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S1 Proof of Theorem 1

We first state a theorem from McKay (1985) on the asymptotic number of simple graphs with restricted edges.

Consider a simple graph G(V,E) with m edges and degree sequence d = (d1, . . . , dn). Let D be an n× n symmetric

zero-one matrix with a zero diagonal that specifies the set of edges that are not allowed, i.e., Dij = Dji = 1 if

an edge between node i and node j is forbidden, and Dij = Dji = 0 otherwise. Let λ =
∑n
i=1 di(di − 1)/(4m),

γ =
∑
i<j,Dij=1

didj
2m

, dmax = maxi di, and d̃ = 2 + dmax(1.5dmax + xmax + 1), where xmax is the maximum column

sum of D. Then we have the following theorem.

Theorem. (McKay, 1985) Suppose dmax ≥ 1 and d̃ ≤ ε1m, where ε1 < 2/3. Then the number of simple graphs with

degree sequence d and none of the forbidden edges specified in D is uniformly

(2m)!

(m)!2m
∏n
i=1 di!

exp{−λ− λ2 − γ +O(d̃2/m)} (S1.1)

as n→∞.

This conclusion is uniform over all possibilities for d satisfying the constraints as n→∞. We use this theorem

to approximate |Σd| and |Σd|Aij=0|, which will then lead to an approximation of Pij . For the set Σd, the matrix D

has 0 for all entries. Therefore xmax = 0 and γ = 0. Since the condition of Theorem 1 requires dmax = o(m1/4), we

immediately have dmax ≥ 1 and d̃ ≤ ε1m for ε1 < 2/3, i.e., the conditions for McKay’s theorem are satisfied. Also
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O(d̃2/m) becomes o(1). Applying McKay’s theorem, we have |Σd| is uniformly

(2m)!

(m)!2m
∏n
i=1 di!

exp{−λ− λ2 + o(1)} (S1.2)

as n→∞.

For the set |Σd|Aij=0|, the matrix D has Dij = Dji = 1 and 0 elsewhere. In this case, xmax = 1 and γ = didj/2m.

Based on the same argument, we have that the conditions for McKay’s theorem are satisfied and O(d̃2/m) becomes

o(1). Therefore, Applying McKay’s theorem, we have |Σd|Aij=0| is uniformly

(2m)!

(m)!2m
∏n
i=1 di!

exp{−λ− λ2 − didj
2m

+ o(1)} (S1.3)

as n→∞.

From (3.4), we know Pij = 1 − |Σd|Aij=0|/|Σd|. Plugging in the approximations in (S1.2) and (S1.3), we have

Pij is uniformly 1− e−
didj
2m

+o(1) as n→∞.

S2 Proof of Theorem 2

We follow the structure in Zhao et al. (2012) for the proof. However, the consistency results under the logit link is

not a trivial extension of the results under a log link. First we formalize the notations that will be used in the proof.

For any label e = (e1, . . . , en), define the K ×K matrix O(e) by

Okl(e) =
∑
ij

AijI{ei = k, ej = l},

and define

Ok(e) =
∑
l

Okl(e).

For k 6= l, Okl is the number of edges between block k and block l (we shall often suppress the argument e for

brevity).

Define the arrays ŜK×K×M , VK×K×M and Π̂K×M as

Ŝkau(e) =
1

n

n∑
i=1

I(ei = k, ci = a, θi = xu),

Vkau(e) =

∑n
i=1 I(ei = k, ci = a, θi = xu)∑n

i=1 I(ci = a, θi = xu)
,

Π̂au =
1

n

n∑
i=1

I(ci = a, θi = xu).
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Roughly speaking, Ŝ can be thought of as the empirical joint distribution of e, c and θ, V can be thought of as the

conditional distribution of e given c and θ, and Π̂ is the empirical joint distribution of c and θ.

Before we proceed to the proof, we first state a lemma.

