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Abstract: This paper proposes a Bayesian method to estimate shape-restricted func-

tions using Gaussian process priors. The proposed model enforces shape-restrictions

by assuming that the derivatives of the functions are squares of Gaussian processes.

The resulting functions, after integration, are monotonic, monotonic convex or con-

cave, U–Shaped, and S–shaped. The latter two allow estimation of extreme points

and inflection points. The Gaussian process’s covariance function has hyper param-

eters to control the smoothness of the function and the tradeoff between the data

and the prior distribution. The Bayesian analysis of these hyper parameters pro-

vides a data–driven method to identify the appropriate amount of smoothing. The

posterior distributions of the proposed models are consistent. We modify the basic

model with a spike-and-slab prior that improves model fit when the true function

is on the boundary of the constraint space. We also examine Bayesian hypoth-

esis testing for shape restrictions and discuss its potentials and limitations. We

contrast our approach with existing Bayesian regression models with monotonicity

and concavity and illustrate the empirical performance of the proposed models with

synthetic and actual data.

Key words and phrases: Adaptive Markov chain Monte Carlo, isotonic regression,

Karhunen-Loève expansion, lasso, model choice, semiparametric regression, shape

restriction, smoothing, spectral representation.

1. Introduction

Shape constrained regression models arise naturally in a wide variety of ap-

plications: children grow taller; star light intensity decreases with distance given

fixed luminosity; demand for electricity increases as temperatures depart from

68◦F; and an occupation’s prestige tends to increase with its salary and educa-

tional requirements. Researchers often assume that such shape restrictions as

monotonicity and convexity are known a priori or plausible in theory. Semipara-

metric Bayesian models express these a priori shape constraints in the prior dis-

tribution of the unknown function. Neelon and Dunson (2004) and Cai and Dun-

son (2007) developed methods for Bayesian isotonic regression using piece-

wise linear models and monotone splines based on order-restricted infer-

ence. Other approaches to shape constraints are Brezger and Steiner (2008)
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with penalized splines, Wang (2008) with free-knot monotone cubic splines,

Bornkamp and Ickstadt (2009) with mixtures of cumulative distribution func-

tions, Shively, Sager and Walker (2009) and Shively, Walker and Damien (2011)

with restricted splines, Curtis and Ghosh (2011) with Bernstein polynomials,

and Lin and Dunson (2014) using the projection of the posterior under the

Gaussian process. Recently, Bayesian shape-restricted regression models have

been extended to generalized partial linear models where regression functions

are decomposed into a nonparametric function with a shape constraint and a

parametric function. Meyer, Hackstadt and Hoeting (2011) proposed a Bayesian

approach to partial linear models using regression splines with assumptions about

shape and smoothness based on the shape-restricted regression splines of Ramsay

(1998) and Meyer (2008).

Most of the existing literature on Bayesian monotone regression puts con-

straints on the coefficients of the basis functions through prior distributions. This

paper enforces shape restrictions by assuming that the derivatives of the func-

tions are squared, Gaussian processes. This representation naturally incorporates

monotone, monotone convex or concave, U–shaped, and S–shaped restrictions.

The proposed model results in consistent posterior distributions. We use the

spectral representation of the Gaussian process prior to simplify the posterior

analysis. The partially linear model can include multiple functions with different

shape restrictions. We also examine a spike-and-slab prior to model functions on

the boundary of the constraint space. We illustrate the empirical performance of

the proposed model based on simulation studies and two data applications. In

addition, we examine Bayesian hypothesis testing for shape restrictions based on

the marginal distribution of the data and discuss its potentials and limitations.

The frequentist literature on isotonic regression is vast. Ayer et al. (1955) and

Brunk (1955) formulated isotonic regression as a constrained optimization prob-

lem: minimize weighted sums-of-squares error subject to ordering of the function

at the observations. This early work inspired research into constrained opti-

mization algorithms (Barlow and Brunk (1972), Dykstra and Robertson (1982),

Robertson, Wright and Dykstra (1988), Groeneboom and Wellner (2014), and

Luss and Rosset (2014)). Two alternative approaches are isotonic splines (Ram-

say (1998) and Wang and Li (2008)) and kernel methods (Mammen (1991),

Mukarjee and Stern (1994), Hall and Huang (2001), and Dette and Pilz (2006)).

Bhattacharya and Lin (2010, 2011) propose data adaptive methods, and Bhat-

tacharya and Lin (2013) perform small sample simulations that compare their

data-adaptive method to splines and kernels. Other variations are isotonic me-

dian regression (Menendez and Salvador (1987)), local averaging with isotonic re-

gression (Friedman and Tibshirani (1984)), nearly isotonic regression (Tibshirani,

Hoefling and Tibshirani (2011)), LASSO applied to multiple isotonic regression
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functions (Fang and Meinshausen (2012)), and multivariate isotonic regression

(Sasabuchi, Inutsuka and Kulatunga (1983)). Wu, Meyer and Opsomer (2015)

impose a penalty on the range of the regression function to mitigate “spiking”

at the end of the end of the estimation interval. The differences and similarity

between frequentist and Bayesian approaches are too numerous to list here and

depend on where to draw the line between the two. In a narrow sense, the shape

restrictions are part of the likelihood function and the Bayesian and frequen-

tist only differ on the estimation method of the parameters. In a wide sense,

shape restrictions are a priori beliefs imposed by the researcher, and frequentists

become more similar to Bayesians.

The remainder of the paper is organized as follows. Section 2 reviews Gaus-

sian process priors and their spectral representation, which we call “Bayesian

spectral analysis regression” (BSAR), and discusses smoothing priors for BSAR.

Section 3 imposes functional constraints by assuming that the positive or nega-

tive square roots of the first or second derivatives have Gaussian process priors.

Section 4 illustrates of the performance of the proposed method with simulation

studies and applications. The empirical results compare existing methods with

the proposed approach. Section 5 concludes with a discussion.

2. Bayesian Spectral Analysis Regression

The observational equation is a partially linear, semi–parametric model:

Yi = wᵀ
iβ +

K∑
k=1

fk(xi,k) + ϵi, i = 1, . . . , n, (2.1)

where wi and β are p + 1–dimensional vectors of covariates and coefficients; fk
is an unknown function of the scalar xi,k; and the error terms {ϵi} are a random

sample from a normal distribution, N(0, σ2). Without loss of generality, we

assume that 0 ≤ xi,k ≤ 1. The covariates w do not include functions of the x’s,

which are also not functions of each other. The Y –intercept β0 is included in β.

The model is unidentified because constants can be added and subtracted to β0
and the fk’s without changing the distribution of Y . We assume that the fk are

mean centered and orthogonal to the constant function to identify the model,∫ 1

0
fk(x)dx = 0 for k = 1, . . . ,K. (2.2)

This identification restriction reduces the posterior correlation between β0 and

fk and can significantly reduce the posterior uncertainty of fk.

Without shape–restrictions, fk has a Gaussian process prior, and the differ-

ent shape–restricted models alter this prior specification. We first review non-

parametric regression with Gaussian process priors. Section 2.1 presents the
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Karhunen-Loève representation for Gaussian processes. The representation lin-

earizes the covariance function and simplifies the posterior analysis. Section 2.2

discusses smoothing priors and their derivation from the Gaussian process and

contrasts them to an exchangeable Lasso prior. In Sections 2 to 4 we restrict our

attention to one (K = 1) unknown function to simplify the presentation. The

model with multiple unknown functions is a straightforward extension, and we

use it for multiple components fk, k = 1, . . . ,K(> 1) in an empirical example in

Section 5.

2.1. Spectral analysis of Gaussian process priors

Gaussian processes provide a natural method to specify distributions on the

space of functions for nonparametric regression (O’Hagan (1978), Wahba (1978),

and Rasmussen and Williams (2006)). Based on the observational equation (2.1)

without shape restrictions, the prior for f is f(x) = Z(x) where Z is a second-

order Gaussian process with mean function equal to zero and covariance function

ν(s, t) = E[Z(s)Z(t)] for s, t ∈ [0, 1]. The covariance function acts as a smoothing

kernel, and the posterior distribution of Z requires inverting n×n matrices with

entries ν(xi, xj). Lenk (1999) linearizes the covariance kernel with the Karhunen-

Loève representation for Z (Grenander (1981) and Wahba (1990)). The Bayesian

spectral analysis regression (BSAR) model expresses the Gaussian process as an

infinite series expansion with the Karhunen-Loève representation

Z(x) =

∞∑
j=0

θjφj(x), (2.3)

where {φj} forms an orthonormal basis on [0, 1]. The implied prior distribution of

the spectral coefficients are normal and mutually independent. Their means are

zero, and their variances are: ν2j =
∫ 1
0

∫ 1
0 ν(s, t)φj(s)φ̄j(t)ds dt where

∑∞
j=0 ν

2
j <

∞. Conversely, the covariance function is ν(s, t) =
∑∞

j=0 ν
2
jφj(s)φ̄j(t) provided∑∞

j=0 ν
2
j < ∞.

Our choice of orthonormal system is the cosine basis function on [0, 1]:

φ0(x) = 1 and φj(x) =
√
2 cos(πjx) for j ≥ 0. By excluding sines, f does

not have to be periodic on [0, 1], and all piecewise continuous function can be ex-

pressed as an infinite series of {φj}. The cosine basis has a natural ordering based
on their frequencies. This ordering relates to nonparametric estimation: smooth

functions have small weights on high–frequency components. If the coefficients

decay at rate o(cj) for some c > 1, then the function is j times differentiable

almost everywhere (Katznelson (2004)). For unrestricted f , θ0 is confounded

with the Y –intercept β0, and we will drop it from the representation for f .

More generally, if the support of x is S, then the orthonormal basis can

be defined as: φ0(x) =
√
q(x) and φj(x) =

√
2q(x) cos[πjQ(x)] where Q is a
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cumulative distribution function with support S, and q is its density. We use the

uniform distribution on S = [a, b] for the empirical analysis in Section 4. Other

orthonormal basis functions can be used without loss of generality, but they may

not have a natural ordering that relates to a smoothing prior.

