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Abstract: Vector autoregressive models have become a staple in the analysis of

multivariate time series and are formulated in the time domain as difference equations,

with an implied covariance structure. In many contexts, it is desirable to work

with a stable, or at least stationary, representation. To fit such models, one must

impose restrictions on the coefficient matrices to ensure that certain determinants

are nonzero which, except in special cases, can prove burdensome. To circumvent

these difficulties, we propose a flexible frequency domain model expressed in terms of

the spectral density matrix. Specifically, this paper treats the modeling of covariance

stationary vector-valued time series via an extension of the exponential model for

the spectrum of a scalar time series. We discuss the modeling advantages of the

vector exponential model and its computational facets, such as how to obtain moving

average coefficients from given cepstral coefficients. We demonstrate the utility of

our approach through simulation as well as two illustrative data examples focusing

on multi-step ahead forecasting and estimation of squared coherence.
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1. Introduction

This paper treats the modeling of covariance stationary vector-valued time

series through an extension of the exponential model of Bloomfield (1973). Such

a process will be called a Vector EXPonential (VEXP). In contrast to Vector

AutoRegressive Moving Average (VARMA) models, the VEXP processes are

always invertible, which means that the (causal) Moving Average (MA) form of

the process can be inverted into a (stable) Vector AutoRegressive (VAR) form

– or equivalently, that the spectral density matrix of the VEXP is non-singular

at all frequencies. Necessarily, a VEXP process is also stable, or stationary,

which here means that the spectral density matrix has finite determinant at all

frequencies. We note that, when estimation proceeds in an unconstrained fashion

(e.g., by ordinary least squares) a VAR or VARMA process need not be stable

or invertible; see Lütkepohl (2007) for a basic treatment. Nevertheless, there are
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practical scenarios where these stationarity restrictions on the vector process are

actually necessary.

Although Gaussian maximum likelihood estimation can still proceed when

a vector process is non-invertible, so long as the singularities occur at a set of

frequencies that have Lebesgue measure zero (see McElroy and Trimbur (2015)

for proof and discussion), Whittle estimation, the Gaussian quasi-maximum

likelihood procedure described in Taniguchi and Kakizawa (2000), becomes in-

tractable. In addition, the long-term forecasting filters are not well-defined (see

the discussion in McElroy and McCracken (2014)), because such filters rely on

the ability to recover the innovations from the MA form of the process. An-

other motivation for using invertible processes arises from a popular model for

co-integration (Engle and Granger (1987)), called the common trends formula-

tion (Stock and Watson (1988)). As shown in McElroy and Trimbur (2015), a

co-integrated data process can naturally arise from a co-linear trend process so

long as the noise process (after differencing, if appropriate) is invertible. If the

noise process spectrum has singularities, then the resulting spectrum of the data

process can have singularities as well, which may be an undesirable feature.

By reparametrization, it is possible to enforce that a matrix polynomial

is stable (i.e., its determinant has roots outside the unit circle), which can be

used to ensure that MA polynomials are invertible. For a VEXP process both

stability and invertibility are automatic, while the parameters are completely

unconstrained in RQ, where Q is the total number of parameters. Moreover,

the VEXP class of processes is arbitrarily dense in the space of stable invertible

vector processes, much in the same way that the EXP process can approximate a

stationary univariate process arbitrarily well. This approximation can be made

arbitrarily accurate, and the novel algorithms developed herein allow for efficient

computation of the cepstral representation.

Many situations arise in which modeling the data by a stationary (stable)

vector model is desirable. For example, this might occur if the data had already

been made stationary by differencing, or perhaps by utilizing a common trend

structure for an unobserved component (e.g., see Harvey (1990) or Nyblom and

Harvey (2000)). For the VAR class, one would need to impose restrictions on

the parameters to ensure a stable result, or have recourse to using the Yule-

Walker estimates (see the discussion in Lütkepohl (2007)), which guarantee stable

outcomes. However, if a Bayesian treatment is desired, prior elicitation becomes

a quagmire, since the implicit restrictions imply that the parameters must be

supported on a complicated manifold. The Bayesian treatment for the VARMA

class of models is even more challenging. However, the cepstral approach of the

VEXP allows for the entries of each parameter matrix to be any real number, so

that taking independent vague Gaussian priors is a sensible and coherent choice

that guarantees a stable outcome.

THE CEPSTRAL MODEL FOR MULTIVARIATE TIME SERIES 3

Following the pioneering paper of Bloomfield (1973), the literature on cep-
stral models has experienced substantial growth. For example, Holan (2004),
Holan, McElroy and Chakraborty (2009), McElroy and Holan (2012), and the ref-
erences therein, discuss univariate short memory, long memory, and seasonal long
memory cepstral models, respectively. In contrast, McElroy and Holan (2014)
provides a comprehensive treatment of the asymptotic theory for cepstral ran-
dom fields. Nevertheless, currently no multivariate cepstral model exists; while
Theorem 3 of Taniguchi, Puri and Kondo (1996) defines the spectral density as
a matrix exponential, this is not developed as a time series model. Instead, they
examine the matrix exponential for the spectral density, whereas we examine
the matrix exponential of the MA filter. Given this lacuna, we propose a novel
class of multivariate cepstral models and illustrate their utility. Importantly, we
provide precise mathematical development and computational algorithms for the
proposed class of models, which differs significantly from both the univariate time
series and random field cases.