Lemma 1. Let PK×K and SK×K×N be two matrices, and SK×K×N has nonnegative entries. Define the K × K

matrix Su as Suij = Siju. Assume that

a) P is symmetric;

b) P does not have two identical columns;

c) there exist at least one nonzero entry in each column of
∑N
u=1 S

u;

d) for 1 ≤ a, b, k, l ≤ K and 1 ≤ u, v ≤ N , Pkl = Pab whenever SkauSlbv > 0.

Then Su, u = 1, . . . , N , are all diagonal matrices or permutations of a diagonal matrix by the same permutation

matrix.

See Section S3 for the proof of the lemma. Define µn = n2ρn, we will show Theorem 2 in four steps:

Step 1: Show that the modularity function in (4.9) can be written in the form of F (O(e)
µn

), for some function F (·).

Step 2: Show that F (O(e)
µn

) is uniformly close to its population version.

Step 3: Show the weak consistency by showing that there exist δn → 0, such that

P

(
max

e: ||V (e)−V (c)||1≥δn
F

(
O(e)

µn

)
< F

(
O(c)

µn

))
→ 1, as λn →∞.

Here ||S||1 =
∑
kau |Skau|.

Step 4: Show that

P

(
max
e: e6=c

F

(
O(e)

µn

)
< F

(
O(c)

µn

))
→ 1, when

λn
logn

→∞,

which implies the strong consistency.

Details of Step 1: The modularity in (4.9) can also be written as

Q(e) =
∑
k

(
Okk
2m
− O2

k

(2m)2

)
,

since it is true that

O2
k

2m
=

(
∑
i diI(ei = k))2

2m
=
∑
ij

didjI(ei = k, ej = k)

2m
.
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Moreover, define

F (O) =
∑
k

(
Okk∑
khOkh

−
( ∑

lOkl∑
khOkh

)2
)
.

We have

F

(
O(e)

µn

)
=
∑
k

(
Okk
2m
− O2

k

(2m)2

)
. (S2.4)

Details of Step 2: Define Hkl(R) =
∑
abuv logit−1(xu + xv + Zab)RkauRlbv, we have

1

µn
E(Okl|c,θ)

=
1

µn

∑
ij

∑
abuv

E(AijI(ei = k, ci = a, θi = xu)I(ej = l, cj = b, θj = xv)|c,θ)

=
1

µn

∑
ij

∑
abuv

P
(n)
ij I(ei = k, ci = a, θi = xu)I(ej = l, cj = b, θj = xv)

=
1

µn

∑
ij

∑
abuv

ρn × logit−1(xu + xv + Zab)I(ei = k, ci = a, θi = xu)I(ej = l, cj = b, θj = xv)

=
1

µn

∑
abuv

ρn × logit−1(xu + xv + Zab)× n× Ŝkau(e)× n× Ŝlbv(e)

=
∑
abuv

logit−1(xu + xv + Zab)Ŝkau(e)Ŝlbv(e)

= Hkl(Ŝ(e)).

Here we used the fact that P
(n)
ij = ρn × logit−1(xu + xv + Zab). Define

T̂kl(e) =
1

µn
E(Okl(e)|c,θ).

We have

T̂kl(e) =
∑
abuv

logit−1(xu + xv + Zab)Ŝkau(e)Ŝlbv(e)

=
∑
abuv

logit−1(xu + xv + Zab)Vkau(e)Π̂auVlbv(e)Π̂bv.

Replacing Π̂ by Π, we define

Tkl(e) =
∑
abuv

logit−1(xu + xv + Zab)Vkau(e)ΠauVlbv(e)Πbv. (S2.5)

To show F
(
O(e)
µn

)
is uniformly close to its population version, we show that there exist εn → 0, such that

P

(
max

e

∣∣∣∣F (O(e)

µn

)
− F (T (e))

∣∣∣∣ < εn

)
→ 1 as λn →∞. (S2.6)

Since ∣∣∣∣F (O(e)

µn

)
− F (T (e))

∣∣∣∣ ≤ ∣∣∣∣F (O(e)

µn

)
− F (T̂ (e))

∣∣∣∣+
∣∣∣F (T̂ (e))− F (T (e))

∣∣∣ ,
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we can bound the two terms on the right hand side. Since F (·) is Lipschitz in all its arguments, we have