In implementations we need to truncate the infinite series to a finite sum

ZJ(x) =
∑J

j=0 θjφj(x). The mean integrated squared error (MISE) between Z

and ZJ decreases in J :

MISE(J) = E

(∫ 1

0
[Z(x)− ZJ(x)]

2 dx

)
=

∞∑
j=J+1

ν2j , (2.4)

and can be made as small as desired because the sum of the variances are finite.

An important point is that if the prior distribution of θj is inherited from Z

by the spectral representation, then the choice of J does not make a material

difference to the accuracy of estimating f for sufficiently large J because the

truncation error becomes negligible. However, if the spectral coefficients are a

priori exchangeable, then ZJ is a proper distribution but a limiting second order

Gaussian process does not exist. In this case, the choice of J is critical for

estimating f . The next subsection takes a closer look at these issues and the

specification of prior distributions of BSAR.

2.2. Smoothing priors

Our approach is similar to that of Young (1977) who puts a prior distribution

on the coefficients of polynomials such that the coefficients tend to decrease as

the power increases. The rate at which their prior variances {ν2j } converge to

zero determines the smoothness of the sample paths of Z. Lenk (1991, 1993,

2003) for nonparametric density estimation and Lenk (1999) and Choi, Lee and

Roy (2009) for nonparametric regression use exponentially decreasing variances.

Then the sample paths of Z are piecewise analytic. We use scale–invariant priors:

θj |σ, τ, γ ∼ N(0, σ2τ2 exp[−jγ]) for j ≥ 1 and γ > 0. (2.5)

The prior distribution on the spectral coefficients shrinks their estimators to-

wards zero, and the amount of shrinkage increases for higher frequency terms.

Increasing τ puts more weight on the likelihood function and less on the prior,

and increasing γ increases the rate that the prior variances approach zero. The

scale-invariant prior facilitates implementation of the methodology. Multiplying

Y by a constant does not alter these prior specifications, and τ has the interpre-

tation of a signal–to–noise ratio. In most applications, the signal–to–noise ratio

is likely to be between 1 than 10. Without scale-invariant priors, reasonable pri-

ors for τ depend on the variation in the data. The MISE between Z and ZJ in

Equation (2.4) decreases exponentially in J : MISE(J) ∝ exp[−(J + 1)γ].
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We specify two prior distributions for τ and γ. The T Smoother uses the the

inverse Gamma distribution(X ∼ IG(a, b) has mean µ = b/(a− 1) and variance

µ2/(a− 2) for a > 2 and b > 0) for τ2 and the exponential prior for γ:

T Smoother: τ2 ∼ IG
(r0,τ

2
,
s0,τ
2

)
and γ ∼ Exp(w0). (2.6)

After integrating over τ2, the spectral coefficients θj have a multivariate T-

distribution. The Lasso Smoother uses exponential prior distributions for both

τ2 and γ:

Lasso Smoother: τ2 ∼ Exp(u0) and γ ∼ Exp(w0). (2.7)

After integrating over τ , the spectral coefficients have a multivariate, double

exponential distribution (Eltoft, Kim and Lee (2006)), that is the Bayesian Lasso

model (Park and Casella (2008)). To complete the model specification, we use

the conjugate prior distributions for β and σ:

β|σ ∼ N(m0,β , σ
2V0,β) and σ2 ∼ IG

(r0,σ
2

,
s0,σ
2

)
.

Next, we compare the T and Lasso Smoothers to an exchangeable Lasso

prior to demonstrate the importance of deriving the variance specification of

the spectral coefficients from the Gaussian process covariance function. Given

Lasso’s ability to handle p >> n, one may ask if we need smoothing priors at all.

The exchangeable Lasso prior is:

Lasso Prior: τ2 ∼ Exp(u0) and γ = 0. (2.8)

Then ZJ is a Gaussian process prior but does not converge to a second order

Gaussian process. A simulation demonstrates that the Lasso Prior over–fits the

data because it does not impose smoothing constraints on the spectral coeffi-

cients, while both the T Smoother and Lasso Smoother correctly identify f . We

generated 100 observations from:

Y = 120 + 5x+ 10
√
x
{
1 + 2 exp

[
−0.1(x− 2)2

]
− exp

[
−0.5(x− 5)2

]}
+ ϵ,

where ϵ ∼ N(0,100) and x ∼ U(0, 10), the uniform distribution. We used the

uniform cdf transform, Q(x) = x/10, to map [0, 10] to [0, 1], and set J = 100.

Table 1 presents fit statistics between the posterior means and true values using

the three prior distributions. We used Gelfand and Dey (1994) to approximate

the Log Integrated Likelihood (LIL). The RMISE for f and RMSE for the spectral

coefficients for the Lasso Prior are around four times larger than the T and

Lasso Smoothers. The exchangeable Lasso Prior has the largest R-Square, which

indicates that the Lasso Prior over-fits the data.
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Table 1. Fit statistics for smoothing and Lasso priors.

T Smoother Lasso Smoother Lasso Prior
Log Integrated Likelihood -507.6471 -607.4359 -520.5975
R-Square 0.7354 0.7229 0.8910
RMISE for f 5.8524 9.5384 37.561
RMSE for Spectral Coefficients 0.5889 0.9550 3.7375

RMISE is the root mean integrated squared error between the true f and its posterior mean.

RMISE is approximated with Simpson’s rule using 201 intervals. RMSE is the root mean

squared error between the true θ and their posterior means.

Figure 1 confirms that the Lasso prior mistakes noise for signal. The posterior

mean for the Lasso Prior almost connects the observations, while the T and

Lasso Smoothers effectively recover the true f . The figure also plots the true

and estimated spectral coefficients for frequencies 1 ≤ j ≤ 50. The behavior for

j > 50 extends the trends in the graphs. The true coefficients rapidly approach

zero for frequencies larger than 10. The additional uncertainty in the Lasso prior

for high frequency spectral coefficients allows the posterior mean of f to over-fit

the data. Due to the slightly better performance of the T Smoother over the

Lasso Smoother, we will present results for the T Smoother in the rest of the

paper. Also, the Lasso Smoother requires an additional Metropolis step.

3. Bayesian Shape-Restricted Spectral Analysis Regression

Section 3.1 considers monotonic functions and monotonic convex or concave

functions, and Section 3.2 develops “S”–shaped and “U”–shaped functions. Sec-

tion 3.3 modifies the model to include functions on the boundary of the constraint

space by using spike-and-slab priors.

3.1. Restrictions on sample path derivatives

The qth derivative of f is the square of a Gaussian process:

f (q)(x) = δZ2(x) for δ = 1 or − 1 and q = 1 or 2, (3.1)

where δ and q are given by the user. Higher order derivatives (q > 2) are possible,

but have limited application. The marginal prior distribution of Z2(x) is a scaled,

Chi-squared distribution with one degree of freedom because the prior mean is

zero. To distinguish this model from the spike-and-slab prior in Section 3.3, we

call it the “Gamma Prior.”

When q is 1, f is monotone:

f(x) = δ

[∫ x

0
Z2(s)ds−

∫ 1

0

∫ x

0
Z2(s)ds dx

]
, (3.2)
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2
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2
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where ϵ ∼ N(0,100) and x ∼ U(0, 10), the uniform distribution. We used the

uniform cdf transform, Q(x) = x/10, to map [0, 10] to [0, 1], and set J = 100.

Table 1 presents fit statistics between the posterior means and true values using

the three prior distributions. We used Gelfand and Dey (1994) to approximate

the Log Integrated Likelihood (LIL). The RMISE for f and RMSE for the spectral

coefficients for the Lasso Prior are around four times larger than the T and

Lasso Smoothers. The exchangeable Lasso Prior has the largest R-Square, which

indicates that the Lasso Prior over-fits the data.
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RMISE for f 5.8524 9.5384 37.561
RMSE for Spectral Coefficients 0.5889 0.9550 3.7375

RMISE is the root mean integrated squared error between the true f and its posterior mean.

RMISE is approximated with Simpson’s rule using 201 intervals. RMSE is the root mean

squared error between the true θ and their posterior means.

Figure 1 confirms that the Lasso prior mistakes noise for signal. The posterior

mean for the Lasso Prior almost connects the observations, while the T and

Lasso Smoothers effectively recover the true f . The figure also plots the true

and estimated spectral coefficients for frequencies 1 ≤ j ≤ 50. The behavior for

j > 50 extends the trends in the graphs. The true coefficients rapidly approach

zero for frequencies larger than 10. The additional uncertainty in the Lasso prior

for high frequency spectral coefficients allows the posterior mean of f to over-fit

the data. Due to the slightly better performance of the T Smoother over the

Lasso Smoother, we will present results for the T Smoother in the rest of the

paper. Also, the Lasso Smoother requires an additional Metropolis step.

3. Bayesian Shape-Restricted Spectral Analysis Regression

Section 3.1 considers monotonic functions and monotonic convex or concave

functions, and Section 3.2 develops “S”–shaped and “U”–shaped functions. Sec-

tion 3.3 modifies the model to include functions on the boundary of the constraint

space by using spike-and-slab priors.

3.1. Restrictions on sample path derivatives

The qth derivative of f is the square of a Gaussian process:

f (q)(x) = δZ2(x) for δ = 1 or − 1 and q = 1 or 2, (3.1)

where δ and q are given by the user. Higher order derivatives (q > 2) are possible,

but have limited application. The marginal prior distribution of Z2(x) is a scaled,

Chi-squared distribution with one degree of freedom because the prior mean is

zero. To distinguish this model from the spike-and-slab prior in Section 3.3, we

call it the “Gamma Prior.”

When q is 1, f is monotone:
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Figure 1. Impact of priors on posterior distributions. Dots are Y observa-
tions; dashed lines are the true values; solid lines are posterior means; and
dotted lines and shaded areas are 95% credible intervals.

where the last term is the constant of integration that satisfies the mean–centering

condition at (2.2). The function is non-decreasing when δ = 1 and is non-

increasing when δ = −1.

When q is 2, f is a non-decreasing and convex function when δ = 1 or a

non-increasing and concave function when δ = −1:

f(x) = δ

[∫ x

0

∫ s

0
Z2(t)dt ds−

∫ 1

0

∫ x

0

∫ s

0
Z2(t)dt ds dx

]
+ α(x− 0.5). (3.3)

Here the second term and α are constants of integration and make f satisfy the

mean–centering condition. To ensure monotonicity, δα ≥ 0.

