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S1 Exponential Representation and Proofs

S1.1 Convergence of the Exponential Representation

Let Ψ(z) be a causal power series with Ψ0 = Ψ(0) = I. Let PD be the set of all causal matrix

power series that converge on D = {z ∈ C : |z| ≤ 1}. The matrix logarithm, when it converges,

is given by

logΨ(z) = −
∑
k≥1

k−1(I −Ψ(z))k = −
∑
k≥1

k−1

∑
j≥1

Ψjz
j

k

. (S1.1)

With ‖ · ‖ denoting some matrix norm, a sufficient condition for logΨ(z) ∈ PD is

‖I −Ψ(z)‖ < 1 ∀z ∈ D. (S1.2)

The sufficiency of (S1.2) follows from the fact that ‖logΨ(z)‖ <∞, using (S1.1).

Theorem 1. If log Ψ(z) ∈ PD, then there exists Ω(z) ∈ PD such that Ω(0) = 0 and exp{Ω(z)} ∈
PD, and such that Ψ(z) = exp{Ω(z)} for z ∈ D. If Ω(z) ∈ PD with Ω(0) = 0, then Ψ(z) defined

as exp{Ω(z)} exists in PD. Moreover, if ‖Ω(z)‖ < log 2 for all z ∈ D, then log Ψ(z) = Ω(z).

Proof of Theorem 1. First assuming logΨ(z) ∈ PD and denoting this quantity by Ω(z), we

have Ω(0) = logΨ(0) = logI, which equals the zero matrix by (S1.1). Hence Ω(z) =
∑
k≥1 Ωkz

k.

Then exp{Ω(z)} ∈ PD by Artin (1991) (the radius of convergence of the matrix exponential is

all of C), and equals Ψ(z), which follows from Lemma 1 below.

Lemma 1. Let A and B be matrices. If logA is defined, exp{logA} = A. If ‖ expB − I‖ < 1,

then log (expB) = B.

We only prove the second assertion of Lemma 1, the first being similar.

log (expB) = −
∑
k≥1

k−1(I − expB)k = −
∑
k≥1

k−1(−1)k

∑
j≥1

Bj/j!

k

,
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whenever the series converges. A sufficient condition for convergence, given the discussion

preceding (S1.2), is that ‖I − expB‖ < 1. Then we see that log (expB) =
∑
`≥1 ψ`B

` for

some scalar coefficients {ψ`}, which are identical to the coefficients in the scalar expansion of

log(expx) for x ∈ R. Hence ψ` = 1{`=1}, and log (expB) = B.

Returning to the theorem’s proof, we now assume that Ω(z) ∈ PD with Ω(0) = 0. Again,

Ψ(z) = exp{Ω(z)} ∈ PD. By assumption ‖Ω(z)‖ < log 2, and

‖ exp Ω(z)− I‖ ≤
∑
k≥1

‖Ω(z)‖k/k! = exp ‖Ω(z)‖ − 1 < 1

using the definition of the matrix exponential. Applying Lemma 1, we obtain logΨ(z) = Ω(z).

2

Corollary 1. Assume either: (i) log Ψ(z) ∈ PD or (ii) Ω(z) ∈ PD such that ‖Ω(z)‖ < log 2 for

all z ∈ D. Then Ψ(B) = exp Ω(B) and Ω(B) = log Ψ(B) hold and are well-defined, and

det Ψ(z) = exp{tr Ω(z)} (S1.3)

for all z ∈ D. Moreover, det Ψ(z) 6= 0 for all z ∈ D, so that Ψ(B) is invertible with Ψ(B)−1 =

exp{−Ω(B)}.

Proof of Corollary 1. From Theorem 1, the relations of Ψ(B) and Ω(B) follow, and (S1.3)

follows from Artin (1991, p.286) whenever Ψ(z) = exp Ω(z) holds. Invertibility also holds via

Corollary 9.10 of Artin (1991). 2

S1.2 Proofs of Propositions

Proof of Proposition 1. We note that this proof requires the main result of Proposition 3,

but in terms of exposition it makes more sense to state Proposition 1 first. From ‖I−Ψ(z)‖ < 1

we know that logΨ(z) ∈ PD, and hence we can apply Corollary 1. Then∑
k≥1

ΨkΨ′k =
1

2π

∫ π

−π
exp{Ω(e−iλ)} exp{Ω′(eiλ)} dλ,

so that by applying the trace
∑
k≥1 ‖Ψk‖2 = (2π)−1 ∫ π

−π ‖ exp Ω(e−iλ)‖2 dλ, where ‖ · ‖ here

denotes the Frobenius norm. Hence, {Ψk} is square-summable with respect to the Frobenius

norm, which indicates that the space of sequences described by condition (S1.2) is a subset of `2

with respect to Frobenius. This also shows that the concept of a mean square Cauchy sequence

is well-defined for such a process. To prove the time series is mean square Cauchy, we take

differences for q = m+ h and q = m, where m and h are large integers:

X
(m+h)
t −X(m)

t =
[
Ψ(m+h)(B)−Ψ(m)(B)

]
εt.

Here the time index t is immaterial, since we will compute the covariance matrix of the above

vector difference. The covariance equals∑
k≥0

(
Ψ

(m+h)
k −Ψ

(m)
k

)
Σ
(

Ψ
(m+h)
k −Ψ

(m)
k

)′
.



ONLINE SUPPLEMENT: THE CEPSTRAL MODEL FOR MULTIVARIATE TIME SERIES S3

In order to show that this matrix tends to zero as m and h grow to infinity, it suffices to

examine the sequence Ψ
(m+h)
k − Ψ

(m)
k , which by Proposition 3 can be written as follows. Let

Υ(z) = Ω(z)/z, where Ω(z) corresponds to Ψ(m)(z); but the cepstral representation for the

moving average series Ψ(m+h)(z) equals Ω(z) plus a second term Ξ(z) =
∑h
j=1 Ωj+mz

j+m.

Thus {Ω(z) + Ξ(z)}/z = Υ(z) + Π(z), say. With these notations, we have

Ψ
(m+h)
k −Ψ

(m)
k =

1

k!

k∑
`=1

(
k

`

)([
{Υ(z) + Π(z)}`

](k−`)
−
[
Υ(z)`

](k−`))
|z=0.

To evaluate this expression further, we must expand the term Υ(z) + Π(z). Let us denote these

matrices, for any fixed z, by A0 and A1 respectively. Then the `-th power of A0 + A1 can be

written as ∑
i1,i2,...,i`∈{0,1}`

∏̀
j=1

Aij . (S1.4)

Here {0, 1}` denotes the space of binary strings of length `, and we sum over all such strings.

Note that we next subtract off Υ(z)`, which equals the single summand of (S1.4) that corre-

sponds to the zero string, i.e., ij = 0 for all 1 ≤ j ≤ `. Using the linearity of differentiation, we

have

Ψ
(m+h)
k −Ψ

(m)
k =

1

k!

k∑
`=1

(
k

`

) ∑
i1,i2,...,i`∈{0,1}`\{0}`

∏̀
j=1

Aij

(k−`)

|z=0.

Note that Π(z) occurs in at least one summand of every term of Ψ
(m+h)
k −Ψ

(m)
k . In taking the

derivatives and evaluating zero, term by term we either produce zero or an expression involving

a coefficient matrix of Π(z). The smallest coefficient matrix is Ωm+1, so taking matrix norms

it will be sufficient to show that ‖Ωm‖ → 0 as m → ∞. Since the matrix logarithm of Ψ(z) is

well-defined, we find that∑
k≥1

ΩkΩ′k =
1

2π

∫ π

−π
logΨ(e−iλ)logΨ′(eiλ) dλ.

Taking the trace and again using the Frobenius norm ‖ · ‖, we obtain
∑
k≥1 ‖Ωk‖

2 =

(2π)−1 ∫ π
−π ‖logΨ(e−iλ)‖2 dλ; this is finite for all λ because ‖I−Ψ(z)‖ < 1. Hence ‖Ωk‖ is square

summable, and in particular the sequence tends to zero. This establishes that the sequence is

Cauchy in mean square, and hence X
(q)
t → X

(∞)
t in mean square, and Xt = X

(∞)
t . 2

Proof of Proposition 2. Because q <∞, the convergence of [Ω(z)]q1 for z ∈ D is assured,

and we apply Corollary 1, obtaining Ψ(z) ∈ PD. So the process is stable. It is also invertible,

with inverse exp{−[Ω(z)]q1}. (Note that the stronger condition that ‖Ω(z)‖ < log2 is not needed

to establish invertibility.) Next, we establish identifiability.