There are several facets of this VEXP process that are fascinating and non-
intuitive. In particular, because we are studying vector time series, the algebra
that relates the cepstral coefficients to the MA coefficients is no longer Abelian,
and great care is needed in working with the matrix exponential. Background
material as well as our basic VEXP model is provided in Section 2 – moving from
mathematical foundations to the explicit definition and on to algorithmic consid-
erations. Section 3 discusses different aspects associated with modeling using the
VEXP and provides details surrounding Bayesian estimation. Subsequently, two
bivariate data illustrations involving multi-step ahead forecasting and squared
coherence estimation are presented in Section 4. Section 5 provides concluding
discussion. For convenience of exposition, all proofs and derivations, discussion
of several VEXP modeling applications, and two simulated examples are given
in a Supplemental Appendix.

2. The VEXP Model

2.1. The VEXP process

General discussion concerning vector time series is provided in Hannan (1970)
and Brockwell and Davis (1991). Here, we use ′ for transpose and ∗ for conjugate
transpose of a complex-valued matrix. For a m-variate time series, the spectral
density matrix f is a m×m dimensional matrix function of frequency λ, f(λ) is
always Hermitian nonnegative definite, and is often positive definite (pd). More-
over, the autocovariance function (acvf) for a mean-zero process is defined via
Γh = E[Xt+hX

′
t], and is related to the spectral density matrix (sdm) via the

inverse Fourier transform (FT):

Γh =
1

2π

∫ π

−π
f(λ)z−h dλ,
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where z = exp(−iλ). This integration works component-wise on each entry of

the sdm. This relationship can be re-expressed in terms of the FT as

f(λ) =
∞∑

h=−∞
Γhz

h.

This relation is indicative of a more general Hilbert Space expansion of spectral

matrix functions, where a generic function, g, of frequency can be expanded in

terms of the orthonormal basis {zh}, yielding coefficient matrices given by the

inner product of g with zh.

There is a MA decomposition for vector time series, which amounts to a

particular form for the sdm; see Brockwell and Davis (1991) for a comprehensive

discussion. Let Ψ(z) =
∑

j≥0Ψjz
j be the causal representation of the time

series (and for identifiability, we have Ψ0 = I, the identity matrix), such that

Xt = Ψ(B)εt, for some vector white noise {εt} with (lag zero) covariance matrix

Σ. Then the sdm is f(λ) = Ψ(z)ΣΨ′(z). Given the above definitions, the acvf is

related to the MA filter Ψ(B) by Γh =
∑

j≥0Ψj+hΣΨ
′
j .

This shows that knowledge of the MA filter is sufficient to determine the

acvf, but the individual coefficients of the MA filter must satisfy various im-

plicit constraints to generate an identifiable and invertible process; it is then not

convenient to utilize these coefficients Ψj as parameters (as happens in a VMA

model). By rewriting the MA filter in terms of a matrix exponential, we can

automatically enforce identifiability and invertibility through a completely un-

constrained parametrization. This idea is the matrix analogue of the univariate

correspondence between MA and cepstral coefficients elucidated in Pourahmadi

(1984). The matrix exponential is defined in Artin (1991), and many of its prop-

erties are provided in Chiu, Leonard and Tsui (1996). For any complex-valued

square matrix A, the matrix exponential exp(A) is defined via the Taylor series

expansion of exp(x) evaluated at x = A, and Proposition 8.3 of Artin (1991, p.

139) guarantees the convergence.

Therefore, we consider MA filters of the form Ψ(z) = exp{Ω(z)} for some

causal power series Ω(z) =
∑

k≥1Ωkz
k, called the cepstral filter Ω(B). Consider

the condition

‖I −Ψ(z)‖ < 1 ∀z ∈ D (2.1)

for some matrix norm ‖ ·‖ and D = {z ∈ C : |z| ≤ 1}. Under this condition Ψ(B)

has a cepstral representation and, conversely, any cepstral filter Ω(B) generates

a MA filter exp{Ω(B)} that is invertible (its determinant has no roots inside the

unit circle D = {z ∈ C : |z| ≤ 1}) with inverse exp{−Ω(B)}. This is shown

in Corollary 1 of the Supplemental Appendix. Note that (2.1) is sufficient to

show that Ψ(z)−1 exists for all z ∈ D (which is equivalent to detΨ(z) �= 0 for all

z ∈ D), but it is not necessary.