The first and second derivatives of (3.3) have the same sign. Reversing the

range of x in the integrals produces functions where the first and second deriva-

BAYESIAN ANALYSIS OF SHAPE-RESTRICTED FUNCTIONS 9

tives have opposite signs. The model for non-decreasing and concave functions

(δ = 1) or non-increasing and convex functions (δ = −1) is

f(x) = −δ

[∫ 1−x

0

∫ s

0
Z2(t)dt ds−

∫ 1

0

∫ 1−x

0

∫ s

0
Z2(t)dt ds dx

]
+ α(x− 0.5),

(3.4)

where δα ≥ 0.

Our theorem provides a class of functions with sample paths of the qth deriva-

tive almost surely piecewise continuous and positive. Theorem 1 is proven using

an argument similar to Shively, Sager and Walker (2009) and Ramsay (1998); it

is given in the Supplementary Material.

Theorem 1. Let q be a positive integer. Let the class of C(q)+ be the class of

functions

C(q)+ = {f(x)| f (q)(x) exists, f (q)(x) is piecewise continuous,

f (q)(x) ≥ 0, x ∈ [0, 1]},

and let C1[0, 1] denote the class of piecewise continuous functions on [0, 1]. Then,

f(x) ∈ C(q)+ if and only if there exists u(x) ∈ C1[0, 1] such that f (q−1)(x) =

a+
∫ x
0 u2(t)dt where f (0) ≡ f .

The cases of negative derivatives or opposite signs for the first and second

derivatives follow by trivial modifications.

Next, we consider the spectral representation for Z. Unlike the unconstrained

case of BSAR at (2.3), we include the constant function and θ0 because the

effect of θ0 can be more complex than shifting the sample path of Z2, and it

is not confounded with the intercept β0. The spectral coefficients have a sign

indeterminacy because multiplying them by minus one results in the same f . We

identify the model by assuming that θ0 ≥ 0. We modify the scale invariant prior

for θj at (2.5) by replacing σ2 with σ. The priors for the spectral coefficients are

θ0|σ ∼ N(0, σv2θ0)I(θ0 ≥ 0), and θj |σ, τ, γ ∼ N(0, στ2 exp[−jγ]). (3.5)

The prior for θ0 is the truncated normal distribution. In addition, to ensure that

f (1) is positive or negative for the convex or concave cases, we truncate the prior

distribution of α,

α|σ ∼ N(m0,α, σ
2v20,α)I(δα ≥ 0).

Our empirical experience has been that estimating the linear term α often does

not improve the accuracy of the estimator for f . In the empirical section, we set

α = 0 to focus attention on the Gaussian process.
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Figure 1. Impact of priors on posterior distributions. Dots are Y observa-
tions; dashed lines are the true values; solid lines are posterior means; and
dotted lines and shaded areas are 95% credible intervals.

where the last term is the constant of integration that satisfies the mean–centering

condition at (2.2). The function is non-decreasing when δ = 1 and is non-

increasing when δ = −1.

When q is 2, f is a non-decreasing and convex function when δ = 1 or a

non-increasing and concave function when δ = −1:

f(x) = δ

[∫ x

0

∫ s

0
Z2(t)dt ds−

∫ 1

0

∫ x

0

∫ s

0
Z2(t)dt ds dx

]
+ α(x− 0.5). (3.3)

Here the second term and α are constants of integration and make f satisfy the

mean–centering condition. To ensure monotonicity, δα ≥ 0.

The first and second derivatives of (3.3) have the same sign. Reversing the

range of x in the integrals produces functions where the first and second deriva-
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tives have opposite signs. The model for non-decreasing and concave functions

(δ = 1) or non-increasing and convex functions (δ = −1) is

f(x) = −δ

[∫ 1−x

0

∫ s

0
Z2(t)dt ds−

∫ 1

0

∫ 1−x

0

∫ s

0
Z2(t)dt ds dx

]
+ α(x− 0.5),

(3.4)

where δα ≥ 0.

Our theorem provides a class of functions with sample paths of the qth deriva-

tive almost surely piecewise continuous and positive. Theorem 1 is proven using

an argument similar to Shively, Sager and Walker (2009) and Ramsay (1998); it

is given in the Supplementary Material.

Theorem 1. Let q be a positive integer. Let the class of C(q)+ be the class of

functions

C(q)+ = {f(x)| f (q)(x) exists, f (q)(x) is piecewise continuous,

f (q)(x) ≥ 0, x ∈ [0, 1]},

and let C1[0, 1] denote the class of piecewise continuous functions on [0, 1]. Then,

f(x) ∈ C(q)+ if and only if there exists u(x) ∈ C1[0, 1] such that f (q−1)(x) =

a+
∫ x
0 u2(t)dt where f (0) ≡ f .

The cases of negative derivatives or opposite signs for the first and second

derivatives follow by trivial modifications.

Next, we consider the spectral representation for Z. Unlike the unconstrained

case of BSAR at (2.3), we include the constant function and θ0 because the

effect of θ0 can be more complex than shifting the sample path of Z2, and it

is not confounded with the intercept β0. The spectral coefficients have a sign

indeterminacy because multiplying them by minus one results in the same f . We

identify the model by assuming that θ0 ≥ 0. We modify the scale invariant prior

for θj at (2.5) by replacing σ2 with σ. The priors for the spectral coefficients are

θ0|σ ∼ N(0, σv2θ0)I(θ0 ≥ 0), and θj |σ, τ, γ ∼ N(0, στ2 exp[−jγ]). (3.5)

The prior for θ0 is the truncated normal distribution. In addition, to ensure that

f (1) is positive or negative for the convex or concave cases, we truncate the prior

distribution of α,

α|σ ∼ N(m0,α, σ
2v20,α)I(δα ≥ 0).

Our empirical experience has been that estimating the linear term α often does

not improve the accuracy of the estimator for f . In the empirical section, we set

α = 0 to focus attention on the Gaussian process.

51



10 PETER J. LENK AND TAERYON CHOI

Using the spectral representation of Z at (2.3) gives BSAR with monotone

constraints (BSARM) at (3.2):

f(x) = δ

∞∑
j=0

∞∑
k=0

θjθkφ
a
j,k(x), (3.6)

φa
j,k(x) =

∫ x

0
φj(s)φk(s)ds−

∫ 1

0

∫ s

0
φj(t)φ̄k(t)dt ds for j, k ≥ 0.

Replacing Z with the truncated ZJ gives a quadratic form for fJ :

fJ(x) = δθᵀ
JΦ

a
J(x)θJ , (3.7)

where θJ is the J +1 vector of spectral coefficients, and Φa
J(x) is a J +1×J +1

matrix with (j, k) entry φa
j,k(x). The online appendix displays the integrated,

mean–centered basis functions φa
j,k.

BSAR with monotone convexity or concavity (BSARMC) at (3.3) where the

first and second derivatives have the same sign becomes

f(x) = δ

∞∑
j=0

∞∑
k=0

θjθkφ
b
j,k(x) + α(x− 0.5), (3.8)

φb
j,k(x) =

∫ x

0

∫ s

0
φj(t)φk(t)dt ds−

∫ 1

0

∫ x

0

∫ s

0
φj(t)φk(t)dt ds dx.

Truncating the infinite sum at J terms gives

fJ(x) = δθᵀ
JΦ

b
J(x)θJ + α(x− 0.5), (3.9)

where Φb
J(x) is the J + 1 × J + 1 matrix with (j, k) entries φb

j,k(x). The online

appendix displays the integrated, mean–centered, basis functions φb
j,k.

When the first and second derivative of BSARMC at (3.4) have opposite

signs, the integrated basis functions are given by

f(x) = −δ
∞∑
j=0

∞∑
k=0

θjθkφ
c
j,k(x) + α(x− 0.5), (3.10)

φc
j,k(x) = φb

j,k(1− x). (3.11)

The finite sum representation for f is

fJ(x) = −δθᵀ
JΦ

c
J(x)θJ + α(x− 0.5), (3.12)

where Φc
J(x) = Φb

J(1− x).

The proposed approach at (3.1) does not introduce restrictions on the spec-

tral coefficients. Thus, posterior consistency follows from the Kullback-Leibler

BAYESIAN ANALYSIS OF SHAPE-RESTRICTED FUNCTIONS 11

property of Gaussian process prior by the integral representation of f and the ex-
istence of uniformly consistent tests, summarized in Theorem 2. To discuss poste-
rior consistency, we consider the nonparametric regression model Yi = f(xi)+ ϵi,
ϵi ∼ N(0, σ2), i = 1, . . . , n, for simplicity, neighborhoods Hϵ and Wϵ,n, the
Hellinger neighborhood and the L1(Qn)-neighborhood of the true value of pa-
rameter ϑ0 = (f0, σ0) respectively, defined as follows. For every ϵ > 0, Hϵ =
{ϑ = (f, σ) : dH(pϑ, pϑ0) < ϵ} , where dH(pϑ, pϑ0) is a version of Hellinger dis-
tance given by dH(pϑ, pϑ0) = 1−

∫ √
pϑ, pϑ0dµ(x), and

Wϵ,n =

{
(f, σ) :

∫ ��f(x)− f0(x)
��dQn(x) < ϵ,

����
σ

σ0
− 1

���� < ϵ

}
,

where Qn is the empirical measure based on the design points, Qn = n−1
∑n

i=1

Ixi(x). We show that posterior probabilities of Hϵ and Wϵ,n converge to one with
probability tending to one respectively, in other words, posterior probabilities of
the complements of Hϵ and Wϵ,n converge to zero with probability tending to
one.

Theorem 2. Let ϑ0 = (f0, σ0), and let pnϑ0
denote the true distribution of data

Y n ≡ (Y1, . . . , Yn) given the covariates xn ≡ (x1, . . . , xn). Assume that f0 and f
are q-times continuously differentiable and that f is uniformly bounded. Then,
the posterior distribution of f and σ is consistent under the L1(Qn) norm and
the Hellinger norm,

Π
{
WC

ϵ,n|(x1, Y1), . . . , (xn, Yn)
}
→ 0 in pnϑ0

probability.

Π
{
HC

ϵ |(X1, Y1), . . . , (Xn, Yn)
}
→ 0 in pnϑ0

probability.