∣∣∣F (T̂ (e))− F (T (e))
∣∣∣ ≤M1||T̂ (e)− T (e)||∞. (S2.7)

Here ||X||∞ = maxkl |Xkl|. Further,

|T̂kl(e)− Tkl(e)| =

∣∣∣∣∣∑
abuv

logit−1(xu + xv + Zab)Vkau(e)Vlbv(e)(Π̂auΠ̂bv −ΠauΠbv)

∣∣∣∣∣
≤

∑
abuv

logit−1(xu + xv + Zab)|Π̂auΠ̂bv −ΠauΠbv|. (S2.8)

Since Π̂au →p Πau for all a, u, we have the left hand side of (S2.7) converges to 0 in probability uniformly over all e

as λn →∞. Next, we have ∣∣∣∣F (O(e)

µn

)
− F (T̂ (e))

∣∣∣∣ ≤M1||
O(e)

µn
− T̂ (e)||∞. (S2.9)

To continue the proof, we need to use Bernstein’s inequality (Bernstein, 1924).

Bernstein’s inequality: Let X1, . . . , Xn be independent variables. Suppose that |Xi| ≤ M for all i. Then, for all

positive t,

P

(∣∣∣∣∣
n∑
i=1

Xi −
n∑
i=1

E(Xi)

∣∣∣∣∣ > t

)
≤ 2 exp

(
− t2/2∑

var(Xi) +Mt/3

)
.

Since the Aij in Okl(e) are independent and |Aij | < 2, according to Bernstein’s inequality, we have

P (|Okl(e)− µnT̂kl(e)| > ω|c,θ) ≤ 2 exp

(
− ω2/2

var(Okl|c,θ) + 2ω/3

)
. (S2.10)

Notice that var(Okl|c,θ) ≤ 2n2 maxij var(Aij |c,θ) ≤ 2n2ρn maxuvab(logit−1(xu+xv+Zab)). Define τ = maxuvab(logit−1(xu+

xv + Zab)). Let ω = εn2ρn. For ε < 3τ , we have

P

(∣∣∣∣Okl(e)

µn
− T̂kl(e)

∣∣∣∣ > ε|c,θ
)
≤ 2 exp

(
− ω2/2

var(Okl|c,θ) + 2ω/3

)
≤ 2 exp

(
− ε

2n4ρ2
n

8n2ρnτ

)
= 2 exp

(
− ε

2µn
8τ

)
.

We have the left hand side of (S2.9) converges to 0 in probability uniformly if λn →∞. Hence, we have shown that

(S2.6) holds.

Details of Step 3: We show that there exists δn → 0, such that

P

(
max

e: ||V (e)−V (c)||1≥δn
F

(
O(e)

µn

)
< F

(
O(c)

µn

))
→ 1, as λn →∞.
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We first show that F (H(S)) is uniquely maximized over {S : S ≥ 0,
∑
k Skau = Πau} by S = D, where Dkau =

ΠauEka. Here Skau = VkauΠau is the limit of Ŝ and E is any row permutation of the K ×K identity matrix. The

matrix E is for the case with permutation equivalence class. For simplicity, in the following proof, we assume E is

the identity matrix.

If Q(e) is maximized by the true label c, then F (H(S)) should be maximized by the true assignment S = D. Since∑
k Ŝkau(e)→ Πau, the limit S must satisfy

∑
k Skau = Πau. Therefore, we only need to consider the maximizer of

F (H(S)) under the constraint {S : S ≥ 0,
∑
k Skau = Πau}.

DefineH0(S) =
∑
klHkl(S) andHk(S) =

∑
lHkl(S). For simplicity of the notations, we leave out the dependence

of H on S. Then we have

F (H) =
∑
k

(
Hkk
H0
− H2

k

H2
0

)
.

Define

4kl =


1 for k = l,

−1 for k 6= l.