THE CEPSTRAL MODEL FOR MULTIVARIATE TIME SERIES 5

We propose to restrict attention to such processes for modeling stationary

time series. When Ω(B) is a matrix polynomial, the corresponding process is

called a VEXP, in analogy with the univariate EXP of Bloomfield (1973). We

introduce the notation [Ω]q1(z) =
∑q

k=1Ωkz
k, and the corresponding process is

called a VEXP(q). A comprehensive discussion motivating this definition appears

in an earlier version of this manuscript; see Holan, McElroy and Wu (2014). We

emphasize that each entry of each Ωk can be any real number, including zero,

although Ωq does not have every entry equal to zero (else decrement q). The

matrix polynomial [Ω]q1(z) always converges, so the VEXP(q) is always invertible

and identifiable. In summary, the VEXP(q) process has MA filter

Ψ(z) = exp{[Ω]q1(z)}. (2.2)

Although the elements of Ωk are not as readily interpretable in the time domain as

are the elements of the transition matrices of a VAR(p) model, typically this is not

of prime concern. In practice, usually the primary concern resides in estimation of

such target quantities as forecasts, trend estimates, and coherence, among others.

In this sense, the elements of Ωk can often be viewed as nuisance parameters and

there is no need for direct interpretation. Issues of interpretability within the

VEXP class of models is similar to that of MA coefficients in a VMA or VARMA

model, though the cepstral representation may be less problematic directly in the

frequency domain. Nevertheless, in some instances interest resides in interpreting

the parameters of a VAR model (e.g., when making inference concerning Granger

causality). In such cases we advocate estimating the VAR representation of the

associated VEXP model or directly estimating a VAR model.

The white noise process has covariance matrix Σ, which we can represent

as the matrix exponential of some real symmetric matrix, say Ω0, by Lemma 1

of Chiu, Leonard and Tsui (1996). Hence, we write Σ = exp(Ω0), which is

constrained to be symmetric. The formula detΣ = exp{tr Ω0} follows from

Proposition 5.11 of Artin (1991, p.286), and relates the eigenvalues of Σ to those

of Ω0. The sdm of the VEXP(q) can be written

f(λ) = exp{[Ω]q1(z)} exp{Ω0} exp{[Ω′]
q
1(z)}. (2.3)

The VEXP(q) process is also dense in the space of causal processes with MA filter

satisfying (2.1), in the sense that by taking q sufficiently large we can approximate

any such process. Because our concept of density involves the mean square norm

on vector processes, the appropriate matrix norm to utilize with condition (2.1)

is the Frobenius norm; this implicitly defines a subset of the �2 space of causal

power series, over which we formulate our results.
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Proposition 1. Let {Xt} be given by Xt = Ψ(B)εt such that, with respect to

the Frobenius norm, (2.1) holds, and also that εt
iid∼ N (0,Σ), so that the cepstral

power series Ω(B) is well-defined. Let Ψ(q)(z) be the MA power series correspond-

ing to the truncated cepstral polynomial [Ω]q1(B), and write X
(q)
t = Ψ(q)(B)εt for

each integer q. Then the time series {X(q)
t } forms a Cauchy sequence, and con-

verges in mean square to {Xt}.

This result gives us confidence that any time series having a causal MA rep-

resentation satisfying (2.1) can be approximated arbitrarily well by a VEXP(q)

by taking q suitably large. Of course, the same can be said of finite order VAR,

VMA, or VARMA models, but such models require nuanced parameter restric-

tions to achieve stability, invertibility, and/or identifiability (see the discussion in

Brockwell and Davis (1991), given at more length in Hannan and Deistler (1988)).

Consider the case of a VMA (the discussion can be extended to VARMA, but is

more complicated due to the possibility of cancelation of common factors) as de-

scribed in Lütkepohl (2007), with polynomial Ψ(z). Imposing detΨ(z) �= 0 for all

z ∈ D ensures invertibility and identifiability as well; only imposing detΨ(z) �= 0

for all z ∈ ∂D still provides invertibility, but the model will not be identified. In

contrast, the VEXP(q) corresponds to an infinite order VMA with detΨ(z) �= 0

for all z ∈ D, so that invertibility is automatic; it is also identified.

Proposition 2. A VEXP(q) process with q < ∞ is stable, invertible, and iden-

tifiable.

In practice, the VEXP(q) model provides a particularly appealing candidate

model in cases where no clear low-order VAR or VMA can be definitively selected.

This occurs when neither the partial autocorrelation function (pacf) or autocor-

relation function (acf) truncates after a low order lag. Instead, the pacf and acf

are indicative that a VARMA or VEXP model would be more appropriate; the

former is plagued with estimation challenges, whereas the latter has a Euclidean

stationary parameter space.

2.2. The moving average-cepstral bijection

In the univariate case, one may differentiate (2.2) with respect to z, match

coefficients, and arrive at the recurrence relations given in Pourahmadi (1984) and

Hurvich (2002). This produces a recursive relation involving previously computed

MA coefficients and a finite number of cepstral coefficients. Such an approach is

demonstrably false in the multivariate case, because differentiation of the matrix

exponential must allow for the non-Abelian algebra. In particular, the derivative

of exp{Ω(z)} is not equal to Ω̇(z) exp{Ω(z)}, except in the case that the terms

in Ω(z) commute with each other. Instead, we can relate the MA coefficients
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to cepstral matrices by expanding the matrix exponential using a Taylor series

and matching corresponding powers of z. Then straightforward combinatorics

provides the following relationship:

Ψk =
∑
�≥1

1

�!