Let θ denote a parameter vector describing all the various entries of the cepstral matrices,

in some order, and f(λ; θ) the associate spectral density. Let θ(1) and θ(2) denote two values of

the parameter vector, but with f(·; θ(1)) = f(·; θ(2)). Writing the spectral density in the form

(2), we can invert the moving average filters (because detΨ(z) 6= 0 holds for z ∈ D) to obtain

exp{Ω(1)
0 } = exp{−Ω(1)(z)} exp{Ω(2)(z)} exp{Ω(2)

0 } exp{[Ω(2)(z)]
∗
} exp{−[Ω(1)(z)]

∗
}.
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The composition of the two causal power series exp{−Ω(1)(z)} and exp{Ω(2)(z)} is another

causal power series with leading coefficient of I; because the spectral density has full rank

(because tr(Ω0) > −∞), the spectral factorization is unique (see Hannan and Deistler (1988)).

It follows that we must have exp{Ω(1)} = exp{Ω(2)} and exp{−Ω(1)(z)} exp{Ω(2)(z)} = I for

all z. Hence the moving average filters are identically the same; applying the matrix logarithm

reveals that Ω(1)(z) = Ω(2)(z) for all z ∈ D. Now we use the uniqueness of the Fourier basis to

learn that each of the coefficient matrices are the same, and hence θ(1) = θ(2). This establishes

that θ 7→ f(·; θ) is injective. 2

Proof of Proposition 3. Under condition (S1.2), logΨ(B) is well-defined. To prove (2.4)

we begin with the matrix exponential expansion, which is valid because the series is invertible:

Ψ(z) = exp{zΥ(z)} = 1 +
∑
j≥1

zj

j!
Υ(z)j .

Differentiating k times with respect to the complex variable z yields

Ψ(k)(z) =
∑
j≥1

k∑
`=1

(
k

`

)
∂`

∂z`
zj

j!
· ∂

k−`

∂zk−`
Υ(z)j ,

where we can use the Abelian product rule because the scalar quantities commute with the

matrix powers Υ(z)j . Interchanging the summations over j and `, we see that if we evaluate

at z = 0 – which is equivalent to coefficient matching – we have k!Ψk on the left hand side,

but the right hand side will be zero unless j = `. This produces the first formula of (2.4), and

the second follows from algebra. The proof of (2.5) is similar, but using the expansion for the

logarithm instead of the exponential. 2

S2 Applications of the VEXP Model

In terms of modeling with a VEXP(q), in the frequentist context, we can proceed with a higher-

order model – confident by Proposition 1 that we can get an arbitrarily accurate approximation

to causal invertible processes – and then refine the model by replacing “small” parameter values

with zeroes. In order to construct parameter estimates, one proceeds by computing the acf for

any posited parameter values and evaluating the Gaussian or Whittle likelihood as desired (cf.

Brockwell and Davis (1991) and Taniguchi and Kakizawa (2000)). Then numerical optima can

be determined using BFGS (a quasi-Newton method) or other methods as desired. Appendix S4

has additional material on the asymptotic properties of parameter estimates.

Alternatively, using the exact Gaussian likelihood, we can proceed with estimation using

a Bayesian approach. In this setting, the cepstral model order can be chosen using Bayes factor

or by minimizing some previously selected criterion, such as deviance information criterion

(DIC) (Spiegelhalter, Best, Carlin, and Van Der Linde (2002)) or out-of-sample mean squared

prediction error. Within a given model order, estimation of cepstral matrix entries can proceed

using stochastic search variable selection (SSVS) (George and McCulloch (1993, 1997)).
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Having fitted a time series model, one may be interested in a variety of applications:

forecasting, signal extraction, transfer function modeling, or spectral estimation/plotting, etc.

The versatility of the VEXP model readily allows us these applications. Plotting the moving

average filter Ψ(z) for z = exp(−iλ) as a function of frequency allows us to visualize the transfer

function of the process operating on white noise inputs. Evaluating (2.2) allows plotting of the

fitted spectrum, which becomes arbitrarily accurate as q is increased.

For forecasting, it is necessary to know either the autocovariance structure or the moving

average coefficients. McElroy and McCracken (2014) describes multi-step forecasting for non-

stationary vector time series with a general moving average form, including integrated VARMA

models as special cases. From that work, the forecast filter (from an infinite past) for h-step

ahead forecasting of a stationary process with invertible moving average power series Ψ(z) is

Π(z) = z−h[Ψ]∞h (z) Ψ−1(z).

Noting that the VAR(1), VMA(1), and VEXP(1) all involve the same number of unknown

coefficients, it is of interest to compare their h-step ahead forecast functions. As in the previous

subsection, let the VAR(1) be written Ψ(z) = (I − Φz)−1, whereas the VMA(1) is Ψ(z) =

I + Ψ1z. Of course the VEXP(1) is Ψ(z) = exp(Ω1z), which can be expanded into the moving

average form with Ψk = Ωk1/k!. Moreover, z−h[Ψ]∞h (z) =
∑
k≥0 Ωk+h1 /(k + h)!, from which

Π(z) can be computed by a convolution (note that the matrices involved are just powers of Ω1,

and hence are Abelian). The forecast filters for the VAR(1), VMA(1), and VEXP(1) are then

respectively given by

Π(z) = Φh

Π(z) = 1{h=1}
∑
k≥0

(−1)kΨk+1
1 zk

Π(z) =
∑
k≥0

k∑
`=0

1

`!(k + h− `)! Ωk+h1 zk.

Note that the VAR(1) forecast only relies on present data; the VMA(1) uses past data when

h = 1, but otherwise offers the pathetic prediction of zero when h > 1. The VEXP(1) uses a

geometrically decaying pattern of weights of past data, like the VMA(1). As h increases, all the

forecast filters tend to the zero matrix, essentially dictating that long-run forecasts are given

by the mean for a stationary process.

Generalizing to VAR(q), VMA(q), and VEXP(q), it is difficult to provide explicit formulas

for Π(z) (except in the VAR case), but we know that the VAR(q) filter utilizes the past q values

of the series, whereas the VMA(q) uses all the data so long as h ≤ q; when h > q the filter

is zero. For the VEXP(q), a weighted average of all past data is implied. The repercussions

are that VAR forecasts tend to be based upon recent activity, even when h is large; VMA and

VEXP forecasts can reach deeper into the past, which may be desirable when h is quite large.

A VARMA forecast filter will have behavior more like that of a VEXP, but the VEXP can be

estimated without concerns regarding identifiability.
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S3 Simulated Examples

To illustrate the utility of the VEXP model we present a simulation study and two distinct

simulated examples. The simulation we present uses the exact Gaussian likelihood and consists

of 200 simulated datasets. The parameters are identical to those found in Simulated Example I

(Section S3.1). As seen from Tables 1 and 2, the parameter estimates appear to be precise

with the MSE decreasing as the sample size increases. In contrast, the first simulated example

highlights estimation through SSVS, whereas the second simulated example considers estimation

without SSVS. The two simulated examples presented here are designed to demonstrate various

aspects associated with the analyses presented in Section 4.

Table 1: Simulation results for Appendix S3 using the exact Gaussian likelihood and
parameter specification identical to Simulated Example I for T = 100 and T = 150.