Using the equality that

∑
k

(
Hkk
H0
− H2

k

H2
0

)
+
∑
k 6=l

(
Hkl
H0
− HkHl

H2
0

)
= 0,
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we have

F (H(S)) =
1

2H0

∑
kl

4kl
∑
abuv

logit−1(xu + xv + Zab)SkauSlbv

− 1

2H2
0

∑
kl

4kl

[∑
abuv

logit−1(xu + xv + Zab)ΠbvSkau

][∑
abuv

logit−1(xu + xv + Zab)ΠauSlbv

]

=
1

2H0

∑
kl

∑
ab

4kl
∑
uv

logit−1(xu + xv + Zab)SkauSlbv

− 1

2H2
0

∑
kl

∑
a′b

4kl
∑

ab′uu′vv′

logit−1(xu + xv + Zab)logit−1(xu′ + xv′ + Za′b′)ΠbvΠa′u′SkauSlb′v′

=
1

2H0

∑
kl

∑
ab′

∑
uv′

4klSkauSlb′v′
[

logit−1(xu + xv′ + Zab′)

− 1

H0

∑
a′bu′v

logit−1(xu + xv + Zab)logit−1(xu′ + xv′ + Za′b′)ΠbvΠa′u′

]

≤ 1

2H0

∑
kl

∑
ab′

∑
uv′

4ab′SkauSlb′v′
[

logit−1(xu + xv′ + Zab′)

− 1

H0

∑
a′bu′v

logit−1(xu + xv + Zab)logit−1(xu′ + xv′ + Za′b′)ΠbvΠa′u′

]

=
1

2H0

∑
ab′

4ab′
∑
uv

logit−1(xu + xv + Zab′)ΠauΠb′v

− 1

2H2
0

∑
ab′

4ab′
∑
a′uv

∑
bu′v′

logit−1(xu + xv + Zab)logit−1(xu′ + xv′ + Za′b′)ΠbvΠb′v′ΠauΠa′u′

= F (H(D)).

The inequality is true because of conditions (4.10) and (4.11). Now we need to show that D is the unique maximizer of

F (H(S)). The inequality F (H(S)) ≤ F (H(D)) holds only if 4kl = 4ab′ when SkauSlb′v′ > 0. Since 4 is symmetric,

does not have two identical columns and
∑
u Skau has at least one non-zero entry in each column, following the result

in Lemma 1, we have Su are all diagonal matrices or permutations of the diagonal matrix by the same permutation

matrix. With the constraint {S : S ≥ 0,
∑
k Skau = Πau}, we have F (H(S)) = F (H(D)) holds only when S = D.

From (S2.5), the definition of Hkl(S) and D, it is straightforward that Hkl(S) = Tkl(e) and Hkl(D) = Tkl(c).

Since F (H(S)) is uniquely maximized by D, by the continuity of F (·) in the neighborhood of D, there exists δn → 0

such that

F (T (c))− F (T (e)) > 2εn for ||V (e)− V (c)||1 ≥ δn. (S2.11)

Here we used the fact that

||S − D||1 =
∑
kau

|Vkau(e)Πau − Vkau(c)Πau| ≥ (min
au

Πau)×
∑
kau

|Vkau(e)− Vkau(c)|

= (min
au

Πau)× ||V (e)− V (c)||1.
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Thus, with (S2.6), we have

P

(
max

e: ||V (e)−V (c)||1≥δn
F

(
O(e)

µn

)
< F

(
O(c)

µn

))
≥ P

(∣∣∣∣ max
e: ||V (e)−V (c)||1≥δn

F

(
O(e)

µn

)
− max

e: ||V (e)−V (c)||1≥δn
F (T (e))

∣∣∣∣ < εn,∣∣∣∣F (O(c)

µn

)
− F (T (c))

∣∣∣∣ < εn

)
→ 1.

This implies that

P (||V (ĉ)− V (c)||1 ≤ δn)→ 1,

where ĉ = arg maxe F
(
O(e)
µn

)
is the estimator. Since

1

n
|e− c| = 1

n

n∑
i=1

I(ci 6= ei) =
∑
au

Π̂au(1− Vaau(e))

≤
∑
au

(1− Vaau(e))

=
1

2

∑
au

(1− Vaau(e)) +
∑
au

∑
k 6=a

Vkau(e)


=

1

2
||V (e)− V (c)||1,

we have established the weak consistency of the estimator.