 ∑

λ�k:|λ|=�

Π�
j=1Ωij




for k ≥ 1. The symbols in the summation are defined as follows: λ � k denotes

a partition of the integer k – actually � is typically used (Stanley (1997, p. 28)),

but because we care about the order of the numbers occurring in the partition,

we use the notation � instead. Also, |λ| = � says that the number of elements in

the partition is �. So we sum over all partitions of the integer k into � pieces, say

i1, i2, . . . , i� with
∑�

j=1 ij = k. For example, the size two partitions of the integer

3 are given by (1, 2) and (2, 1), and these must be accounted as distinct terms

in the summation, since Ω1Ω2 is not equal to Ω2Ω1. Actually, when all the Ωk

matrices commute with each other, all partitions of a given size and configuration

produce the same result, and the above formula simplifies. However, this case

is of little practical interest. We can also produce a relationship of the cepstral

matrices to the MA coefficients by expanding the matrix logarithm and matching

powers of z:

Ωk =
∑
�≥1

(−1)�

�


 ∑

λ�k:|λ|=�

Π�
j=1Ψij


 .

This is typically of lesser interest in applications. For modeling, one posits values

for the cepstral matrices, and determines the MA coefficients. Counting the num-

bers of partitions is laborious, because the total number of (ordered) partitions

of an integer k is equal to 2k. The first few MA coefficients are given by (recall

that Ψ0 = I)

Ψ1 = Ω1,

Ψ2 = Ω2 +
Ω2
1

2
,

Ψ3 = Ω3 +
Ω1Ω2 +Ω2Ω1

2
+

Ω3
1

6
.

For higher MA coefficients, the number of terms quickly grows out of scope. Note

that for Ψ3 the non-Abelian nature of the cepstral matrices comes into play, since

in general Ω1Ω2 �= Ω2Ω1. However, a simpler method is available that allows the

computer to implicitly determine the appropriate partitions. Let Υ(z) = Ω(z)/z,

which is a well-defined power series in z. In the case that Ω(z) is a degree q

matrix polynomial, then Υ(z) is a degree q − 1 matrix polynomial. Denote the

j-th derivative of a polynomial with respect to z by the superscript (j).
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Proposition 1. Let {Xt} be given by Xt = Ψ(B)εt such that, with respect to

the Frobenius norm, (2.1) holds, and also that εt
iid∼ N (0,Σ), so that the cepstral

power series Ω(B) is well-defined. Let Ψ(q)(z) be the MA power series correspond-

ing to the truncated cepstral polynomial [Ω]q1(B), and write X
(q)
t = Ψ(q)(B)εt for

each integer q. Then the time series {X(q)
t } forms a Cauchy sequence, and con-

verges in mean square to {Xt}.

This result gives us confidence that any time series having a causal MA rep-

resentation satisfying (2.1) can be approximated arbitrarily well by a VEXP(q)

by taking q suitably large. Of course, the same can be said of finite order VAR,

VMA, or VARMA models, but such models require nuanced parameter restric-

tions to achieve stability, invertibility, and/or identifiability (see the discussion in

Brockwell and Davis (1991), given at more length in Hannan and Deistler (1988)).

Consider the case of a VMA (the discussion can be extended to VARMA, but is

more complicated due to the possibility of cancelation of common factors) as de-

scribed in Lütkepohl (2007), with polynomial Ψ(z). Imposing detΨ(z) �= 0 for all

z ∈ D ensures invertibility and identifiability as well; only imposing detΨ(z) �= 0

for all z ∈ ∂D still provides invertibility, but the model will not be identified. In

contrast, the VEXP(q) corresponds to an infinite order VMA with detΨ(z) �= 0

for all z ∈ D, so that invertibility is automatic; it is also identified.

Proposition 2. A VEXP(q) process with q < ∞ is stable, invertible, and iden-

tifiable.

In practice, the VEXP(q) model provides a particularly appealing candidate

model in cases where no clear low-order VAR or VMA can be definitively selected.

This occurs when neither the partial autocorrelation function (pacf) or autocor-

relation function (acf) truncates after a low order lag. Instead, the pacf and acf

are indicative that a VARMA or VEXP model would be more appropriate; the

former is plagued with estimation challenges, whereas the latter has a Euclidean

stationary parameter space.

2.2. The moving average-cepstral bijection

In the univariate case, one may differentiate (2.2) with respect to z, match

coefficients, and arrive at the recurrence relations given in Pourahmadi (1984) and

Hurvich (2002). This produces a recursive relation involving previously computed

MA coefficients and a finite number of cepstral coefficients. Such an approach is

demonstrably false in the multivariate case, because differentiation of the matrix

exponential must allow for the non-Abelian algebra. In particular, the derivative

of exp{Ω(z)} is not equal to Ω̇(z) exp{Ω(z)}, except in the case that the terms

in Ω(z) commute with each other. Instead, we can relate the MA coefficients
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to cepstral matrices by expanding the matrix exponential using a Taylor series

and matching corresponding powers of z. Then straightforward combinatorics

provides the following relationship:

Ψk =
∑
�≥1

1

�!