T = 100 T = 150

mean sd mse mean sd mse True

Ω0(1, 1) 1.18811 0.16473 0.04066 1.23576 0.12450 0.02022 1.30500

Ω0(2, 1) -2.55051 0.24031 0.06658 -2.52714 0.15575 0.02934 -2.45500

Ω0(2, 2) 0.03336 0.08533 0.00726 0.02508 0.09233 0.00851 0.03000

Ω1(1, 1) 0.32113 0.10999 0.01204 0.31511 0.10348 0.01068 0.32000

Ω1(1, 2) -1.15171 0.70488 0.49471 -1.15778 0.57063 0.32414 -1.17000

Ω1(2, 1) 0.00878 0.08384 0.00707 -0.00456 0.07691 0.00591 0.00000

Ω1(2, 2) 0.23114 0.12710 0.01643 0.25343 0.10172 0.01031 0.25000

Ω2(1, 1) 0.09975 0.13673 0.01901 0.11769 0.11135 0.01234 0.12000

Ω2(1, 2) 1.49438 0.69472 0.48033 1.55049 0.46567 0.21783 1.50500

Ω2(2, 1) 0.00702 0.08055 0.00650 -0.00617 0.07675 0.00590 0.00000

Ω2(2, 2) 0.19337 0.11450 0.01332 0.20310 0.09350 0.00875 0.21000

Ω3(1, 1) 0.13677 0.14469 0.02083 0.12342 0.11414 0.01310 0.13500

Ω3(1, 2) -0.11464 0.72906 0.52889 0.12342 0.11414 0.01310 -0.11000

Ω3(2, 1) 0.00838 0.07984 0.00641 -0.00472 0.07675 0.00588 0.00000

Ω3(2, 2) 0.02083 0.12324 0.01570 0.03866 0.09591 0.00919 0.04500

Ω4(1, 1) 0.11893 0.13369 0.01791 0.12217 0.10724 0.01150 0.13000

Ω4(1, 2) -2.57316 0.74659 0.55478 -2.64134 0.60769 0.37406 -2.56000

Ω4(2, 1) 0.01124 0.09455 0.00902 -0.00511 0.07680 0.00589 0.00000

Ω4(2, 2) -0.01461 0.12206 0.01504 -0.01449 0.09941 0.01004 0.00000

µ1 0.03537 0.38324 0.14739 0.00960 0.33458 0.11147 0.00000

µ2 -0.00488 0.05083 0.00259 -0.00058 0.04219 0.00177 0.00000
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Table 2: Simulation results for Appendix S3 using the exact Gaussian likelihood and
parameter specification identical to Simulated Example I for T = 200 and T = 250.

T = 200 T = 250

mean sd mse mean sd mse True

Ω0(1, 1) 1.24610 0.11664 0.01701 1.23931 0.12357 0.01951 1.30500

Ω0(2, 1) -2.49927 0.21655 0.04862 -2.47532 0.22081 0.04893 -2.45500

Ω0(2, 2) 0.02592 0.05605 0.00314 0.03476 0.05712 0.00327 0.03000

Ω1(1, 1) 0.32507 0.07191 0.00517 0.32286 0.06320 0.00398 0.32000

Ω1(1, 2) -1.23435 0.47634 0.22990 -1.15178 0.43278 0.18670 -1.17000

Ω1(2, 1) -0.00133 0.04190 0.00175 -0.00370 0.04717 0.00223 0.00000

Ω1(2, 2) 0.25518 0.06863 0.00471 0.24909 0.06890 0.00472 0.25000

Ω2(1, 1) 0.11750 0.09078 0.00821 0.11304 0.07443 0.00556 0.12000

Ω2(1, 2) 1.45744 0.49902 0.25003 1.52588 0.45581 0.20716 1.50500

Ω2(2, 1) -0.00064 0.04914 0.00240 0.00070 0.04758 0.00225 0.00000

Ω2(2, 2) 0.20385 0.07563 0.00573 0.20655 0.06638 0.00440 0.21000

Ω3(1, 1) 0.13520 0.08617 0.00739 0.13792 0.07191 0.00515 0.13500

Ω3(1, 2) -0.09788 0.48411 0.23334 -0.11043 0.43414 0.18753 -0.11000

Ω3(2, 1) -0.00382 0.05515 0.00304 -0.00012 0.04742 0.00224 0.00000

Ω3(2, 2) 0.04136 0.07395 0.00545 0.03111 0.06052 0.00384 0.04500

Ω4(1, 1) 0.12468 0.08306 0.00689 0.13045 0.07660 0.00584 0.13000

Ω4(1, 2) -2.57213 0.52039 0.26960 -2.56157 0.48179 0.23097 -2.56000

Ω4(2, 1) 0.00369 0.05056 0.00256 0.00066 0.04560 0.00207 0.00000

Ω4(2, 2) -0.00651 0.07729 0.00599 -0.00747 0.07170 0.00517 0.00000

µ1 -0.01936 0.28118 0.07904 -0.00423 0.23463 0.05479 0.00000

µ2 0.00224 0.03112 0.00097 0.00043 0.03094 0.00095 0.00000
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S3.1 Simulated Example I

The goal of this example is to illustrate that, given an underlying dependence structure, the

modeling approach using SSVS is able to provide shrinkage toward the simulated dependence

structure with high probability. This is especially useful in the context of multi-step ahead

forecasting, as presented in Section 4.1, where our approach averages over several candidate

models with the expectation of improved long-term forecasts.

For illustration, we simulate data based on estimates from a VEXP(4) model, with T = 192,

based on the forecasting example presented in Section 4.1. In particular, the elements of the

cepstral matrices are based on estimated values obtained from a VEXP(4) model applied to the

bivariate retail sales forecasting example. Recalling that Vj = vec(Ωj), the exact model used

for data generation is given by

V0 = (1.305, 0.030, 0.030,−2.455)′,

V1 = (0.320,−1.170, 0.000, 0.250)′,

V2 = (0.120, 1.505, 0.000, 0.210)′,

V3 = (0.135,−0.110, 0.000, 0.045)′,

V4 = (0.130,−2.560, 0.000, 0.000)′,

where the mean of the two time series is set equal to zero (i.e., δ = (0, 0)′). In terms of prior

distributions we assume that δ ∼ N(x, diag(σ2
µ1
, σ2
µ2

)), diag(Ω0) ∼ N(0, diag(σ2
1 , σ

2
2)), and

σ2
µ1
, σ2
µ2
, σ2

1 , σ
2
2 ∼ IG(A,B), where the elements of x constitute the estimated sample means

for the bivariate time series. In addition, we choose A = 2.1 and B = 1.1; i.e., we assume an

inverse-gamma distribution with mean and variance both being 1. The prior specification for

µ follows from the fact that, for independent and identically distributed (iid) data, x is the

maximum likelihood estimate (as well as the asymptotic mean). Finally, based on a sensitivity

analysis (see Section 4.1), the hyperparameters for the SSVS were specified as τi ≡ τ = .10 and

ci ≡ c = 10. The MCMC sampling algorithm was run for 60,000 iterations with the first 40,000

discarded for burn-in. Convergence was assessed through visual inspection of the sample chains

with no evidence of lack of convergence detected.

Table 3 displays the frequency that a particular cepstral matrix specification appeared in

the model throughout the 20,000 post burn-in MCMC iterations. This table clearly illustrates

that the SSVS prior is selecting the data generating model specification with high probability.

Additionally, in cases where competing cepstral matrix specifications are chosen, typically the

additional elements selected have parameters estimated relatively close to zero.

In contrast, Table 4 presents posterior summaries of the estimated mean and cepstral

matrix elements. Importantly, in all cases, the 95% credible intervals (CIs) capture the true

values, with most intervals relatively narrow. Although the SSVS is implicitly averaging over

several model specifications, the fact that the 95% CIs capture the true values reinforces the

fact that the SSVS is able to recover the correct dependence structure with high probability.
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Table 3: SSVS results for the VEXP(4) model from Simulated Example I. Note that
only cepstral matrices appearing in the model more than 200 times are detailed in the
table and the column labeled SSVS corresponds to an indicator function specifying the
elements of vec(Ωj) (j = 1, . . . , 4) appearing in the model. Finally, note that the bolded
entry represents the model structure used to generate the data.

