE: STD DEV 0.083 0.095 0.096 0.082 0.094
200 Observations BSAR BSARM BSARMC BSARU BSARS

LIL: Mean -490.013 -474.379 -465.555 -488.631 -485.809
LIL: STD DEV 12.056 14.699 13.081 11.787 16.645
LIL: Choice 0.000 0.140 0.740 0.020 0.100

RMISE: Mean 0.315 0.200 0.171 0.237 0.199
RMISE: STD DEV 0.043 0.054 0.050 0.046 0.056

Table 6: LIL Simulation: U–Shaped Function M4

50 Observations BSAR BSARM BSARMC BSARU BSARS
LIL: Mean -160.708 -203.013 -220.222 -159.440 -203.926

LIL: STD DEV 7.150 6.466 8.740 10.097 5.721
LIL: Choice 0.360 0.000 0.000 0.640 0.000

RMISE: Mean 0.442 3.389 5.167 0.442 3.669
RMISE: STD DEV 0.096 0.406 0.419 0.097 0.390
200 Observations BSAR BSARM BSARMC BSARU BSARS

LIL: Mean -490.729 -705.068 -776.406 -509.745 -720.649
LIL: STD DEV 10.657 13.355 11.097 13.133 13.397
LIL: Choice 0.940 0.000 0.000 0.060 0.000

RMISE: Mean 0.256 3.133 4.913 0.246 3.164
RMISE: STD DEV 0.041 0.199 0.218 0.055 0.197

Table 7: LIL Simulation: S–Shaped Function M5

50 Observations BSAR BSARM BSARMC BSARU BSARS
LIL: Mean -215.488 -173.730 -215.466 -179.728 -178.649

LIL: STD DEV 16.206 10.601 9.961 8.123 11.989
LIL: Choice 0.000 0.440 0.000 0.160 0.400

RMISE: Mean 0.337 0.340 2.227 0.379 0.381
RMISE: STD DEV 0.088 0.091 0.133 0.085 0.114
200 Observations BSAR BSARM BSARMC BSARU BSARS

LIL: Mean -569.465 -535.112 -690.668 -580.578 -576.267
LIL: STD DEV 24.934 15.919 16.561 242.663 215.160
LIL: Choice 0.020 0.540 0.000 0.260 0.180

RMISE: Mean 0.182 0.188 2.117 0.253 0.168
RMISE: STD DEV 0.052 0.040 0.063 0.236 0.051
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