 ∑

λ�k:|λ|=�

Π�
j=1Ωij




for k ≥ 1. The symbols in the summation are defined as follows: λ � k denotes

a partition of the integer k – actually � is typically used (Stanley (1997, p. 28)),

but because we care about the order of the numbers occurring in the partition,

we use the notation � instead. Also, |λ| = � says that the number of elements in

the partition is �. So we sum over all partitions of the integer k into � pieces, say

i1, i2, . . . , i� with
∑�

j=1 ij = k. For example, the size two partitions of the integer

3 are given by (1, 2) and (2, 1), and these must be accounted as distinct terms

in the summation, since Ω1Ω2 is not equal to Ω2Ω1. Actually, when all the Ωk

matrices commute with each other, all partitions of a given size and configuration

produce the same result, and the above formula simplifies. However, this case

is of little practical interest. We can also produce a relationship of the cepstral

matrices to the MA coefficients by expanding the matrix logarithm and matching

powers of z:

Ωk =
∑
�≥1

(−1)�

�


 ∑

λ�k:|λ|=�

Π�
j=1Ψij


 .

This is typically of lesser interest in applications. For modeling, one posits values

for the cepstral matrices, and determines the MA coefficients. Counting the num-

bers of partitions is laborious, because the total number of (ordered) partitions

of an integer k is equal to 2k. The first few MA coefficients are given by (recall

that Ψ0 = I)

Ψ1 = Ω1,

Ψ2 = Ω2 +
Ω2
1

2
,

Ψ3 = Ω3 +
Ω1Ω2 +Ω2Ω1

2
+

Ω3
1

6
.

For higher MA coefficients, the number of terms quickly grows out of scope. Note

that for Ψ3 the non-Abelian nature of the cepstral matrices comes into play, since

in general Ω1Ω2 �= Ω2Ω1. However, a simpler method is available that allows the

computer to implicitly determine the appropriate partitions. Let Υ(z) = Ω(z)/z,

which is a well-defined power series in z. In the case that Ω(z) is a degree q

matrix polynomial, then Υ(z) is a degree q − 1 matrix polynomial. Denote the

j-th derivative of a polynomial with respect to z by the superscript (j).
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Proposition 3. Consider the MA power series Ψ(z) such that, with respect to

the Frobenius norm, (2.1) holds, with cesptral power series Ω(z). With Υ(z) =

Ω(z)/z, the k-th MA coefficient can be computed by

Ψk =
1

k!

k∑
�=1

(
k

�

)[
Υ(z)�

](k−�)
|z=0 =

k∑
�=1

1

�!

[
Υ(z)�

]
k−�

. (2.4)

Letting Ξ(z) = (Ψ(z)− I)/z, the k-th cepstral coefficient can be computed by

Ωk =
1

k!

k∑
�=1

(
k

�

)
(−1)� (�−1)!

[
Ξ(z)�

](k−�)
|z=0 = −

k∑
�=1

(−1)�

�

[
Ξ(z)�

]
k−�

. (2.5)

Remark 1. Evidently, Ψ(B) is block upper triangular if and only if Ω(B) is

block upper triangular; hence Granger non-causality (e.g., see Lütkepohl, 2007)

can be parsed purely in terms of the cepstral power series. In particular, if the

upper right block of each Ωk is zero, then the second block of time series does not

Granger-cause the first block of time series. Hence, tests of Granger non-causality

can be easily constructed from Wald tests over the estimated coefficients in the

upper triangular block of the cepstral power series.

From an algorithmic standpoint, one is required to generate powers of the

matrix polynomial Υ(z) (or Ξ(z)) and read off the appropriate coefficients. The

product of two matrix polynomials is easily encoded; the resulting matrix poly-

nomial has coefficients given by the convolution of the coefficient matrices, re-

specting the order of the product. These programs have been coded in R (R

Development Core Team, 2014) and are available upon request; consequently,

the computations for the MA coefficients are straightforward.

3. VEXP Modeling of Vector Time Series

Suppose that we have an observed series of length T from a mean-zero m-

variate time series {Xt}, that we wish to model via a VEXP(q) process. Whether

estimation proceeds through maximum likelihood or through a Bayesian ap-

proach, typically, q is chosen via some model selection criteria (e.g., AIC, BIC,

DIC, or Bayes factor), order selection (e.g., forward selection or backward dele-

tion), or to minimize out-of-sample prediction. Then, given q, we postulate that

the MA representation can be modeled via (2.2) such that the spectral density

can be expressed as (2.3). To distinguish the model spectrum from the true spec-

tral density of the process {Xt}, we refer to the latter spectrum as f̃ and the

former spectrum as f�, where � = vec{lotri[Ω0],Ω1, . . . ,Ωq}. (Here lotri refers

to the diagonal and lower triangular entries.) Apart from the mean of the series

THE CEPSTRAL MODEL FOR MULTIVARIATE TIME SERIES 9

(for the non-zero mean case), � completely parametrizes the process. The case

of a non-zero mean is readily handled; see Section 3.2.