Parameters SSVS Freq (out of 20,000)

Ω0(1, 2) 1 11,387

0 8,613

Ω1 1101 15,358

1111 4,528

Ω2 1101 11,405

1100 4,500

1111 2,040

1110 960

0101 685

0100 234

Ω3 1101 5,005

1100 4,756

0101 2,597

0100 2,668

1000 739

1111 733

1110 725

0000 503

0001 471

0111 444

0110 397

Ω4 1101 7,733

1100 4,476

0101 3,641

0100 1,648

1111 1,107

1110 627

0111 533

0110 235
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Table 4: Posterior summary of the VEXP(4) parameters using SSVS for Simulated
Example I. Here, “mean,” “sd,” and “Q”denote the posterior mean, posterior standard
deviation, and quantile of the posterior distribution, respectively.

Parameters mean sd Q.025 Q.5 Q.975 True

Ω0(1, 1) 1.24532 0.11567 1.02450 1.24352 1.47568 1.30500

Ω0(2, 1) -2.47678 0.11247 -2.69252 -2.47981 -2.25332 -2.45500

Ω0(2, 2) 0.03862 0.04419 -0.01551 0.02115 0.13369 0.03000

Ω1(1, 1) 0.29931 0.07165 0.15771 0.29951 0.43823 0.32000

Ω1(2, 1) -1.28023 0.47853 -2.23111 -1.28870 -0.33292 -1.17000

Ω1(1, 2) 0.01052 0.00875 -0.00508 0.00994 0.02985 0.00000

Ω1(2, 2) 0.24884 0.06896 0.11437 0.24841 0.38286 0.25000

Ω2(1, 1) 0.16605 0.08028 -0.00144 0.16904 0.31906 0.12000

Ω2(2, 1) 1.75680 0.45747 0.88372 1.75858 2.66037 1.50500

Ω2(1, 2) 0.00590 0.00813 -0.00980 0.00581 0.02224 0.00000

Ω2(2, 2) 0.08299 0.08090 -0.02128 0.07803 0.24665 0.21000

Ω3(1, 1) 0.06619 0.07615 -0.02600 0.04505 0.22631 0.13500

Ω3(2, 1) -0.38706 0.48649 -1.43690 -0.34742 0.46667 -0.11000

Ω3(1, 2) 0.00384 0.00791 -0.01112 0.00348 0.01947 0.00000

Ω3(2, 2) -0.02885 0.06065 -0.17981 -0.00751 0.07065 0.04500

Ω4(1, 1) 0.08438 0.08466 -0.01970 0.07374 0.25861 0.13000

Ω4(2, 1) -2.79556 0.48298 -3.78661 -2.79562 -1.88095 -2.56000

Ω4(1, 2) -0.00115 0.00773 -0.01658 -0.00134 0.01391 0.00000

Ω4(2, 2) -0.06388 0.07357 -0.22113 -0.04491 0.03247 0.00000

µ1 -0.10955 0.24152 -0.58511 -0.11213 0.36615 0.00000

µ2 0.02241 0.02709 -0.03138 0.02249 0.07616 0.00000

σ2
1 1.16845 1.42409 0.28159 0.82241 4.10003 NA

σ2
2 2.64336 6.08424 0.62769 1.81727 8.99748 NA

σ2
µ1

0.70184 0.80633 0.16888 0.49273 2.54956 NA

σ2
µ2

0.69542 0.90139 0.16607 0.48470 2.44190 NA
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S3.2 Simulated Example II

The second simulated example considers bivariate spectral estimation and, in particular, esti-

mation of squared coherence, where squared coherence is defined as

ρ2X1·X2
(λ) =

|fX1X2(λ)|2

fX1X1(λ)fX2X2(λ)
. (S3.1)

This simulation is designed to behave similar to the bivariate critical radio frequency – sunspots

example presented in Section 4.2 and uses a VEXP(4), with T = 240, for illustration. Addi-

tionally, this example does not use SSVS; instead, it demonstrates the VEXP framework in

situations where model averaging is not necessarily desired.

The VEXP(4) model used to generate data for this example was based on estimates ob-

tained from the critical radio frequency - sunspots data discussed in Section 4.2. Specifically,

the model is given by

V0 = (−0.249, 0.211, 0.211,−0.023)′,

V1 = (1.343, 0.081, 0.073, 0.803)′,

V2 = (0.261, 0.169,−0.109, 0.432)′,

V3 = (−0.108, 0.160, 0.138, 0.234)′,

V4 = (0.127, 0.080, 0.114, 0.244)′,

where the mean of the bivariate time series is set equal to zero (i.e., δ = (0, 0)′). In terms

of prior distributions we assume that δ ∼ N(x, diag(σ2
µ1
, σ2
µ2

)), diag(Ω0) ∼ N(0, diag(σ2
1 , σ

2
2)),

σ2
µ1
, σ2
µ2
, σ2

1 , σ
2
2 ∼ IG(A,B), where x is the estimated sample mean for the bivariate time series.

Again, we choose A = 2.1 and B = 1.1; i.e., we assume an inverse-gamma distribution with

mean and variance are both one. For the off-diagonal element of Ω0, Ω0(1, 2), and all elements

in Ωj for j = 1, 2, 3, 4, we assumed a N(0, 102) prior distribution.

As shown in Table 5, this example clearly demonstrates the ability for our Bayesian es-

timation procedure to produce reliable results. In particular, all of the 95% CIs capture the

true values and, in most cases, the intervals are relatively narrow. Additionally, as depicted

in Figure 1a, the posterior mean squared coherence (obtained as the pointwise mean from the

posterior distribution of squared coherence functions) and true squared coherence, as defined

by (S3.1), are in close agreement, with the pointwise 95% CIs relatively narrow away from

frequency zero and capturing the true squared coherence. It is important to note that the

deviations between the true and estimated squared coherence in this example are due to the

fact that the estimated squared coherence is based on one stochastic realization of the truth,

with the Bayesian VEXP(4) estimate agreeing with an empirical estimate obtained through

smoothing the multivariate discrete Fourier transform using a modified Daniell window in R

(using kernel(“modified.daniell”, c(8,8,8)) with taper=.2 in the function spec.pgram).
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Table 5: Posterior summary of the VEXP(4) parameters without SSVS for Simulated
Example II. Here, “mean,” “sd,” and “Q”denote the posterior mean, posterior standard
deviation, and quantile of the posterior distribution, respectively.

Parameters mean sd Q.025 Q.5 Q.975 True

Ω0(1, 1) -0.14897 0.09878 -0.33487 -0.15222 0.05479 -0.24900

Ω0(2, 1) 0.11234 0.06381 -0.01192 0.11252 0.23769 0.21100

Ω0(2, 2) 0.10710 0.10031 -0.07976 0.10539 0.31661 -0.02300

Ω1(1, 1) 1.31882 0.06530 1.19197 1.31802 1.44882 1.34300

Ω1(2, 1) 0.07137 0.05760 -0.04718 0.07241 0.18201 0.08100

Ω1(1, 2) 0.04971 0.07239 -0.08775 0.04805 0.19345 0.07300

Ω1(2, 2) 0.78013 0.06338 0.65332 0.78029 0.90351 0.80300

Ω2(1, 1) 0.22706 0.06532 0.10014 0.22675 0.35491 0.26100

Ω2(2, 1) 0.14242 0.05574 0.03353 0.14276 0.25154 0.16900

Ω2(1, 2) -0.05140 0.07554 -0.20083 -0.05122 0.09722 -0.10900

Ω2(2, 2) 0.43926 0.06320 0.31438 0.43998 0.56269 0.43200

Ω3(1, 1) -0.10610 0.06468 -0.23236 -0.10613 0.02079 -0.10800

Ω3(2, 1) 0.08094 0.06024 -0.03730 0.08142 0.20182 0.16000

Ω3(1, 2) 0.21579 0.07655 0.06273 0.21588 0.36484 0.13800

Ω3(2, 2) 0.24103 0.06452 0.11220 0.24061 0.36782 0.23400

Ω4(1, 1) 0.15975 0.06788 0.02469 0.15914 0.29192 0.12700

Ω4(2, 1) -0.00110 0.05933 -0.11442 -0.00269 0.11792 0.08000

Ω4(1, 2) 0.03664 0.07427 -0.10839 0.03684 0.18223 0.11400

Ω4(2, 2) 0.20952 0.06442 0.08318 0.20893 0.33763 0.24400

µ1 0.48925 0.29485 -0.09672 0.48887 1.06666 0.00000

µ2 0.14156 0.33476 -0.52073 0.14177 0.79180 0.00000

σ2
1 0.69913 0.81959 0.16847 0.48853 2.50540 NA

σ2
2 0.69215 0.83041 0.16946 0.48956 2.41251 NA

σ2
µ1

0.71532 0.81970 0.17109 0.50502 2.53710 NA

σ2
µ2

0.72942 0.81193 0.17450 0.51109 2.64821 NA
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Figure 1: (a) Comparison of true, pointwise posterior mean, and pointwise posterior
95% credible intervals of squared coherence for the VEXP(4) model presented in Simu-
lated Example II. Note that the red dotted line and black dashed line denote the truth
and posterior mean, respectively. (b) Empirical squared coherence and pointwise 95%
confidence intervals using modified Daniell window.
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S4 Results on Parameter Estimates