Details of Step 4: In order to show

P

(
max
e: e 6=c

F

(
O(e)

µn

)
< F

(
O(c)

µn

))
→ 1, as

λn
logn

→∞,

we only need to show that there exists δn → 0, such that

P

(
max

e: 0<||V (e)−V (c)||1≤δn
F

(
O(e)

µn

)
< F

(
O(c)

µn

))
→ 1, as

λn
logn

→∞, (S2.12)

since the results in Step 3 implies that there exists δn → 0, such that

P

(
max

e: ||V (e)−V (c)||1≥δn
F

(
O(e)

µn

)
< F

(
O(c)

µn

))
→ 1, as

λn
logn

→∞.

Following equation (A.11) in Zhao et al. (2012), we have

F

(
O(e)

µn

)
− F

(
O(c)

µn

)
= F (T̂ (e))− F (T̂ (c)) + ∆(e, c). (S2.13)

By the continuity of the derivatives of F in ||V (e)− V (c)||1 ≤ δn, we have

F (T (e))− F (T (c)) ≤ −C||V (e)− V (c)||1 + o(||V (e)− V (c)||1).



S3. PROOF OF LEMMA 1 9

Since the derivative of F is continuous with respect to V (e) in ||V (e)− V (c)||1 ≤ δn, there exists a δ∗ such that

F (T̂ (e))− F (T̂ (c)) ≤ −C
2
||V (e)− V (c)||1 + o(||V (e)− V (c)||1), (S2.14)

for ||Π̂−Π||∞ ≤ δ∗. Based on (S2.13) and (S2.14), we can see that in order to show (S2.12), it is sufficient to show

P ( max
{e 6=c}

|∆(e, c)| ≤ C||V (e)− V (c)||1/4)→ 1. (S2.15)

The conclusion (S2.15) is true following the results in Bickel et al. (2015). Therefore we have established the strong

consistency.

S3 Proof of Lemma 1

Define S =
∑N
u=1 S

u. We have

SkaSlb > 0 =⇒

(
N∑
u=1

Suka

)(
N∑
u=1

Sulb

)
> 0 =⇒ ∃ i, j such that SkaiSlbj > 0

=⇒ Pka = Plb.

Following Lemma 3.2 in Bickel and Chen (2009), we have S is diagonal or a permutation of the diagonal matrix,

since there exists at least one non-zero entry in each column of S. Since all entries in S are non-negative, we have

Su, u = 1, . . . , N are all diagonal matrices or permutations of the diagonal matrix by the same permutation matrix.

S4 Modularity Maximization

We discuss modularity maximization techniques for finding the partition that maximizes the modularity function,

i.e., finding

ê = arg max
e=(e1,...,en)
ei∈{1,...,n}

Q(e, G), (S4.16)

where Q(e, G) is defined in (3.3). Modularity based community detection techniques are among the most popular

approaches in detecting communities in networks (Fortunato, 2010). Existing approaches for maximizing the mod-

ulation function come from various fields, including computer science, physics, sociology and statistics. Some are

fast techniques that can be applied to large graphs, but may not find good approximations to the optimum of the

modularity function (Clauset et al., 2004; Newman, 2004). Some are accurate methods that find good approximations
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to the optimum but are limited to graphs of moderate sizes (Massen and Doye, 2005; Guimera et al, 2004; Agrawal

and Kempe, 2008). Some algorithms achieve a good balance between accuracy and complexity (Newman, 2006a;

Wang et al., 2008). See Chapter VI of Fortunato (2010) for a review.

To simplify the notation, we define an assignment matrix Bn×K , which is a 0-1 matrix with Bij = 1 if the i-th

node is in the j-th community and Bij = 0 otherwise. Each row of B sums to unity, and the columns b1, . . . , bK of

B are mutually orthogonal. Maximizing the modularity in (S4.16) can therefore be expressed as

max
B
{Trace(BTMB)} such that Trace(BTB) = n, (S4.17)

where M = A−Ep,Σd(A) is the modularity matrix. Newman (2006b) pointed out the intimate relationship between

community structures and the eigen-spectrum of the Newman-Girvan modularity matrix. Here we extend that

relationship to the community structure and the eigen-spectrum of the modularity matrix M .