3.1. Likelihood estimation

The Gaussian likelihood is an appealing objective function, because max-

imum likelihood estimates (MLEs) have the properties of consistency and ef-

ficiency (a precise discussion is provided in the Supplemental Appendix – see

Theorems 2, 3, and 4 of Appendix S4). Writing X = vec{X1, X2, . . . , XT } and

Γ� for the mT dimensional covariance matrix of the sample, the log Gaussian

likelihood for a mean-zero sample, scaled by −2 (sometimes called the deviance)

is

D(�;X) = log det Γ� +X ′ Γ−1
� X, (3.1)

which one seeks to minimize. Efficient computation of the quadratic form and log

determinant in (3.1) can proceed utilizing the multivariate Durbin-Levinson algo-

rithm described in Brockwell and Davis (1991); knowledge of the autocovariance

function (acvf) – once this is computed from the model with parameter vector �

– determines Γ� and thereby the deviance. The entries of each cepstral matrix Ωj

are unconstrained (although Ω0 is symmetric), being allowed to be any real num-

ber. If any estimated coefficient, or component of �, is not significantly different

from zero, the model could be re-estimated with all such coefficients (or some

subset) constrained to be zero, in order to obtain a more parsimonious model.

One could also attempt to refine the choice of q utilizing such a procedure.

In order to refine the model of order q or to impose additional sparsity, it is

important to have the standard errors of the parameter estimates. Corollary 4 of

Appendix S4 in the Supplement establishes efficiency of MLEs, with asymptotic

covariance matrix estimated by T times the inverse of the numerical Hessian,

i.e., the standard errors are obtained directly from the inverse Hessian, with no

sample size correction. The corollary also discusses the log likelihood ratio test,

which can be used to discern between nested VEXP models; setting any of the(m+1
2

)
+ m2q parameters of a VEXP(q) to zero yields a nested model, and the

usual χ2 distribution can be applied to the difference in deviances.

There may be interest in using other objective functions. In particular, be-

cause there is some computational cost associated with the inversion of Γ�, an ap-

proximate version of the deviance, known as the Whittle likelihood, may be prefer-

able for very large sample sizes. In this case, one replaces the inverse of Γ� by

the covariance matrix corresponding to the inverse autocovariances. The inverse

autocovariances are the autocovariances corresponding to f−1
� = f−�: we obtain

the inverse of the VEXP spectrum by considering the alternative VEXP process

where each coefficient is multiplied by negative one. This is true, because [Ω]q1(z)

30



8 SCOTT H. HOLAN, TUCKER S. MCELROY AND GUOHUI WU

Proposition 3. Consider the MA power series Ψ(z) such that, with respect to

the Frobenius norm, (2.1) holds, with cesptral power series Ω(z). With Υ(z) =

Ω(z)/z, the k-th MA coefficient can be computed by

Ψk =
1

k!

k∑
�=1

(
k

�

)[
Υ(z)�

](k−�)
|z=0 =

k∑
�=1

1

�!

[
Υ(z)�

]
k−�

. (2.4)

Letting Ξ(z) = (Ψ(z)− I)/z, the k-th cepstral coefficient can be computed by

Ωk =
1

k!

k∑
�=1

(
k

�

)
(−1)� (�−1)!

[
Ξ(z)�

](k−�)
|z=0 = −

k∑
�=1

(−1)�

�

[
Ξ(z)�

]
k−�

. (2.5)

Remark 1. Evidently, Ψ(B) is block upper triangular if and only if Ω(B) is

block upper triangular; hence Granger non-causality (e.g., see Lütkepohl, 2007)

can be parsed purely in terms of the cepstral power series. In particular, if the

upper right block of each Ωk is zero, then the second block of time series does not

Granger-cause the first block of time series. Hence, tests of Granger non-causality

can be easily constructed from Wald tests over the estimated coefficients in the

upper triangular block of the cepstral power series.

From an algorithmic standpoint, one is required to generate powers of the

matrix polynomial Υ(z) (or Ξ(z)) and read off the appropriate coefficients. The

product of two matrix polynomials is easily encoded; the resulting matrix poly-

nomial has coefficients given by the convolution of the coefficient matrices, re-

specting the order of the product. These programs have been coded in R (R

Development Core Team, 2014) and are available upon request; consequently,

the computations for the MA coefficients are straightforward.

3. VEXP Modeling of Vector Time Series

Suppose that we have an observed series of length T from a mean-zero m-

variate time series {Xt}, that we wish to model via a VEXP(q) process. Whether

estimation proceeds through maximum likelihood or through a Bayesian ap-

proach, typically, q is chosen via some model selection criteria (e.g., AIC, BIC,

DIC, or Bayes factor), order selection (e.g., forward selection or backward dele-

tion), or to minimize out-of-sample prediction. Then, given q, we postulate that

the MA representation can be modeled via (2.2) such that the spectral density

can be expressed as (2.3). To distinguish the model spectrum from the true spec-

tral density of the process {Xt}, we refer to the latter spectrum as f̃ and the

former spectrum as f�, where � = vec{lotri[Ω0],Ω1, . . . ,Ωq}. (Here lotri refers

to the diagonal and lower triangular entries.) Apart from the mean of the series
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(for the non-zero mean case), � completely parametrizes the process. The case

of a non-zero mean is readily handled; see Section 3.2.