Theorem 2 can be easily established by adapting consistency theorems of
Choi and Schervish (2007) and Shively, Sager and Walker (2009) based on the
characterization in Theorem 1. It is possible to extend the posterior consistency
result in Theorem 2 to the partial linear model of (2.1) without much difficulty.
Similar results as in Theorem 2 can be obtained by modifying the proof in Sec-
tion 5 of Shively, Sager and Walker (2009); this is an alternative asymptotic
technique that adapts the approach of combining the consistency property of the
maximum likelihood estimator and a Bayesian component, originally proposed
in Walker and Hjort (2001). The detailed proof of Theorem 2 can be found in
the Supplementary Material.

3.2. Restriction on derivatives with a unique root

In this section we consider U–shaped and S–shaped functions by forcing the
first or second derivative of f to change signs at a unique point. Suppose that
f (q) is piecewise continuous and that it has a unique root at x = ω:

δf (q)(x) > 0, 0 < x < ω, δf (q)(ω) = 0, and δf (q)(x) < 0, ω < x < 1 (3.13)
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J(x) is a J +1×J +1

matrix with (j, k) entry φa
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0
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Truncating the infinite sum at J terms gives
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b
J(x)θJ + α(x− 0.5), (3.9)

where Φb
J(x) is the J + 1 × J + 1 matrix with (j, k) entries φb

j,k(x). The online

appendix displays the integrated, mean–centered, basis functions φb
j,k.

When the first and second derivative of BSARMC at (3.4) have opposite

signs, the integrated basis functions are given by

f(x) = −δ
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j=0

∞∑
k=0

θjθkφ
c
j,k(x) + α(x− 0.5), (3.10)

φc
j,k(x) = φb

j,k(1− x). (3.11)

The finite sum representation for f is

fJ(x) = −δθᵀ
JΦ

c
J(x)θJ + α(x− 0.5), (3.12)

where Φc
J(x) = Φb

J(1− x).

The proposed approach at (3.1) does not introduce restrictions on the spec-

tral coefficients. Thus, posterior consistency follows from the Kullback-Leibler
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property of Gaussian process prior by the integral representation of f and the ex-
istence of uniformly consistent tests, summarized in Theorem 2. To discuss poste-
rior consistency, we consider the nonparametric regression model Yi = f(xi)+ ϵi,
ϵi ∼ N(0, σ2), i = 1, . . . , n, for simplicity, neighborhoods Hϵ and Wϵ,n, the
Hellinger neighborhood and the L1(Qn)-neighborhood of the true value of pa-
rameter ϑ0 = (f0, σ0) respectively, defined as follows. For every ϵ > 0, Hϵ =
{ϑ = (f, σ) : dH(pϑ, pϑ0) < ϵ} , where dH(pϑ, pϑ0) is a version of Hellinger dis-
tance given by dH(pϑ, pϑ0) = 1−
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pϑ, pϑ0dµ(x), and
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(f, σ) :

∫ ��f(x)− f0(x)
��dQn(x) < ϵ,
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σ

σ0
− 1

���� < ϵ

}
,

where Qn is the empirical measure based on the design points, Qn = n−1
∑n

i=1

Ixi(x). We show that posterior probabilities of Hϵ and Wϵ,n converge to one with
probability tending to one respectively, in other words, posterior probabilities of
the complements of Hϵ and Wϵ,n converge to zero with probability tending to
one.

Theorem 2. Let ϑ0 = (f0, σ0), and let pnϑ0
denote the true distribution of data

Y n ≡ (Y1, . . . , Yn) given the covariates xn ≡ (x1, . . . , xn). Assume that f0 and f
are q-times continuously differentiable and that f is uniformly bounded. Then,
the posterior distribution of f and σ is consistent under the L1(Qn) norm and
the Hellinger norm,

Π
{
WC
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}
→ 0 in pnϑ0

probability.

Π
{
HC
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→ 0 in pnϑ0

probability.

Theorem 2 can be easily established by adapting consistency theorems of
Choi and Schervish (2007) and Shively, Sager and Walker (2009) based on the
characterization in Theorem 1. It is possible to extend the posterior consistency
result in Theorem 2 to the partial linear model of (2.1) without much difficulty.
Similar results as in Theorem 2 can be obtained by modifying the proof in Sec-
tion 5 of Shively, Sager and Walker (2009); this is an alternative asymptotic
technique that adapts the approach of combining the consistency property of the
maximum likelihood estimator and a Bayesian component, originally proposed
in Walker and Hjort (2001). The detailed proof of Theorem 2 can be found in
the Supplementary Material.

3.2. Restriction on derivatives with a unique root

In this section we consider U–shaped and S–shaped functions by forcing the
first or second derivative of f to change signs at a unique point. Suppose that
f (q) is piecewise continuous and that it has a unique root at x = ω:

δf (q)(x) > 0, 0 < x < ω, δf (q)(ω) = 0, and δf (q)(x) < 0, ω < x < 1 (3.13)
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for δ = −1 or 1 and q = 1 or 2. In order to force the signs of f (q) to switch at

ω, we introduce the “squish” function h, a decreasing logistic function between

1 and −1, into the model for f :

f (q)(x) = δZ2(x)h(x) for δ = 1 or − 1 and q = 1 or 2, (3.14)

h(x) =
1− exp[ψ(x− ω)]

1 + exp[ψ(x− ω)]
for ψ > 0 and 0 < ω < 1, (3.15)

where ω is unique zero of h, and the slope ψ controls the steepness of h at

ω. The squish function h has several attractive features. First, f (q)(ω) = 0,

and h flips the sign of the qth derivative after ω. Second, the qth derivatives

of f are continuous at ω. Third, h is nearly plus or minus one outside a small

neighborhood of ω when ψ is large.

When q = 1, ω is the maximum for inverted U–shaped functions (δ = 1) or

the minimum for U–shaped functions (δ = −1). The model for f is:

f(x) = δ

[∫ x

0
Z2(s)h(s)ds−

∫ 1

0

∫ x

0
Z2(t)h(t)dtds

]
. (3.16)

The second term is the constant of integration and satisfies the mean–centering

constraint at (2.2).

When q = 2, ω is the inflection point of f , and the model for f is

f(x) = δ

∫ x

0

∫ s

0
Z2(t)h(t)dt+ c1x+ c2,

where c1 and c2 are constants of integration. We select c2 to satisfy the mean–

centering constraint. S–shaped functions require a second condition on the first

derivative to ensure monotonicity of f , which imposes condition on c1. We con-

sider four cases that are specified by a combination of δ and a second indicator

ζ: increasing and convex-to-concave (δ = 1, ζ = 1), decreasing and concave-to-

convex (δ = −1, ζ = 1), increasing and concave-to-convex (δ = 1, ζ = −1), and

decreasing and convex-to-concave (δ = −1, ζ = −1). The model for f is

f(x) = δζ

[∫ x

0

∫ s

0
Z2(t)h(t)dt ds−

∫ 1

0

∫ x

0

∫ s

0
Z2(t)h(t)dt ds dx

]

+(α− δξ)(x− 0.5),

ξ =min

[
0, min

x∈[0,1]
ζ

∫ x

0
Z2(s)h(s)ds

]
, (3.17)

where δα > 0. It is easy to check that the f (2) satisfies (3.13), that f (1) is positive

or negative, and that f is mean centered.
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The class of function represented by the model in (3.14) characterizes the

sample paths of the qth derivative to be almost surely piecewise continuous and

to have a unique root at ω. This leads to a complete class theorem for the

representation: this is proven in the Supplementary Material, and the cases for

negative derivatives follow similar arguments.

Theorem 3. If h is as in (3.15), with ψ > 0 and 0 < ω < 1, and for x ∈ [0, 1],

f1(x) =

∫ x

0
u2(s)h(s)ds+ a, and f2(x) = ax+ b+

∫ x

0

∫ s

0
u2(t)h(t)dt ds,

then f
(1)
1 (x) and f

(2)
2 (x) are piecewise continuous with unique zeros at x = ω.

Conversely, if f (q)(x) is continuously differentiable on [0, 1] and has a unique

zero at x = ω, then there exists u(x) ∈ C1[0, 1] such that f (q)(x) = u2(x)hψ,ω(x).

The prior distributions for ψ and ω are truncated normal distributions:

ψ ∼ N(m0,ψ, v
2
0,ψ)I(ψ > 0) and ω ∼ N(m0,ω, v

2
0,ω)I(ω ∈ S),

where S is the support of x. As ψ goes to infinity, the squish function h is 1 for

x < ω, 0 for x = ω and −1 for x > ω. In our simulation studies, we find that the

likelihood function is fairly flat in the slope ψ for sufficiently large ψ. Intuitively,

if ω is between two order statistics; x(k) < ω < x(k+1), then the likelihood for ψ is

nearly constant for ψ > ψk where h(x(k)|ψk) ≈ 1−ϵ and h(x(k+1)|ψk) ≈ −1+ϵ for

small ϵ > 0. One way to specify ψ is to find the value such that h(ω−λ) = 1−ϵ for

small, positive λ and ϵ. Then ψ = ln[(2− ϵ)/ϵ]/λ. Therefore, we will sometimes

fix ψ to a large value (1000) in our empirical studies.

We use numerical integration because the integral of the product of the

cosines and squish functions does not have a closed form. We find the trapezoid

rule simple to implement, and fast, since we need integrals at each observation

and each value of a fine grid of [0, 1] to plot f. Typically, the fine grid has 200

intervals.

3.3. Spike-and-slab priors

A limitation of the previous models for f is that the posterior mean will not

include functions on the boundary of the constraint space for different regions

of its support. If Z2(x) = 0 over an interval, then f is on the boundary of

the constraint space over that region. Even though Z2 puts positive mass on

neighborhoods of 0, its posterior mean will be positive. Neelon and Dunson

(2004) examine this issue for monotone plines. They ameliorate bias in the

posterior mean by truncating the slopes to 0 if their absolute value is less than a

constant. The implied, spike–and–slab prior is a mixture of a point mass at zero
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derivative to ensure monotonicity of f , which imposes condition on c1. We con-

sider four cases that are specified by a combination of δ and a second indicator
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ξ =min

[
0, min

x∈[0,1]
ζ

∫ x

0
Z2(s)h(s)ds

]
, (3.17)

where δα > 0. It is easy to check that the f (2) satisfies (3.13), that f (1) is positive

or negative, and that f is mean centered.
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(2)
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zero at x = ω, then there exists u(x) ∈ C1[0, 1] such that f (q)(x) = u2(x)hψ,ω(x).
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2
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x < ω, 0 for x = ω and −1 for x > ω. In our simulation studies, we find that the
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small ϵ > 0. One way to specify ψ is to find the value such that h(ω−λ) = 1−ϵ for

small, positive λ and ϵ. Then ψ = ln[(2− ϵ)/ϵ]/λ. Therefore, we will sometimes

fix ψ to a large value (1000) in our empirical studies.