Given the discussion of MLE and WLE (Whittle Likelihood Estimates) in Section 3.1, we here

summarize the asymptotic theory for parameter estimates. We also develop the theory of esti-

mation for Quasi-Maximum Likelihood Estimates (QMLEs), and provide results applicable to

large classes of short memory vector time series. Most texts on multivariate time series – Han-

nan and Deistler (1988), Lütkepohl (2007), Tsay (2013), Shumway and Stoffer (2010), Brockwell

and Davis (1991), Taniguchi and Kakizawa (2000) – either establish asymptotic efficiency (i.e.,

asymptotic normality with asymptotic covariance equal to the inverse Fisher information ma-

trix) of QMLEs, or establish asymptotic efficiency of MLEs in the univariate case. Although

many papers claim that the asymptotic efficiency of MLEs in the multivariate case has been

established, in fact the above books do not contain such a result, and neither do published

papers on this topic. Moreover, there is much confusion over this issue; we attempt to provide

a rigorous resolution for the Gaussian case.

The quasi-likelihood for a linear process of known marginal distribution is an approxima-

tion to the exact likelihood that is more convenient for computation. Moreover, in the case of a

Gaussian marginal distribution the exact likelihood is computable, being given by the innova-

tions algorithm, and the approximation of the exact Gaussian likelihood by the quasi-likelihood

can be studied more precisely. We provide an analysis of the difference of these objective func-

tions, such that the difference between Gaussian MLE and QMLE is asymptotically negligible;

then asymptotic efficiency of the Gaussian MLE is inherited from that of the QMLE. We de-

velop these results for a fairly broad class of linear short memory Gaussian processes, which

include VEXP and VARMA processes.

As a preliminary step, we summarize the asymptotic properties of WLEs, and then discuss

the quasi-likelihood. Among the above cited references, Taniguchi and Kakizawa (2000) –

henceforth TK – provides the most rigorous and thorough treatment of vector linear processes.

TK’s result on the asymptotic efficiency of QMLEs presumes the marginal density is parameter-

free, which amounts to assuming that the innovation covariance matrix is known ahead of time.

Below, we extend the TK results to the more general case of an unknown innovation covariance

matrix that is separately parametrized. Both this extension of QMLE asymptotic efficiency,

as well as Gaussian MLE asymptotic efficiency, are apparently (and surprisingly, given the

importance and centrality of this statistical issue) novel results.

S4.1 Whittle Estimation

The theory for Whittle estimation is thoroughly covered in TK, and we merely summarize

those results with application to the VEXP process. The Whittle theory allows for model mis-

specification, unlike the case of QMLE and MLE. The WLE is defined as the minimizer (when

it exists and is unique) of either criterion (3.1) or (3.2). The Kullback-Leibler (KL) discrepancy

between a model spectral density fω (e.g., given by a VEXP(q), or by some other multivariate
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model) and the true process’ spectrum f̃ is given by

KL(fω, f̃) =
1

2π

∫ π

−π
tr{f−1

ω (λ) f̃(λ)} dλ+ log det Σ, (S4.1)

where Σ is the innovation variance matrix of the model (determined by spectral factorization).

In the case of a VEXP(q) model, we can write

log det Σ = trΩ0.

Substituting the periodogram IT for f̃ in equation (S4.1) yields the Whittle objective function

W of equation (3.2). The minimizer of KL with respect to ω is denoted ω(f̃), and is called the

Pseudo-True Value (PTV). In the case that the model is correctly specified, f̃ is a VEXP(q)

process with some parameter vector ω̃, and ω(f̃) = ω̃. Otherwise, the model is mis-specified

and the WLE will be consistent for the PTV.

We explicate asymptotic efficiency results for the WLE, when the true marginal structure

is non-Gaussian. Following TK, we will assume the cumulant conditions of Brillinger (1981).

Set

cXa1,...,ak (t1, . . . , tk−1) = cum
(
X

(a1)
0 , X

(a2)
t1

, . . . , X
(ak)
tk−1

)
for a1, . . . , ak ∈ {1, . . . ,m} and X

(a)
t denoting the ath component of Xt. Then consider the

following conditions described in TK:

(B): for each j = 1, 2, . . . , k − 1 and any k-tuple a1, a2, . . . , ak we have∑
t1,t2,...,tk−1∈Z

(1 + |tj |) |cXa1,...,ak (t1, . . . , tk−1)| <∞

for k ≥ 2.

(A1): fω is twice continuously differentiable, and ∇fω is continuous

(A2): the PTV exists uniquely in R(m+1
2 )+m2q

(A3): the Hessian H(ω) = ∇∇′KL(fω, f̃) is invertible at the PTV

These assumptions allow for a broad class of short memory non-Gaussian vector processes. As

can be seen from Proposition 3, the moving average representation for a VEXP(q) is continuously

differentiable with respect to ω, and hence (A1) holds. Conditions (A2) and (A3) amount to

assuming that a unique minimizer exists, and similar assumptions are made in the analysis of

VARMA models. Finally, let

V (ω) =
1

π

∫ π

−π
tr{∇f−1

ω (λ) f̃(λ)∇′f−1
ω (λ) f̃(λ)} dλ,

which generalizes H, in the sense that it equals 2H(ω) when f̃ = fω. Recall that the WLE

is denoted ω̂WLE . The following theorem establishes consistency and asymptotic efficiency of

WLEs for the non-Gaussian vector processes, and hence can be applied in the case of VEXP

modeling.
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Theorem 2. Suppose that {Xt} is a strictly stationary process satisfying (B), and that (A1),

(A2), and (A3) hold. Then the WLE is consistent for the PTV and
√
T
(
ω̂WLE − ω(f̃)

)
L

=⇒ N
(

0, H(ω(f̃))
−1
V (ω(f̃))H(ω(f̃))

−1
)

if the fourth order cumulants are zero.

Proof of Theorem 2. This is Theorem 3.1.2 of TK, which follows from Lemma 3.1.1 of

TK utilizing condition (B). 2

Remark 1. A more complicated variance expression is available when the fourth order cumu-

lants are nonzero. In typical applications, one supposes that the model is correctly specified, as

well as the conditions of Theorem 2. Then the asymptotic covariance is 4V (ω(f̃))
−1

, i.e., the

inverse Fisher information matrix. This would be consistently estimated by 4V (ω̂WLE)−1. Be-

low we explicitly derive V (ω) for a separable linear process, including the VEXP and VARMA

cases.

Nested model hypotheses can be tested by considering the log ratio of Whittle likelihoods.

For a full VEXP(q) model, we can restrict any of the
(
m+1

2

)
+ m2q real parameters to fixed

values, such as zero. The nested model is obtained by fitting the Whittle likelihood with the

restrictions in play. The Generalized Likelihood Ratio (GLR) test statistic is the difference

between the restricted Whittle and the unrestricted likelihood, and the asymptotic theory then

follows from the discussion on pp. 59 – 61 of TK.

Corollary 2. Suppose that {Xt} is a strictly stationary process satisfying (B) with fourth order

cumulants equal to zero, and that (A1), (A2), and (A3) hold. If the restricted VEXP(q) model

is correctly specified and we impose r restrictions in fitting the restricted model, then

GLR = T (W(ω̂WLE∗ ;X)−W(ω̂WLE ;X))
L

=⇒ χ2
r,

where ω̂WLE∗ is the Whittle estimate from the restricted model.