3.1. Likelihood estimation

The Gaussian likelihood is an appealing objective function, because max-

imum likelihood estimates (MLEs) have the properties of consistency and ef-

ficiency (a precise discussion is provided in the Supplemental Appendix – see

Theorems 2, 3, and 4 of Appendix S4). Writing X = vec{X1, X2, . . . , XT } and

Γ� for the mT dimensional covariance matrix of the sample, the log Gaussian

likelihood for a mean-zero sample, scaled by −2 (sometimes called the deviance)

is

D(�;X) = log det Γ� +X ′ Γ−1
� X, (3.1)

which one seeks to minimize. Efficient computation of the quadratic form and log

determinant in (3.1) can proceed utilizing the multivariate Durbin-Levinson algo-

rithm described in Brockwell and Davis (1991); knowledge of the autocovariance

function (acvf) – once this is computed from the model with parameter vector �

– determines Γ� and thereby the deviance. The entries of each cepstral matrix Ωj

are unconstrained (although Ω0 is symmetric), being allowed to be any real num-

ber. If any estimated coefficient, or component of �, is not significantly different

from zero, the model could be re-estimated with all such coefficients (or some

subset) constrained to be zero, in order to obtain a more parsimonious model.

One could also attempt to refine the choice of q utilizing such a procedure.

In order to refine the model of order q or to impose additional sparsity, it is

important to have the standard errors of the parameter estimates. Corollary 4 of

Appendix S4 in the Supplement establishes efficiency of MLEs, with asymptotic

covariance matrix estimated by T times the inverse of the numerical Hessian,

i.e., the standard errors are obtained directly from the inverse Hessian, with no

sample size correction. The corollary also discusses the log likelihood ratio test,

which can be used to discern between nested VEXP models; setting any of the(m+1
2

)
+ m2q parameters of a VEXP(q) to zero yields a nested model, and the

usual χ2 distribution can be applied to the difference in deviances.

There may be interest in using other objective functions. In particular, be-

cause there is some computational cost associated with the inversion of Γ�, an ap-

proximate version of the deviance, known as the Whittle likelihood, may be prefer-

able for very large sample sizes. In this case, one replaces the inverse of Γ� by

the covariance matrix corresponding to the inverse autocovariances. The inverse

autocovariances are the autocovariances corresponding to f−1
� = f−�: we obtain

the inverse of the VEXP spectrum by considering the alternative VEXP process

where each coefficient is multiplied by negative one. This is true, because [Ω]q1(z)
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commutes with −[Ω]q1(z) for any value of z, and exp(A) · exp(B) = exp(A+B)

when matrices A and B commute. The expression for the Whittle likelihood

given in Taniguchi and Kakizawa (2000) also replaces the log determinant term

by the log of the determinant of the innovation variance matrix, log det exp{Ω0}.
By (S1.1) of Supplemental Appendix S1, this is equal to the trace of Ω0. There-

fore, for the mean-zero case, the deviance of the Whittle likelihood can be written

as

W(�;X) = tr(Ω0) + T−1X ′ Γ−� X, (3.2)

which is to be minimized with respect to �. While for some time series

models (such as unobserved components models) the inverse autocovariances are

time-consuming to calculate, they are immediate in the case of a VEXP, given

that we have already computed the autocovariances, the insertion of a minus sign

in the algorithm is all that is needed. So (3.2) implies a speedier algorithm, as

no matrix inversion is required.

Although mathematically equal, the form of the Whittle likelihood in

Taniguchi and Kakizawa (2000) is slightly different from (3.2). This other ex-

pression involves the integral over all frequencies λ ∈ [−π, π] of the trace of the

periodogram multiplied by f−1
� ; straightforward algebra yields that this integral

is equal to the quadratic form T−1X ′ Γ−� X in (3.2). The periodogram is defined

to be

IT (λ) = T−1

(
T∑
t=1

Xte
−iλt

) (
T∑
t=1

X ′
te

iλt

)
,

which is a rank one matrix. Some statisticians write the Whittle likelihood

in terms of the periodogram only being evaluated at Fourier frequencies, which

amounts to discretizing the integral in the exact Whittle likelihood by a Riemann

approximation. The advantage of doing this further approximation is that the

objective function is then expressed purely in terms of the periodogram and the

model spectral density, and no calculation of inverse autocovariances is required

at all. This approximate Whittle likelihood can be written

WT (�;X) = tr(Ω0) +
1

2T

T∑
j=−T

tr{IT (
πj

T
) f−�(

πj

T
)}. (3.3)

Once the periodogram is computed, evaluation of (3.3) is extremely fast: one only

needs to evaluate [−Ω]q1(z) for z corresponding to the Fourier frequencies, and

determine the matrix exponential (for example, via Taylor series directly) and

construct f−� via (2.3). If computation of the autocovariances is prohibitively

expensive (due to largem and/or q) then the approximate Whittle likelihood may
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be preferable. Asymptotic results for Whittle estimates (WLEs) are discussed in
Theorem 2 and Corollary 2 of Appendix S4 in the Supplement.

3.2. Bayesian estimation

For an exact Bayesian analysis, the formal procedure for a Gaussian VEXP(q)
model requires an exact expression for the likelihood. Although it is possible to
pose an approximate Bayesian procedure based on the Whittle (or approximate
Whittle) likelihood formulation, in moderate sample sizes our preference is for
an exact Bayesian approach. Nevertheless, in large sample sizes, and/or analyses
consisting of a large number of time series, an approximate Bayesian procedure
may be preferred due to the fact that implementation using an exact or approx-
imate Whittle specification is extremely computationally efficient.