We use numerical integration because the integral of the product of the

cosines and squish functions does not have a closed form. We find the trapezoid

rule simple to implement, and fast, since we need integrals at each observation

and each value of a fine grid of [0, 1] to plot f. Typically, the fine grid has 200

intervals.

3.3. Spike-and-slab priors

A limitation of the previous models for f is that the posterior mean will not

include functions on the boundary of the constraint space for different regions

of its support. If Z2(x) = 0 over an interval, then f is on the boundary of

the constraint space over that region. Even though Z2 puts positive mass on

neighborhoods of 0, its posterior mean will be positive. Neelon and Dunson

(2004) examine this issue for monotone plines. They ameliorate bias in the

posterior mean by truncating the slopes to 0 if their absolute value is less than a

constant. The implied, spike–and–slab prior is a mixture of a point mass at zero
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and a truncated normal distribution. We adapt Neelon and Dunson’s method

to Z2 instead of its coefficients. We define the “latent” Z̃ to be the Gaussian

process Z in the previous sections. The actual Z that is used in the models for

f truncates the latent Z̃:

Z(x) = Z̃(x) if Z̃2(x) > χ and Z(x) = 0 if Z̃2(x) ≤ χ,

where χ is a non-negative constant. For instance, (3.1) becomes f (q)(x) =

δZ̃2(x)I(Z̃2(x) > χ). The spike-and-slab truncation is imposed on the sam-

ple paths of Z̃2 not on the prior distribution for the spectral coefficients. By

replacing small values of Z̃2 by zero, the model puts positive probability on the

boundary of the restriction space. We treat χ as an unknown parameter. Its

prior distribution is truncated normal on the non-negative numbers:

χ ∼ N(µχ, σ
2
χ)I(χ ≥ 0).

The prior and posterior distributions of Z(x) are equivalent to a mixture of 0

and Z̃(x) where the prior and posterior probability of 0 depends on x:

π0(x) = E
[
I
(
Z̃2(x) < χ

)]
, and πn(x) = E

[
I
(
Z̃2(x) < χ

)
|Y1, ..., Yn

]
.

Plotting πn versus x provides information about the domain of f that is on the

boundary.

The integrals of Z2 no longer have analytical expressions, and we use numer-

ical integration: the trapezoid rule on a very fine grid. When we need to distin-

guish among the models, we call the models in Sections 3.1 and 3.2 by “Gamma

Prior,” and the models of Section 3.3 by “Spike-and-Slab Prior.” Based on our

experience, the MCMC for the Spike-and-Slab Prior does not mix as well as the

Gamma Prior.

The MCMC algorithm for both the Gamma and Spike–and–Slab Priors is

presented in the online appendix. They use an adaptive Metropolis procedure

(Haario, Saksman and Tamminen (2001) and Atchadé and Rosenthal (2005)),

that improves the mixing and convergence compared to random walk Metropolis.

4. Empirical Analysis of Shaped–Restricted BSAR

This section examines the empirical analysis of shape–restricted BSAR based

on simulation studies and two applications. Our software implementations of

BSAR are written in GAUSS and R. Both are available from the authors upon

request. We are developing a user-friendly R package for BSAR, and a prelim-

inary version of R package is available from http://statlab2.korea.ac.kr/

software/bsar. Table 2 gives the abbreviations for the different methods.
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Table 2. Abbreviation of methods.

Abbreviation Method Source

BSAR Bayesian Spectral Analysis Regression Equation (2.3)

BSARM BSAR with Monotone Constraint Equation (3.6)

BSARMC BSARM with Convex or Concave Constraints Equations (3.8) or (3.10)

BSARU BSAR with U–Shaped Constraint Equations (3.16)

BSARS BSAR with S–Shaped Constraints Equation (3.17)

BRSM Bayesian Regression Spline with Monotone Meyer et al. (2011)

Constraint

BRSMC BRSM with Convex or Concave Constraints Meyer et al. (2011)

BBMP Bayesian Bernstein Polynomial with Curtis and Ghosh (2011)

Monotone Constraint

Gamma Prior Models that do not truncate Z2 Sections 3.1 and 3.2

Spike–and–Slab Models that truncate Z2 Section 3.3

Prior

4.1. Simulation studies for curve fitting

This section compares shaped–restricted BSAR with Bayesian shape- re-

stricted regression splines (BRSM and BRSMC) of Meyer, Hackstadt and Hoet-

ing (2011) and Bayesian Bernstein Polynomial Monotone regression (BBPM) of

Curtis and Ghosh (2011) through simulations. BRSM is Bayesian regression

splines with monotone restrictions, and BRSMC is Bayesian regression splines

with monotone, convex or concave restrictions. For BRSM and BRSMC, the

R code is available from the author’s website of Meyer, Hackstadt and Hoeting

(2011), http:/www.stat.colostate.edu/~meyer/bayescode.htm, and R pack-

age bisoreg is used for BBPM. We generated 50 data sets using low and high

information conditions. The low information condition had 50 observations and

30 basis functions, and the high information condition had 200 observations and

50 basis functions.

The focal performance metric is the RMISE between the true β0 + f and

its posterior mean. We simulated data from five functions: Linear and Sinusoid

are monotone. Exponential (Expo) and the sum of four cosines (QuadCos) are

monotone and convex. Logarithm (LogX) is monotone and concave. The online

appendix gives the models. BSARMC sets α = 0 to focus attention on the

spectral representation.

Table 3 summarizes the RMISE’s, and the bold numbers in Table 3 indicate

the smallest, average RMISE. The BSAR estimates use the Gamma Prior of Sec-

tions 3.1 and 3.2. BSARM has the smallest, average RMISE for the monotone

function, and BSARMC has the smallest, average RMISE for the convex or con-

cave functions. They did not uniformly dominated the other Bayesian estimators

for all data sets. Overall, the simulation results indicate that the shape–restricted

BSAR provides a competitive fit.
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Table 3. Average RMISE for monotone/convex/concave functions.

Function n BSARM BSARMC BRSM BRSMC BBPM
Linear 50 0.1741 0.1865 0.2181 NA 0.2087

Monotone (s.e.) (0.012) (0.0102) (0.0121) NA (0.0121)
200 0.1085 0.1211 0.1356 NA 0.1362
(s.e.) (0.0050) (0.0037) (0.0055) NA (0.0055)

Sinusoid 50 0.3051 0.5786 0.3499 NA 0.3052
Monotone (s.e.) (0.0116) (0.0058) (0.0129) NA (0.0115)

200 0.1726 0.4758 0.1959 NA 0.1870
(s.e.) (0.0073) (0.0021) (0.0075) NA 0.0070)

Expo 50 0.3134 0.2840 0.3188 0.3730 0.3329
Monotone (s.e.) (0.0115) (0.0121) (0.0123) (0.0123) (0.0126)
Convex 200 0.1884 0.1571 0.1731 0.2007 0.2149

(s.e.) (0.0053) (0.0050) (0.0064) (0.0064) (0.0058)
QuadCos 50 0.3204 0.2492 0.3826 0.3213 0.3092
Monotone (s.e.) (0.0136) (0.0120) (0.0176) (0.0176) (0.0133)
Convex 200 0.1865 0.1481 0.1876 0.1885 0.2028

(s.e.) (0.0068) (0.0060) (0.0084) (0.0084) (0.0062)
LogX 50 0.2178 0.1811 0.2607 0.2177 0.2322

Monotone (s.e.) (0.0116) (0.0130) (0.0128) (0.0126) (0.0120)
Concave 200 0.1357 0.1149 0.1646 0.1347 0.1579

(s.e.) (0.0061) (0.0054) (0.0066) (0.0057) (0.0061)

Table 4. Estimating the maximum of a function with BSARU: 50 data sets
per condition.

Abscissa at Maximum, ω = 2
Statistic n Mean Standard Q2 Median Q3

Deviation
Posterior Mean 50 2.099 0.156 2.011 2.085 2.165

200 2.006 0.099 1.949 1.992 2.070
Posterior Standard Deviation 50 0.153 0.055 0.114 0.145 0.178

200 0.081 0.035 0.061 0.077 0.092

To test the estimating of upside-down U–shaped functions and their maxima,

we considered the model: Y = 1.67 + 0.5(x+ 2)4 exp(−x) + ϵ where ϵ ∼ N(0, 1)

and x ∈ [0, 10]. The maximizer ω of f is 2. Table 4 reports the simulation

statistics based on 50 and 200 observations using 50 simulated data sets. The

results indicate that the posterior distribution of ω correctly recovers the value of

x that maximizes f . As far as we know, Bayesian regression splines or Bernstein

polynomials currently do not have U–shaped options for comparison.

The online appendix continues the simulation study to demonstrate BSARS

and the Spike-and-Slab Prior. The simulation studies confirm that BASRS ac-

curately estimates the inflection point of S–shaped functions. The simulation
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for the Spike-and-Slab Prior uses a test function that is on the boundary of the

constraint space in two regions of its support. The fit statistics favor the Spike-

and-Slab Prior over the Gamma Prior in this case. Please refer to the online

appendix for more details.

4.2. Testing the adequacy of shape restrictions

We test the adequacy of shape restrictions by computing the marginal likeli-

hoods of competing models (Jeffreys (1961) and Kass and Raftery (1995)). Our

situation differs from Bayesian model testing for variable selection or for com-

paring a parametric model to a nonparametric model (Lenk (1999)). In our

application the likelihood functions for the different models are the same if one

treats the unknown f as a parameter. The shape–restrictions belong to the prior

distribution of f , and Bayesian hypothesis testing is selecting the “best” prior

distribution.