We next proceed to derive V (ω) in the special case of a linear process, where f̃ = fω.

Suppose we have a causal linear process

Xt =
∑
j≥0

Ψjεt−j (S4.2)

with {εt} an iid sequence of covariance matrix Σ, and Ψ0 equal to the identity by assumption.

The causal moving average filter Ψ(B) depends on the parameter vector ω in a smooth way

in the case of a VEXP process, or a VARMA process. Also, these processes are examples of

separable processes, which means that the innovation covariance Σ is separately parametrized

from Ψ(B). Supposing that the moving average filter is invertible, we write Π(B) = Ψ−1(B),

which we denote as the inverse moving average filter. It follows that Π0 is the identity matrix.

Also, as discussed in Section 2.1, the spectral density is fω(λ) = Ψ(z)ΣΨ′(z) and the inverse

spectrum is

f−1
ω (λ) = Π′(z)Σ−1Π(z).
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Suppose ωj corresponds to a parameter of Ψ(B) (and not of Σ); then

∂

∂ωj
f−1
ω (λ) =

∂

∂ωj
Π′(z) · Σ−1Π(z) + Π′(z)Σ−1 ∂

∂ωj
Π(z).

It follows that

∂

∂ωj
f−1
ω (λ) · fω(λ) =

∂

∂ωj
Π′(z) ·Ψ′(z) + Π′(z)Σ−1 ∂

∂ωj
Π(z) ·Ψ(z)ΣΨ′(z).

On the other hand, if ωk corresponds to a parameter of Σ, then

∂

∂ωk
f−1
ω (λ) = −Π′(z)Σ−1 ·

[
∂

∂ωk
Σ

]
· Σ−1Π(z)

∂

∂ωk
f−1
ω (λ) · fω(λ) = −Π′(z)Σ−1 ·

[
∂

∂ωk
Σ

]
·Ψ′(z).

Then V (ω) has a block structure. The upper left block corresponds to parameters of the process:

suppose j, k pertain to this block. Then

tr

(
∂

∂ωj
f−1
ω (λ) · fω(λ)

∂

∂ωk
f−1
ω (λ) · fω(λ)

)
= tr

(
∂

∂ωj
Π′(z) ·Ψ′(z) ∂

∂ωk
Π′(z) ·Ψ′(z)

)
+ tr

(
∂

∂ωj
Π′(z) · Σ−1 · ∂

∂ωk
Π(z) · fω(λ)

)
+ tr

(
∂

∂ωk
Π′(z) · Σ−1 · ∂

∂ωj
Π(z) · fω(λ)

)
+ tr

(
∂

∂ωj
Π(z) ·Ψ(z)

∂

∂ωk
Π(z) ·Ψ(z)

)
after simplification. Note that the derivatives of Π(z) only depend on positive powers of z,

because Π0 does not depend on ω; thus the first summand above only depends on positive

powers of z, and the fourth summand depends on positive powers of z. Therefore these both

have integral zero, and drop out of the expression for Vjk(ω). Introducing the shorthand 〈·〉 for

average integration over [−π, π], we obtain

Vjk(ω) = 2 〈tr
(

∂

∂ωj
f−1
ω · fω

∂

∂ωk
f−1
ω · fω

)
〉

= 2 trΣ−1〈 ∂

∂ωk
Π(z) · fω(λ) · ∂

∂ωj
Π′(z)〉

+ 2 trΣ−1〈 ∂
∂ωj

Π(z) · fω(λ) · ∂

∂ωk
Π′(z)〉

= 2
∑

`1,`2≥0

trΣ−1

(
∂

∂ωk
Π`1 Γ`2−`1

∂

∂ωj
Π′`2 +

∂

∂ωj
Π`1 Γ`2−`1

∂

∂ωk
Π′`2

)
.

It can be shown that the trace of both summands is equal. Next, the lower right block of V (ω)

corresponds to parameters of the innovation covariance matrix: supposing j, k pertain to this

block, we have

tr

(
∂

∂ωj
f−1
ω (λ) · fω(λ)

∂

∂ωk
f−1
ω (λ) · fω(λ)

)
= tr

(
Σ−1 ∂

∂ωj
Σ · Σ−1 ∂

∂ωk
Σ

)
.

Because this term is constant with respect to λ, Vjk(ω) is equal to twice this quantity. Finally,

the lower left and upper right blocks of V (ω) are zero; suppose that ωj corresponds to the



S18 SCOTT H. HOLAN, TUCKER S. MCELROY, AND GUOHUI WU

process and ωk to the innovation variance matrix. Then

tr

(
∂

∂ωj
f−1
ω (λ) · fω(λ)

∂

∂ωk
f−1
ω (λ) · fω(λ)

)
= tr

(
∂

∂ωj
Π′(z) ·Ψ′(z) + Π′(z)Σ−1 ∂

∂ωj
Π(z) ·Ψ(z)ΣΨ′(z)

)
·
(
−Π′(z)Σ−1 ·

[
∂

∂ωk
Σ

]
·Ψ′(z)

)
= −tr

(
∂

∂ωj
Π′(z) · Σ−1 ·

[
∂

∂ωk
Σ

]
·Ψ′(z) + Σ−1 ∂

∂ωj
Π(z) ·Ψ(z)

[
∂

∂ωk
Σ

])
,

and the first summand involves only positive powers of z, whereas the second summand involves

only positive powers of z. Therefore this term integrates to zero. The Fisher information is half

of H(ω), or one quarter of V (ω):

1

4
V (ω) =

[
trΣ−1〈∇Π(z) · fω(λ) · ∇′Π′(z)〉 0

0 1
2

tr
(
Σ−1∇Σ · Σ−1∇′Σ

) ] .
This agrees with the expression in the proof of Theorem 3.1.12 of TK (which considers the case

of constant innovation variance).

S4.2 Quasi-Maximum Likelihood Estimation

Whereas Whittle estimation does not presume a linear structure for the data process, the

Quasi-Likelihood does, i.e., (S4.2) is assumed to hold. Although in this paper we are principally

interested in Gaussian processes, we begin our treatment somewhat more generally, following

TK closely. Hence, we denote by pω the multivariate pdf of the innovation process {εt}, allowing

the pdf to depend on the parameter vector. We also assume that our linear process is invertible,

so that

Xt = Ψ(B)εt and εt = Π(B)Xt.

Given a model, it produces an approximation to the true Ψ(B) and Π(B), which we denote via

Ψω(B) and Πω(B) – we presume a correctly specified model (unlike the Whittle case), so we

only are concerned with obtaining the correct value of ω. The true ω is denoted ω̃, and hence

Ψω̃(B) = Ψ(B), and so forth.

For any guess ω, we can compute Πω(B) to any desired truncation level, and proceed to

compute estimated innovations, or residuals. (For a VARMA model, one needs only invert the

VMA polynomial, whereas for the VEXP we generate the moving average form corresponding

to cepstral matrices multiplied by negative one.) However, Πω(B)Xt involves an infinite past

of the data, and our sample begins at time point t = 1. Therefore we have a truncation of our

“ideal” residuals et = Πω(B)Xt given by

êt =

t−1∑
j=0

Πj(ω)Xt−j .

This is tantamount to setting Xs = 0 for all s ≤ 0 in the ideal residual calculation. Clearly, this

is an unwarranted approximation, but if the Πj(ω) decay rapidly in matrix norm as j increases,

the impact will hopefully be insubstantial. The ideal, or exact, likelihood is written in log scale
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as

L = −2

T∑
t=1

log pω(et),

which we seek to minimize with respect to ω. This is typically not computable, though in the

case of a Gaussian pdf one may replace the missing Xs for s ≤ 0 in the ideal residuals by

their backcasts from available data and obtain the exact likelihood. This differs somewhat from

replacing the past data by zeroes, which results in the Quasi-Likelihood. In log scale, this is

written

Q = −2

T∑
t=1

log pω(êt).