Denote the eigenvalues of M as λ1, . . . , λn and the corresponding normalized pairwise orthogonal eigenvectors as

v1, . . . ,vn. Without loss of generality, assume λ1 ≥ · · · ≥ λn. Denote κ =
∑n
i=1 I(λi > 0) as the number of positive

eigenvalues. We have

Q = Trace(BTMB) =

n∑
i=1

K∑
k=1

λi(v
T
i bk)2. (S4.18)

Maximizing the modularity is equivalent to choosing K−1 orthogonal columns b1, . . . , bK−1 such that the summation

in (S4.18) is maximized. Since v1, . . . ,vn form an orthonormal basis of an n-dimensional vector space, we have

bk =

n∑
i=1

αkivi, for k = 1, . . . ,K,

where αki = vTi bk. Therefore, we have

Q =

n∑
i=1

K∑
k=1

λi(v
T
i bk)2 =

n∑
i=1

λi

(
K∑
k=1

α2
ki

)
. (S4.19)

This shows that the major contribution to the modularity value comes from the projection of the columns b1, . . . , bK

onto the subspace spanned by the leading eigenvectors. For a partition that achieves large Q, vectors b1, . . . , bK

necessarily have large projections onto the leading eigenvectors with positive eigenvalues. Newman (2006b) showed

that if we do not have the binary constraint on the entries in B, then Q will be maximized when bk is proportional to

vk, k = 1, . . . ,K − 1, and the number of orthogonal columns in B is the same as the number of positive eigenvalues,

i.e., K = κ + 1. However, the entries in B are binary. With this constraint, the number of positive eigenvalues κ

becomes an upper bound for K − 1.
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When the graph is large, we can drop the terms in (S4.18) that are proportional to the n−K+ 1 smallest eigen-

values λi (Newman, 2006b; Ng et al., 2001; Wang et al., 2008). The K − 1 largest positive eigenvalues λ1, . . . , λK−1

can be used to form a diagonal matrix Λ = diag(λ1, . . . , λK−1), and their corresponding eigenvectors v1, . . . ,vK−1

can be used to form a matrix V = (v1, . . . ,vK−1). Then we have

max
B

Q = max
B

n∑
i=1

K∑
k=1

λi(v
T
i bk)2 ≈ max

B

K−1∑
i=1

K∑
k=1

λi(v
T
i bk)2

= max
B

(
Trace(BTV ΛV TB)

)
= max

B

(
(Trace(Λ

1
2 V TB)T (Λ

1
2 V TB))

)
= max

B

K∑
k=1

||wk||2,

where wk =
∑
i yiI(Bik=1) and yi is the i-th row of matrix V Λ

1
2 . The modularity maximization is now a problem

of grouping vectors yi into K groups such that the magnitude of the vector wk is maximized. One simple approach

for this problem is to apply the k-means clustering on the normalized vectors y1, . . . ,yn (Ng et al., 2001).

Here is a summary of our approach for detecting up to K ≤ κ+ 1 communities in the graph G(V,E).

1. Find the modularity matrix M , its eigenvalues λ1, . . . , λn and their corresponding normalized orthogonal eigen-

vectors v1, . . . ,vn.

2. For each value k, 2 ≤ k ≤ K:

a. Construct the corresponding diagonal matrix Λ and the eigenvector matrix V . Calculate Y = V Λ
1
2 .

b. Perform k-means clustering on the normalized rows yi of matrix Y .

c. With the membership output from the k-means clustering, calculate the modularity function Qk.

3. Output the k that has the largest Qk and its corresponding community labels.

In step 2(b), more sophisticated clustering methods can be used. This type of problems are referred to as the vector

partitioning problems, i.e., grouping vectors yi into K groups such that the magnitude of the vector wk is maximized

(Alpert et al., 1999).
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