When a model incorrectly imposes a shape restriction, then the marginal

likelihood for this model should suffer because the sums-of-squares error (SSE)

between the observed Y and estimated regression function tends to be larger

than the SSE for models with the correct restrictions or no restrictions. In

the case where two or more models are consistent with the true function, the

SSEs may be nearly equivalent. This case is more nuanced, and model choice is

driven by at least two factors. First, constraints help the model to separate noise

from signal. For example, the unrestricted model is consistent with monotone

functions but may mistake noise for signal by introducing small wobbles in the

estimated function. The monotone model correctly recognizes these wobbles as

noise. The SSE for the restricted model will be slightly larger than that of the

unrestricted model because adding a constraint does not improve fit. However,

the monotone model has less posterior uncertainty about the function, which

can lead to larger LILs. Second, the prior distributions have greater influence on

model choice. In the simulation study, we used the same prior parameters across

the models; however, the BSARU and BSARS have additional parameters, ω

and ψ. The marginal likelihood may prefer a simpler model if the reduction in

uncertainty does not compensate for higher model complexity.

Our simulation study considered five true models: one for each set of con-

straints, and used the Gamma Prior of Sections 3.1 and 3.2. Model M1 does not

have a constraint and is consistent with only BSAR. Model M2 is monotone and

is consistent with BSARM and BSAR. Model M3 is montone and convex and

is consistent with BSARMC, BSARM, and BSAR. Model M4 is upside-down

U–Shaped and is consistent with BSARU and BSAR. Model M5 is S–Shaped

and is consistent with BSARS, BSARM, and BSAR. Also, BSARU and BSARS

could mimic monotonic models by sending ω towards the endpoints 0 or 1. The
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Table 3. Average RMISE for monotone/convex/concave functions.

Function n BSARM BSARMC BRSM BRSMC BBPM
Linear 50 0.1741 0.1865 0.2181 NA 0.2087

Monotone (s.e.) (0.012) (0.0102) (0.0121) NA (0.0121)
200 0.1085 0.1211 0.1356 NA 0.1362
(s.e.) (0.0050) (0.0037) (0.0055) NA (0.0055)

Sinusoid 50 0.3051 0.5786 0.3499 NA 0.3052
Monotone (s.e.) (0.0116) (0.0058) (0.0129) NA (0.0115)

200 0.1726 0.4758 0.1959 NA 0.1870
(s.e.) (0.0073) (0.0021) (0.0075) NA 0.0070)

Expo 50 0.3134 0.2840 0.3188 0.3730 0.3329
Monotone (s.e.) (0.0115) (0.0121) (0.0123) (0.0123) (0.0126)
Convex 200 0.1884 0.1571 0.1731 0.2007 0.2149

(s.e.) (0.0053) (0.0050) (0.0064) (0.0064) (0.0058)
QuadCos 50 0.3204 0.2492 0.3826 0.3213 0.3092
Monotone (s.e.) (0.0136) (0.0120) (0.0176) (0.0176) (0.0133)
Convex 200 0.1865 0.1481 0.1876 0.1885 0.2028

(s.e.) (0.0068) (0.0060) (0.0084) (0.0084) (0.0062)
LogX 50 0.2178 0.1811 0.2607 0.2177 0.2322

Monotone (s.e.) (0.0116) (0.0130) (0.0128) (0.0126) (0.0120)
Concave 200 0.1357 0.1149 0.1646 0.1347 0.1579

(s.e.) (0.0061) (0.0054) (0.0066) (0.0057) (0.0061)

Table 4. Estimating the maximum of a function with BSARU: 50 data sets
per condition.

Abscissa at Maximum, ω = 2
Statistic n Mean Standard Q2 Median Q3

Deviation
Posterior Mean 50 2.099 0.156 2.011 2.085 2.165

200 2.006 0.099 1.949 1.992 2.070
Posterior Standard Deviation 50 0.153 0.055 0.114 0.145 0.178

200 0.081 0.035 0.061 0.077 0.092

To test the estimating of upside-down U–shaped functions and their maxima,

we considered the model: Y = 1.67 + 0.5(x+ 2)4 exp(−x) + ϵ where ϵ ∼ N(0, 1)

and x ∈ [0, 10]. The maximizer ω of f is 2. Table 4 reports the simulation

statistics based on 50 and 200 observations using 50 simulated data sets. The

results indicate that the posterior distribution of ω correctly recovers the value of

x that maximizes f . As far as we know, Bayesian regression splines or Bernstein

polynomials currently do not have U–shaped options for comparison.

The online appendix continues the simulation study to demonstrate BSARS

and the Spike-and-Slab Prior. The simulation studies confirm that BASRS ac-

curately estimates the inflection point of S–shaped functions. The simulation
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for the Spike-and-Slab Prior uses a test function that is on the boundary of the

constraint space in two regions of its support. The fit statistics favor the Spike-

and-Slab Prior over the Gamma Prior in this case. Please refer to the online

appendix for more details.

4.2. Testing the adequacy of shape restrictions

We test the adequacy of shape restrictions by computing the marginal likeli-

hoods of competing models (Jeffreys (1961) and Kass and Raftery (1995)). Our

situation differs from Bayesian model testing for variable selection or for com-

paring a parametric model to a nonparametric model (Lenk (1999)). In our

application the likelihood functions for the different models are the same if one

treats the unknown f as a parameter. The shape–restrictions belong to the prior

distribution of f , and Bayesian hypothesis testing is selecting the “best” prior

distribution.

When a model incorrectly imposes a shape restriction, then the marginal

likelihood for this model should suffer because the sums-of-squares error (SSE)

between the observed Y and estimated regression function tends to be larger

than the SSE for models with the correct restrictions or no restrictions. In

the case where two or more models are consistent with the true function, the

SSEs may be nearly equivalent. This case is more nuanced, and model choice is

driven by at least two factors. First, constraints help the model to separate noise

from signal. For example, the unrestricted model is consistent with monotone

functions but may mistake noise for signal by introducing small wobbles in the

estimated function. The monotone model correctly recognizes these wobbles as

noise. The SSE for the restricted model will be slightly larger than that of the

unrestricted model because adding a constraint does not improve fit. However,

the monotone model has less posterior uncertainty about the function, which

can lead to larger LILs. Second, the prior distributions have greater influence on

model choice. In the simulation study, we used the same prior parameters across

the models; however, the BSARU and BSARS have additional parameters, ω

and ψ. The marginal likelihood may prefer a simpler model if the reduction in

uncertainty does not compensate for higher model complexity.

Our simulation study considered five true models: one for each set of con-

straints, and used the Gamma Prior of Sections 3.1 and 3.2. Model M1 does not

have a constraint and is consistent with only BSAR. Model M2 is monotone and

is consistent with BSARM and BSAR. Model M3 is montone and convex and

is consistent with BSARMC, BSARM, and BSAR. Model M4 is upside-down

U–Shaped and is consistent with BSARU and BSAR. Model M5 is S–Shaped

and is consistent with BSARS, BSARM, and BSAR. Also, BSARU and BSARS

could mimic monotonic models by sending ω towards the endpoints 0 or 1. The
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Table 5. Average log integrated likelihood over 50 data sets per condition.

50 Observations BSAR BSARM BSARMC BSARU BSARS
M1: Free -168.114 -192.767 -201.994 -220.503 -209.099
M2: Monotone -159.346 -145.007 -158.733 -159.162 -153.302
M3: Monotone Convex -161.931 -142.352 -140.618 -152.399 -147.947
M4: U–Shaped -160.708 -203.013 -220.222 -159.440 -203.926
M5: S–Shaped -215.488 -173.730 -215.466 -179.728 -178.649
200 Observations BSAR BSARM BSARMC BSARU BSARS
M1: Free -501.123 -655.949 -701.773 -690.688 -710.554
M2: Monotone -492.962 -480.329 -550.351 -499.800 -526.203
M3: Monotone Convex -490.013 -474.379 -465.555 -488.631 -485.809
M4: U–Shaped -490.729 -705.068 -776.406 -509.745 -720.649
M5: S–Shaped -569.465 -535.112 -690.668 -580.578 -576.267

Bold face is maximum in row.

online appendix gives the model specifications. The simulations had a low infor-

mation condition with 50 observations and a high information condition with 200

observations. Fifty data sets were generated for each function and information

condition.

Table 5 summaries the average LIL over the 50 data sets within each condi-

tion. The online appendix presents more complete results with standard devia-

tions of the LIL, the proportion of times each model had maximum LIL, and the

RMISE between the true function and the posterior mean. When none of the

restrictions were appropriate (M1), the LIL correctly selected BSAR: BSAR had

maximum LIL for all 50 samples. Similarly, the average LIL correctly favored

BSARM for M2, with choice rates of 84% and 92% on 50 and 200 observations

and BSARMC for M3, with choice rates of 54% and 74% on 50 and 200 obser-

vations.

The LIL found it more challenging to identify M4 (U–shaped) and M5 (S–

shaped). With 50 observations, the LIL correctly favored BSARU for M4, and

BSAR was a strong contender. The choice rates were 64% for BSARU and 36%

for BSAR. With 200 observations, the LIL picked BSAR 94% of time for M4. For

M5 the average LIL slightly favored BASRM over BASRS with 50 observations,

with choice rates of 44% for BSARM and 40% for BSARS. With 200 observations,

LIL favored BSARM for M5, with choice rates of 54% for BSARM and 18% for

BSARU.

In the high-information condition the reduction in estimation error did not

compensate for the extra parameters for U and S–shaped models. Because the

LILs for these models are relative close to each other, it would be possible to

adjust the priors to shift the results in a different direction. One could make the

prior distributions equivalent by adjusting their parameters to equalize the prior
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information as determined by a measure such as the Kullback-Leibler informa-

tion. These results do not rule out using BSARU and BSARS because they allow

for the explicit estimation and inference of the extreme or the point of inflection,

a challenging problem in unconstrained nonparametric models.

4.3. Prestige of occupations

This example illustrates use of two, additive BSAR functions. The data con-

sists of the prestige of 102 occupations in Canada and are from Fox and Weis-

ber (2011), available at http://socserv.socsci.mcmaster.ca/jfox/Books/

Companion/data.html. The dependent variable is the Pineo-Porter prestige

score from a social survey conducted in mid-1960s. Three independent variables

are from the 1971 Canadian Census: 1) the average years of education for workers

in the occupation, 2) the average yearly income for workers in the occupation,

and 3) the percentage of workers in the occupation who are women. One may

reasonably expect that prestige increases with both education and income, and

exploratory data analysis indicates this to be true. The relation between prestige

and the percentage of women is less clear. Women-dominated occupations tend

to have lower incomes than men-dominated ones, so their prestige may be lower.