The minimizer of Q is the QMLE, denoted ω̂QMLE , when it exists uniquely. Asymptotic ef-

ficiency of the QMLE is addressed by many authors; the treatment of TK, which summarizes

much of the current literature, considers the case that p does not depend on ω (Theorem 3.1.12

of TK). However, the Local Asymptotic Normality (LAN) theory upon which their results rely

are established for the case of pω – see Theorem 2.2.4 of TK. Therefore, it seems possible to

extend Theorem 3.1.12 to the case that p depends on ω. We state this result as a theorem,

which is a straightforward extension of Theorem 3.1.12 of TK. We begin by summarizing the

sufficient conditions from TK. We define | · | to be the matrix norm defined by the sum of

absolute values of all entries, and say a matrix power series {Aj} has “geometric decay” if there

exists 0 < ρ < 1 such that |Aj | = O(ρj) for j ≥ 1. Also, let ‖ · ‖ denote the Euclidean norm.

(C1): (i) Uniformly in ω, {Ψj(ω)} has geometric decay.

(ii) Each matrix entry of Ψj(·) is twice continuously differentiable, and the mixed partial deriva-

tives of order two of {Ψj(ω)} have geometric decay, uniformly in ω.

(iii) The mixed partial derivatives of order two of Ψj is Lipschitz in ω.

(iv) Ψ(B) is invertible with inverse Π(B), which has geometric decay.

(v) Each matrix entry of Πj(·) is twice continuously differentiable, and the mixed partial deriva-

tives of order two of {Πj(ω)} have geometric decay, uniformly in ω.

(vi) The mixed partial derivatives of order two of Πj is Lipschitz in ω.

(C2): (i) The distribution corresponding to pω has finite second moments, with mean zero and

variance Σω, a p.d. matrix. Also lim‖e‖→∞ pω(e) = 0.

(ii) The first and second derivatives with respect to ω and e exist, and are Lipschitz functions.

(iii) Letting φω(e) = ∇elog pω(e) and ηω(e) = ∇ωlog pω(e), we assume∫
|φω(e)|4 pω(e) de <∞

∫
|ηω(e)|4 pω(e) de <∞

uniformly in ω. Moreover,∫
∇e∇′epω(e) de = 0 and

∫
∇ω∇′ωpω(e) de = 0 (S4.3)

for all ω.
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Assumption (C1) includes short memory vector time series, such as VARMA and VEXP –

Section 2.2 shows that the moving average representation of a VEXP(q) process (with q <∞)

has geometric decay, and trivially the same is true of its inverse moving average representation.

The conditions on pω are mild extensions of those used to prove Theorem 3.1.12 of TK, and

are clearly satisfied by a Gaussian pdf. The first part of the Hessian mean condition (S4.3) is

equivalent to assuming that

−E[∇e∇′elogpω(e)] = E[∇elogpω(e) · ∇′elogpω(e)],

where the expectation is with respect to pω. We denote this quantity by F(pω); it is a sort of

Jacobian term in the Fisher information. In the Gaussian case, this quantity is equal to Σ−1
ω .

Similarly, under the second part of (S4.3) we have the quantity G(pω), whose jkth entry is the

matrix

−E[∇ωj∇
′
ωk

logpω(e)] = E[∇ωj logpω(e) · ∇′ωk
logpω(e)],

which is the Fisher information of the marginal distribution. The following result establishes

consistency and asymptotic efficiency for the non-Gaussian Quasi-Likelihood, assuming that

the model (and marginal pdf) is correctly specified. In particular, the QMLEs for a VEXP are

asymptotically normal.

Theorem 3. Suppose that {Xt} is a linear process (S4.2) with marginal pdf pω satisfying (C1)

and (C2), and that the model is correctly specified. Suppose that Ψω(B) and pω are separately

parametrized. Then the QMLE is consistent and

√
T (ω̂QMLE − ω̃)

L
=⇒ N

(
0, F (ω̃)−1) ,

with the Fisher information matrix F (ω) given by

Fjk(ω) = tr{F(pω) 〈∇jΠ(z) · fω(λ) · ∇′kΠ′(z)〉}+ trGjk(pω).

Proof of Theorem 3. The proof mimics that of Theorem 3.1.12 of TK, but with extensions

for a pdf depending on ω. Note that our Quasi-Likelihood is −2 times the objective function

used in TK. Recall that φ and η are the gradients of log pω(e) with respect to e and ω. Let

the full Hessian of log pω(e) be denoted M , with upper left block M (ee) corresponding to the

Hessian with respect to e only, and the lower right block M (ωω) the Hessian with respect to ω

only. Using the chain rule for the derivative of log pω(êt(ω)), the scaled gradient of Q is

T−1/2∇ωjQ = −2T−1/2
T∑
t=1

(
∂

∂ωj
ê′t φ(êt) + ηj(êt)

)

= −2T−1/2
T∑
t=1

(
∂

∂ωj
ê′t φ(et) + ηj(et)

)
+OP (T−1/2),
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using (C1) and (C2) – the error et − êt = OP (ρt) for some 0 < ρ < 1. The scaled Hessian is

T−1∇ωj∇
′
ωk
Q = −2T−1

T∑
t=1

(
∂2

∂ωj∂ωk
ê′t φ(êt) +

∂

∂ωj
ê′tM

(ee)(êt)
∂

∂ωk
êt

+
∂

∂ωj
ê′tM

(eω)
·,k (êt) +

∂

∂ωk
ê′tM

(eω)
·,j (êt) +M (ωω)(êt))

= 2T−1
T∑
t=1

(
∂

∂ωj
ê′tφ(et)φ

′(et)
∂

∂ωk
êt + ηj(et)ηk(et)

)
+OP (T−1/2).

This approximation is achieved through several steps, utilizing the theorem’s assumptions. As

with the gradient term, we can replace êt by et inside of φ and the entries of M , at the cost of

stochastic error terms. Furthermore, we have for any t ≥ 1

E
[

∂2

∂ωj∂ωk
ê′t φ(et)

]
= E

[
t−1∑
`=0

X ′t−`
∂2

∂ωj∂ωk
Π′` φ(et)

]
= 0,

because the coefficient of Xt in the sum is zero (because Π0 is constant with respect to ω), and

all other Xs with s < t are independent of et and have mean zero. It follows that the average

of such stochastic terms is OP (T−1/2); this handles the first term in the Hessian of Q. For the

second term, we have

M (ee) = ∇e∇′epω(e) · p−1
ω (e)−∇epω(e) · ∇′epω(e) · p−2

ω (e).

The second term is the negative of φφ′, but the first term we denote by the matrix Jω(e); its

expectation with respect to pω is zero by (S4.3). Therefore for any t ≥ 1,

E
[
∂

∂ωj
ê′t J(et)

∂

∂ωk
êt

]
= E

 t−1∑
`1,`2=0

X ′t−`1
∂

∂ωj
Π′`1 J(et)

∂

∂ωk
Π`2Xt−`2

 ,
which is again zero due to independence of J(et) from Xs with s < t. As a result, the second

term in the Hessian contributes ∂
∂ωj

ê′tφ(et)φ
′(et)

∂
∂ωk

êt to the sum. The third and fourth terms

in the Hessian of Q are handled similarly to the first term, and hence are negligible. The fifth

term is analyzed along the lines of the second term, with

M (ωω) = ∇ω∇′ωpω(e) · p−1
ω (e)−∇ωpω(e) · ∇′ωpω(e) · p−2

ω (e);

the second term is −ηη′. At this point, we have proved the asymptotic expressions for the

gradient and Hessian of Q, and we imitate the remaining argument of Theorem 3.1.12 of TK.

In particular, we obtain the convergence

T−1∇ωj∇
′
ωk
Q P−→ 2 tr {F(pω)

∑
`1,`2≥1

∂

∂ωj
Π`1Γ`2−`1

∂

∂ωk
Π′`2}+ 2 trGjk(pω). (S4.4)

The quantity ω̂QMLE − ω̃ is equal, up to asymptotically negligible terms, to the negative of

the inverse Hessian times the gradient; hence the factor of two cancels out. It follows that the

asymptotic precision matrix for ω̂QMLE − ω̃ is one half the above limit, i.e., it is Fjk(ω̃), the

Fisher information matrix. 2
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Remark 2. A Gaussian VEXP process satisfies the assumptions of Theorem 3 (as does a

VARMA). In this case – with pω the pdf of the N (0,Σω) distribution – we obtain

F(pω) = Σ−1
ω Gjk(pω) =

1

2
tr
(
Σ−1∇jΣ · Σ−1∇′kΣ

)
,

and hence (using the fact that the parametrization is separable) F (ω) equals V (ω)/4, with V

discussed in the previous section on Whittle estimation.