However, women are nearly equal to men in education in 1971, so their prestige

may be higher than expected based on income alone. We will treat percentage

of women as a linear covariate.

Figure 2 plots the BSAR functions for two models. Panels A and B used unre-

stricted BSAR for both Income and Education. This model has a LIL of –756.50.

BSAR over-fits the data due to the “clumpiness” of Education and Income, and

the functions are difficult to interpret. Panels C and D fit S–shaped BSARS to

Education and increasing, convex BSARMC to Income. The shape–restrictions

help to smooth the estimated function, and its LIL increases to –618.38. The

estimated inflection point for Education is 12.23 years with a posterior standard

deviation of 1.25. The marginal benefit of education is increasing up to 12 years

and declining afterward. The estimated coefficient for Percentage of Women is

0.0614 with a posterior standard deviation of 0.0274 in the BSARS/BSARMC

model. Interestingly, women–dominated occupations, such as nurses and primary

school teachers, have higher prestige than men–dominated professions, such as

computer programmers and typesetters, given similar income and education. Un-

fortunately, women dominated occupations tend to have lower incomes given ed-

ucation. Fortunately the difference, though highly significant, is relatively small

(64 Canadian dollars per year) at less than 1% of the average, yearly income.

Canada in 1971 seems to have been more progressive on gender equity in pay
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Table 5. Average log integrated likelihood over 50 data sets per condition.
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M4: U–Shaped -490.729 -705.068 -776.406 -509.745 -720.649
M5: S–Shaped -569.465 -535.112 -690.668 -580.578 -576.267

Bold face is maximum in row.
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observations. Fifty data sets were generated for each function and information

condition.

Table 5 summaries the average LIL over the 50 data sets within each condi-
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tions of the LIL, the proportion of times each model had maximum LIL, and the

RMISE between the true function and the posterior mean. When none of the

restrictions were appropriate (M1), the LIL correctly selected BSAR: BSAR had

maximum LIL for all 50 samples. Similarly, the average LIL correctly favored

BSARM for M2, with choice rates of 84% and 92% on 50 and 200 observations

and BSARMC for M3, with choice rates of 54% and 74% on 50 and 200 obser-

vations.

The LIL found it more challenging to identify M4 (U–shaped) and M5 (S–

shaped). With 50 observations, the LIL correctly favored BSARU for M4, and

BSAR was a strong contender. The choice rates were 64% for BSARU and 36%

for BSAR. With 200 observations, the LIL picked BSAR 94% of time for M4. For

M5 the average LIL slightly favored BASRM over BASRS with 50 observations,

with choice rates of 44% for BSARM and 40% for BSARS. With 200 observations,

LIL favored BSARM for M5, with choice rates of 54% for BSARM and 18% for

BSARU.

In the high-information condition the reduction in estimation error did not

compensate for the extra parameters for U and S–shaped models. Because the

LILs for these models are relative close to each other, it would be possible to

adjust the priors to shift the results in a different direction. One could make the

prior distributions equivalent by adjusting their parameters to equalize the prior
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information as determined by a measure such as the Kullback-Leibler informa-

tion. These results do not rule out using BSARU and BSARS because they allow

for the explicit estimation and inference of the extreme or the point of inflection,

a challenging problem in unconstrained nonparametric models.

4.3. Prestige of occupations

This example illustrates use of two, additive BSAR functions. The data con-

sists of the prestige of 102 occupations in Canada and are from Fox and Weis-

ber (2011), available at http://socserv.socsci.mcmaster.ca/jfox/Books/

Companion/data.html. The dependent variable is the Pineo-Porter prestige

score from a social survey conducted in mid-1960s. Three independent variables

are from the 1971 Canadian Census: 1) the average years of education for workers

in the occupation, 2) the average yearly income for workers in the occupation,

and 3) the percentage of workers in the occupation who are women. One may

reasonably expect that prestige increases with both education and income, and

exploratory data analysis indicates this to be true. The relation between prestige

and the percentage of women is less clear. Women-dominated occupations tend

to have lower incomes than men-dominated ones, so their prestige may be lower.

However, women are nearly equal to men in education in 1971, so their prestige

may be higher than expected based on income alone. We will treat percentage

of women as a linear covariate.

Figure 2 plots the BSAR functions for two models. Panels A and B used unre-

stricted BSAR for both Income and Education. This model has a LIL of –756.50.

BSAR over-fits the data due to the “clumpiness” of Education and Income, and

the functions are difficult to interpret. Panels C and D fit S–shaped BSARS to

Education and increasing, convex BSARMC to Income. The shape–restrictions

help to smooth the estimated function, and its LIL increases to –618.38. The

estimated inflection point for Education is 12.23 years with a posterior standard

deviation of 1.25. The marginal benefit of education is increasing up to 12 years

and declining afterward. The estimated coefficient for Percentage of Women is

0.0614 with a posterior standard deviation of 0.0274 in the BSARS/BSARMC

model. Interestingly, women–dominated occupations, such as nurses and primary

school teachers, have higher prestige than men–dominated professions, such as

computer programmers and typesetters, given similar income and education. Un-

fortunately, women dominated occupations tend to have lower incomes given ed-

ucation. Fortunately the difference, though highly significant, is relatively small

(64 Canadian dollars per year) at less than 1% of the average, yearly income.

Canada in 1971 seems to have been more progressive on gender equity in pay
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Figure 2. Occupational prestige. Dots are partial residuals, which are scaled relative to
the percentage of women. Solid lines are posterior means. Shaded areas between dashed
lines are 95% credible intervals. Panel A: unrestricted education using BSAR. Panel B:
unrestricted income using BSAR. Panel C: increasing, S–shaped education using BSARS.
Panel D: increasing, concave income using BSARMC.

than its southern neighbor where the gender pay gap is commonly reported to

be around 20% in 2014 (Institute for Women’s Policy Research).

4.4. Electricity demand

Demand for electricity depends on its price, on economic activity, and on

temperature. Because many homes do not use heating or cooling when the

ambient temperature is around 68◦ Fahrenheit, temperature is often coded as

the number of heating or cooling degree days relative to a reference temperature.

Engle et al. (1986) proposed a cubic spline model for the relation between demand

and temperature. We used the data in Yatchew (2003), Section 4.6.3, which

consists of 288 quarterly observations in Ontario from 1971 to 1994. Yatchew

(2003) found that the demand for electricity is co-integrated with gross domestic

product (GDP). Consequently, he uses the log of the ratio of electricity demand

to GDP as the dependent variable. A covariate W is the log price ratio of

electricity to natural gas. As W increases, demand for electricity should fall

off as customers switch from electricity to natural gas. The focal, independent

variable “Temperature” is the number of heating and cooling degree days relative

to 68◦F. “Temperature” is positive when the average temperature is above 68◦F

(more cooling days) and negative below 68◦F (more heating days). We fitted our

shape-restricted models to Yatchew’s data.
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Table 6. Electricity demand estimated models.

BSAR BSARM BSARM BSARMC BSARMC BSARS

Spike & Slab Spike & Slab

LIL 195.6015 194.5515 152.6503 146.7671 125.7278 157.3315

R-Square 0.8080 0.8002 0.8076 0.7918 0.8000 0.8054

Error Standard Deviation 0.1004 0.1005 0.0991 0.0998 0.0987 0.0991

(0.0042) (0.0041) (0.0041) (0.0042) (0.0041) (0.0041)

Intercept -1.5802 -1.5813 -1.579 -1.5769 -1.579 -1.5792

(0.0309) (0.0306) (0.0303) (0.0302) (0.0301) (0.0303)

Log Price Ratio -0.0754 -0.0719 -0.0751 -0.0712 -0.0720 -0.0741

(0.0245) (0.0244) (0.0242) (0.0240) (0.0240) (0.0240)

Inflection Point -338.5744

(1.7782)

Slope of Squish Function 12.0828

(1.9388)

Cutoff 0.00024 2.2E-06

(0.00012) (1.6E-06)

Posterior standard deviations are in parentheses.

Figure 3 plots the posterior means and 95% HPD intervals for the estimated

models. Panels A, C, and E include the parametric residuals yi − β̂wi. Panel

A is the unrestricted model, and Panel B compares the S–shaped model with

the unrestricted model. Except for the right most end of Temperature, the

posterior mean of the unrestricted model is within the HPD intervals of the S–

shaped model. Panels C and E plot the monotonically decreasing model and

monotonically decreasing and convex models, respectively, with Gamma Priors.

Panels D and F plot these models using Spike-and-Slab Priors and compares them

to the posterior means with Gamma Priors. The posterior means with Gamma

Priors are almost entirely contained in the HPD intervals for the Spike-and-Slab

Priors, except at the right endpoint in Panel D.

Table 6 gives the fit statistics and estimated parameters. The unrestricted

model has marginally better LIL than the decreasing function models. All of

the models confirm that demand decreases as the price of electricity increases

relative to the price of natural gas.

5. Conclusion

In this paper, we considered a Bayesian method for shape-restricted functions

by modeling derivatives of the functions with squared, Gaussian processes. The

proposed representation expresses monotone and convex/concave restrictions as

well U-shaped functions that have extrema and S–shaped functions that have

inflection points. The spectral analysis of the Gaussian processes facilitates in-

ference. We illustrated the empirical performance of the proposed model with
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Figure 2. Occupational prestige. Dots are partial residuals, which are scaled relative to
the percentage of women. Solid lines are posterior means. Shaded areas between dashed
lines are 95% credible intervals. Panel A: unrestricted education using BSAR. Panel B:
unrestricted income using BSAR. Panel C: increasing, S–shaped education using BSARS.
Panel D: increasing, concave income using BSARMC.
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temperature. Because many homes do not use heating or cooling when the

ambient temperature is around 68◦ Fahrenheit, temperature is often coded as

the number of heating or cooling degree days relative to a reference temperature.