Finally, nested model hypotheses can be tested in the same way as with the Whittle

likelihood, using a GLR statistic based upon the Quasi-Likelihood.

Corollary 3. Suppose that {Xt} is a linear process (S4.2) with marginal pdf pω satisfying (C1)

and (C2), and that the model is correctly specified. Suppose that Ψω(B) and pω are separately

parametrized. Then

GLR = (Q(ω̂QMLE∗)−Q(ω̂QMLE))
L

=⇒ χ2
r,

where ω̂QMLE∗ is the QMLE from the restricted model.

Proof of Corollary 3. In proving Theorem 3, we establish the property
√
T (ω̂QMLE − ω̃) = F (ω̃)−1 ∆T + oP (1),

where ∆T is a sequence of random variables converging weakly to N (0, F (ω̃)). Then we can

mimic the arguments on pp. 60 – 61 of TK, using the convergence results (S4.4), to obtain the

χ2 limit. 2

S4.3 Exact Maximum Likelihood Estimation

In this section we focus on Gaussian processes, and are interested in relating the quasi-likelihood

Q to the exact likelihood L. Ignoring constants, and following the treatment in Brockwell and

Davis (1991) for the innovations algorithm, the Gaussian quadratic form in L can be decomposed

by a block Cholesky factorization, yielding

L =

T∑
t=1

(Xt − X̂t)
′
V −1
t (Xt − X̂t) +

T∑
t=1

log detVt,

where X̂t = E[Xt|X1, . . . , Xt−1] is the projection of an observation onto past data, and Vt is the

prediction error variance matrix, given by Vt = Var(Xt − X̂t). The parameters of the model

enter into the formulas used to computed the projections, and they also enter into each Vt.

Minimizing L (assuming existence and uniqueness) yields the Gaussian MLE ω̂MLE . Under

the same conditions as Theorem 3, the difference between MLE and QMLE is asymptotically

negligible.

Theorem 4. Suppose that {Xt} is a linear process (S4.2) satisfying (C1) with Gaussian

marginal that is N (0,Σω), and that the model is correctly specified. Suppose that Ψω(B) and

Σω are separately parametrized. Then
√
T (ω̂QMLE − ω̂MLE)

P−→ 0.
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From this we conclude the asymptotic normality of the MLE, and the limit distribution of

the associated GLR statistic.

Corollary 4. Suppose that {Xt} is a linear process (S4.2) satisfying (C1) with Gaussian

marginal that is N (0,Σω), and that the model is correctly specified. Suppose that Ψω(B) and

Σω are separately parametrized. Then the MLE is consistent and
√
T (ω̂MLE − ω̃)

L
=⇒ N

(
0, F (ω̃)−1) ,

with the Fisher information matrix given by F (ω) = V (ω)/4. Also,

GLR = (L(ω̂MLE∗)− L(ω̂MLE))
L

=⇒ χ2
r,

where ω̂MLE∗ is the MLE from the restricted model.

Proof of Theorem 4. Let E = L −Q. For any ω in a neighborhood of ω̂QMLE , we have

∇Q(ω) = ∇Q(ω̂QMLE) +∇∇′Q(ω̂QMLE) (ω − ω̂QMLE) + · · ·

by Taylor series, where the first term on the right hand side is zero. Moreover, ∇Q = ∇L−∇E ,

and hence

ω̂MLE − ω̂QMLE ≈
[
T−1∇∇′Q(ω̂QMLE)

]−1
T−1∇E(ω̂MLE),

where the approximation involves lower order stochastic terms. Given that T−1 times the

Hessian of Q is known to converge to a p.d. matrix, as shown in the proof of Theorem 3, the

assertion of this theorem follows from showing T−1/2∇E(ω)
P−→ 0 for any ω.

Because et = êt +
∑
j≥t Πj(ω)Xt−j and Xt = et −

∑
j≥1 Πj(ω)Xt−j , we have

X̂t = −
t−1∑
j=1

Πj(ω)Xt−j − rt = Xt − êt − rt,

with rt =
∑
j≥t Πj(ω)E[Xt−j |X1, . . . , Xt−1]. Therefore we have the decomposition

Xt − X̂t = êt + rt = et ⊕
∑
j≥t

Πj(ω) (E[Xt−j |X1, . . . , Xt−1]−Xt−j),

where ⊕ denotes a sum where the summands are uncorrelated with each other. (This is because

the second term is a linear function of Xs for s < t, and et is independent of these variables.)

Therefore

Vt = Σω + Var

∑
j≥t

Πj(ω) (E[Xt−j |X1, . . . , Xt−1]−Xt−j)

 ,
and the second summand we denote by Mt = Vt − Σω. Using the matrix inversion lemma,

(Xt − X̂t)
′
V −1
t (Xt − X̂t) = ê′t Σ−1

ω êt + 2r′t Σ−1
ω êt + r′t Σ−1

ω rt

− (êt + rt)
′ Σ−1

ω Mt[I + Σ−1
ω Mt]

−1
Σ−1
ω (êt + rt).

Here I is the T -dimensional identity matrix. Moreover, detVt = det Σω · det[I + Σ−1
ω Mt], so

that

E =

T∑
t=1

(
2r′t Σ−1

ω êt + r′t Σ−1
ω rt

)
−

T∑
t=1

(êt + rt)
′ Σ−1

ω Mt[I + Σ−1
ω Mt]

−1
(êt + rt)

+
T∑
t=1

log det[I + Σ−1
ω Mt].



S24 SCOTT H. HOLAN, TUCKER S. MCELROY, AND GUOHUI WU

Denote these three terms respectively by E(1), E(2), and E(3). For E(1), consider the term∑T
t=1 r

′
t Σ−1

ω rt (the other term follows a similar analysis). There exist matrix coefficients D`,k

depending on ω such that rt =
∑
`≤0 Πt−`(ω)

∑t−1
k=1D`,kXk. Hence any derivative with respect

to process parameters of rt will involve a linear combination of X1, . . . Xt−1; on the other hand

the norm of rt is bounded in probability of order ρt, because Πt(ω) is the leading coefficient

– here ρ governs the geometric decay of the {Πj}. The derivative of r′t Σ−1
ω rt with respect to

parameters in Σω is again a quadratic form in rt, and hence has norm OP (ρt). Then the same

argument used to analyze ∇Q in the proof of Theorem 3 shows that ∇
∑T
t=1 r

′
t Σ−1

ω rt is OP (1).

For E(2) and E(3), we analyze Mt, which is asymptotically negligible:

Mt =
∑

j1,j2≥t

Πj1(ω) Cov [E[Xt−j1 |X1, . . . , Xt−1]−Xt−j1 ,E[Xt−j2 |X1, . . . , Xt−1]−Xt−j2 ] Πj2(ω)′.

The error process E[X1−h|X1, . . . , Xt−1] −X1−h tends as t → ∞ to a VMA(h) process, where

h ≥ 1. Hence the matrix norm is order ρ2t, and this bound also applies to derivatives of Mt.

In conjunction with the previous analysis of rt and êt, we obtain ∇E(2) = oP (T 1/2). Finally,

the derivatives of the log determinant term with respect to process and innovation variance

parameters, respectively, are given by

T∑
t=1

tr{ ∂

∂ωk
Mt (Σω +Mt)

−1}

T∑
t=1

tr{ ∂

∂ωk
Σω · Σ

−1
ω Mt (Σω +Mt)

−1}.

Therefore, the norm bound on Mt shows that ∇E(3) is also negligible. This completes the proof.

2

Proof of Corollary 4. The conditions establish both Theorems 3 and 4; note that the

Gaussian pdf satisfies assumption (C2). Then asymptotic normality for the MLE follows, and

the Fisher information matrix in this special case is given by V (ω)/4, as shown previously. The

proof for the GLR results uses Corollary 3 together with the result of Theorem 4. 2
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