Engle et al. (1986) proposed a cubic spline model for the relation between demand

and temperature. We used the data in Yatchew (2003), Section 4.6.3, which

consists of 288 quarterly observations in Ontario from 1971 to 1994. Yatchew

(2003) found that the demand for electricity is co-integrated with gross domestic

product (GDP). Consequently, he uses the log of the ratio of electricity demand

to GDP as the dependent variable. A covariate W is the log price ratio of

electricity to natural gas. As W increases, demand for electricity should fall

off as customers switch from electricity to natural gas. The focal, independent

variable “Temperature” is the number of heating and cooling degree days relative

to 68◦F. “Temperature” is positive when the average temperature is above 68◦F

(more cooling days) and negative below 68◦F (more heating days). We fitted our

shape-restricted models to Yatchew’s data.
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Table 6. Electricity demand estimated models.
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Spike & Slab Spike & Slab

LIL 195.6015 194.5515 152.6503 146.7671 125.7278 157.3315

R-Square 0.8080 0.8002 0.8076 0.7918 0.8000 0.8054

Error Standard Deviation 0.1004 0.1005 0.0991 0.0998 0.0987 0.0991

(0.0042) (0.0041) (0.0041) (0.0042) (0.0041) (0.0041)

Intercept -1.5802 -1.5813 -1.579 -1.5769 -1.579 -1.5792

(0.0309) (0.0306) (0.0303) (0.0302) (0.0301) (0.0303)

Log Price Ratio -0.0754 -0.0719 -0.0751 -0.0712 -0.0720 -0.0741

(0.0245) (0.0244) (0.0242) (0.0240) (0.0240) (0.0240)
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(1.7782)

Slope of Squish Function 12.0828

(1.9388)

Cutoff 0.00024 2.2E-06

(0.00012) (1.6E-06)

Posterior standard deviations are in parentheses.

Figure 3 plots the posterior means and 95% HPD intervals for the estimated

models. Panels A, C, and E include the parametric residuals yi − β̂wi. Panel

A is the unrestricted model, and Panel B compares the S–shaped model with

the unrestricted model. Except for the right most end of Temperature, the

posterior mean of the unrestricted model is within the HPD intervals of the S–

shaped model. Panels C and E plot the monotonically decreasing model and

monotonically decreasing and convex models, respectively, with Gamma Priors.

Panels D and F plot these models using Spike-and-Slab Priors and compares them

to the posterior means with Gamma Priors. The posterior means with Gamma

Priors are almost entirely contained in the HPD intervals for the Spike-and-Slab

Priors, except at the right endpoint in Panel D.

Table 6 gives the fit statistics and estimated parameters. The unrestricted

model has marginally better LIL than the decreasing function models. All of

the models confirm that demand decreases as the price of electricity increases

relative to the price of natural gas.

5. Conclusion

In this paper, we considered a Bayesian method for shape-restricted functions

by modeling derivatives of the functions with squared, Gaussian processes. The

proposed representation expresses monotone and convex/concave restrictions as

well U-shaped functions that have extrema and S–shaped functions that have

inflection points. The spectral analysis of the Gaussian processes facilitates in-

ference. We illustrated the empirical performance of the proposed model with
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Figure 3. Estimated electric demand. Dots are parametric residuals; solid
lines are posterior means, and shaded areas between dashed lines are 95%
credible intervals. Panel A: unrestricted demand. Panel B: monotonically
decreasing S-shaped demand, and the long-dashed line is the posterior mean
for the unrestricted model from Panel A. Panel C: monotonically decreasing
demand. Panel D: monotonically decreasing demand with Spike-and-Slab
Prior, and the long-dashed line is the posterior mean of for the monoton-
ically decreasing demand of Panel C. Panel E: monotonically decreasing
convex demand. Panel F: monotonically decreasing convex demand with a
Spike-and-Slab Prior, and the long-dashed line is the posterior mean of the
monotonically decreasing convex demand of Panel E.

simulations and data applications, and we compared the method to other exist-

ing methods. The simulation studies favored the proposed method, though all

contenders performed well.

We also considered Spike-and-Slab Priors to estimate functions on the bound-

ary of the constraint space and found improvements in the posterior mean at
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the cost of increased computations and degraded mixing of the MCMC. If the

researcher’s decisions do not depend on the function being exactly on the bound-

ary, then we recommend using the Gamma Prior to improve the estimation of f .

However, there are situations where testing boundary conditions are meaningful

for theoretical reasons. Then the Spike–and–Slab Prior is beneficial.

We also tested the ability of Bayesian hypothesis testing to confirm restric-

tions and demonstrated its ability to select the correct model when the models

have the sample parameter space. Least surprising, models with incorrect con-

straints were dominated by models with constraints that are consistent with the

true function. In addition, among models with the correct constraints, Bayesian

hypothesis testing tended to select the model that imposed the greatest num-

ber of correct constraints provided that the prior distributions are the same.

However, when a correct constraint expands the parameter space by adding pa-

rameters, Bayesian hypothesis testing tends to select the correct model with a

smaller parameter space in high–information conditions. This deficiency may be

overcome by judicious selection of prior distributions; for example, adjusting the

prior variances so that information measures are equal across prior distributions

may handicap priors on smaller parameters spaces.

There are several issues and extensions. For theoretical aspects, we have not

discussed the large sample properties of the BSAR except for posterior consis-

tency but believe that other asymptotic properties such as posterior convergence

rates and Bernstein-von Mises theorem for the BSAR could also be established

by verifying general sufficient conditions (see, e.g., Ghosal and van der Vaart

(2007)). One challenging part would be in dealing with the function space under

shape restriction and the non-normality as well as non-orthogonality due to the

squared Gaussian process in our characterization. For methodological develop-

ments, we could extend the proposed BSAR to cases with multivariate predictors

and non-Gaussian errors function for instance. For multivariate predictors, other

basis functions, such as radial basis function or Gaussian kernel function (e.g.,

Konishi, Ando and Imoto (2004) and Chakraborty, Ghosh and Mallick (2012)),

may be more suitable than cosine basis functions. For the non-Gaussian error

distribution, and more generally the unobserved errors from an unknown dis-

tribution function, we can consider Bayesian quantile regression (e.g., Koenker

(2005) and Yue and Rue (2011)) with shape-restriction and the shape-restricted

regression with unknown error distribution by using a Dirichlet process mixture

of normals (e.g., Chib and Greenberg (2010)) as well as the shape-restricted den-

sity regression (Wang and Dunson (2011)). Furthermore, the proposed method

can certainly be used in practical applications such as dose-response functions,

utility functions, or risk aversion modeling, of which in theory the shape restric-

tion needs to be incorporated for estimation.
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Figure 3. Estimated electric demand. Dots are parametric residuals; solid
lines are posterior means, and shaded areas between dashed lines are 95%
credible intervals. Panel A: unrestricted demand. Panel B: monotonically
decreasing S-shaped demand, and the long-dashed line is the posterior mean
for the unrestricted model from Panel A. Panel C: monotonically decreasing
demand. Panel D: monotonically decreasing demand with Spike-and-Slab
Prior, and the long-dashed line is the posterior mean of for the monoton-
ically decreasing demand of Panel C. Panel E: monotonically decreasing
convex demand. Panel F: monotonically decreasing convex demand with a
Spike-and-Slab Prior, and the long-dashed line is the posterior mean of the
monotonically decreasing convex demand of Panel E.

simulations and data applications, and we compared the method to other exist-

ing methods. The simulation studies favored the proposed method, though all

contenders performed well.

We also considered Spike-and-Slab Priors to estimate functions on the bound-

ary of the constraint space and found improvements in the posterior mean at
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the cost of increased computations and degraded mixing of the MCMC. If the

researcher’s decisions do not depend on the function being exactly on the bound-

ary, then we recommend using the Gamma Prior to improve the estimation of f .

However, there are situations where testing boundary conditions are meaningful

for theoretical reasons. Then the Spike–and–Slab Prior is beneficial.

We also tested the ability of Bayesian hypothesis testing to confirm restric-

tions and demonstrated its ability to select the correct model when the models

have the sample parameter space. Least surprising, models with incorrect con-

straints were dominated by models with constraints that are consistent with the

true function. In addition, among models with the correct constraints, Bayesian

hypothesis testing tended to select the model that imposed the greatest num-

ber of correct constraints provided that the prior distributions are the same.

However, when a correct constraint expands the parameter space by adding pa-

rameters, Bayesian hypothesis testing tends to select the correct model with a

smaller parameter space in high–information conditions. This deficiency may be

overcome by judicious selection of prior distributions; for example, adjusting the

prior variances so that information measures are equal across prior distributions

may handicap priors on smaller parameters spaces.

There are several issues and extensions. For theoretical aspects, we have not

discussed the large sample properties of the BSAR except for posterior consis-

tency but believe that other asymptotic properties such as posterior convergence

rates and Bernstein-von Mises theorem for the BSAR could also be established

by verifying general sufficient conditions (see, e.g., Ghosal and van der Vaart

(2007)). One challenging part would be in dealing with the function space under

shape restriction and the non-normality as well as non-orthogonality due to the

squared Gaussian process in our characterization. For methodological develop-

ments, we could extend the proposed BSAR to cases with multivariate predictors

and non-Gaussian errors function for instance. For multivariate predictors, other

basis functions, such as radial basis function or Gaussian kernel function (e.g.,

Konishi, Ando and Imoto (2004) and Chakraborty, Ghosh and Mallick (2012)),

may be more suitable than cosine basis functions. For the non-Gaussian error

distribution, and more generally the unobserved errors from an unknown dis-

tribution function, we can consider Bayesian quantile regression (e.g., Koenker

(2005) and Yue and Rue (2011)) with shape-restriction and the shape-restricted

regression with unknown error distribution by using a Dirichlet process mixture

of normals (e.g., Chib and Greenberg (2010)) as well as the shape-restricted den-

sity regression (Wang and Dunson (2011)). Furthermore, the proposed method

can certainly be used in practical applications such as dose-response functions,

utility functions, or risk aversion modeling, of which in theory the shape restric-

tion needs to be incorporated for estimation.
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Supplementary Materials

Supplementary materials available at Statistica Sinica online contains techni-

cal details on the equations for the integrated, mean–centered, cosine basis, the

MCMC algorithms, the proofs of Theorems 1–3, additional information about

the simulation studies, and simulations for BSARS and Spike–and–Slab priors.
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