Depending on the desired goals of a particular analysis, it is often advanta-
geous to treat the elements of the cepstral matrices as nuisance parameters and
average over different model specifications using stochastic search variable selec-
tion (SSVS) (George and McCulloch (1993, 1997); George, Sun and Ni (2008)).
This type of Bayesian model averaging (Hoeting et al. (1999)) implicitly weights
the elements of the cepstral matrices through the MCMC sampling algorithm.
This strategy is extremely effective in the context of forecasting (Holan et al.
(2012)), where interest resides in a target other than the cepstral matrix ele-
ments. If, instead, the main goal is inferential, then a model corresponding to
the posterior mode for each cepstral matrix, from the SSVS algorithm, could
be re-estimated. Alternatively, models could be considered without SSVS (e.g.,
with order selection proceeding through Bayes factor or DIC).

To implement the SSVS algorithm we begin by assuming that the likelihood
of Y = (X − µ)′ is specified as

L(δ,�|·) ∝ |Γ�|−1/2 exp

(
−1

2
Y ′Γ−1

� Y

)
,

where δ = (µ1, µ2, . . . , µm)′ and µ = 1T ⊗ δ. Non-constant µ could also be con-
sidered through straightforward modification of the Markov chain Monte Carlo
(MCMC) algorithm (e.g., µ can be specified in terms of covariates). We further
assume that the elements of δ and the diagonal elements Ω0 are in the model
with probability one. For the other elements of Ω0 and Ωj (j = 1, . . . , q), we
specify a SSVS prior based on a mixture of normal distributions.

Let γi, i = 1, . . . , p = m0 + qm2, denote a latent zero-one random variable,
where m0 = m(m−1)/2. Further, let V0 = (V01, . . . , V0m0) be the vector of length
m0 containing the unique off-diagonal elements of Ω0, Vj = vec(Ωj) (j = 1, . . . , q),
and V =(V ′

0 , V
′
1 , . . . , V

′
q )

′. Then, V =(V01, . . . , V0m0 , V11, V12, . . . , V1m2 , . . . , Vqm2)′

= (v1, . . . , vp)
′ and we have

vi|γi ∼ (1− γi)N(0, τ2i ) + γiN(0, c2i τ
2
i ),
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commutes with −[Ω]q1(z) for any value of z, and exp(A) · exp(B) = exp(A+B)

when matrices A and B commute. The expression for the Whittle likelihood

given in Taniguchi and Kakizawa (2000) also replaces the log determinant term

by the log of the determinant of the innovation variance matrix, log det exp{Ω0}.
By (S1.1) of Supplemental Appendix S1, this is equal to the trace of Ω0. There-

fore, for the mean-zero case, the deviance of the Whittle likelihood can be written

as

W(�;X) = tr(Ω0) + T−1X ′ Γ−� X, (3.2)

which is to be minimized with respect to �. While for some time series

models (such as unobserved components models) the inverse autocovariances are

time-consuming to calculate, they are immediate in the case of a VEXP, given

that we have already computed the autocovariances, the insertion of a minus sign

in the algorithm is all that is needed. So (3.2) implies a speedier algorithm, as

no matrix inversion is required.

Although mathematically equal, the form of the Whittle likelihood in

Taniguchi and Kakizawa (2000) is slightly different from (3.2). This other ex-

pression involves the integral over all frequencies λ ∈ [−π, π] of the trace of the

periodogram multiplied by f−1
� ; straightforward algebra yields that this integral

is equal to the quadratic form T−1X ′ Γ−� X in (3.2). The periodogram is defined

to be

IT (λ) = T−1

(
T∑
t=1

Xte
−iλt

) (
T∑
t=1

X ′
te

iλt

)
,

which is a rank one matrix. Some statisticians write the Whittle likelihood

in terms of the periodogram only being evaluated at Fourier frequencies, which

amounts to discretizing the integral in the exact Whittle likelihood by a Riemann

approximation. The advantage of doing this further approximation is that the

objective function is then expressed purely in terms of the periodogram and the

model spectral density, and no calculation of inverse autocovariances is required

at all. This approximate Whittle likelihood can be written

WT (�;X) = tr(Ω0) +
1

2T

T∑
j=−T

tr{IT (
πj

T
) f−�(

πj

T
)}. (3.3)

Once the periodogram is computed, evaluation of (3.3) is extremely fast: one only

needs to evaluate [−Ω]q1(z) for z corresponding to the Fourier frequencies, and

determine the matrix exponential (for example, via Taylor series directly) and

construct f−� via (2.3). If computation of the autocovariances is prohibitively

expensive (due to largem and/or q) then the approximate Whittle likelihood may
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be preferable. Asymptotic results for Whittle estimates (WLEs) are discussed in
Theorem 2 and Corollary 2 of Appendix S4 in the Supplement.

3.2. Bayesian estimation

For an exact Bayesian analysis, the formal procedure for a Gaussian VEXP(q)
model requires an exact expression for the likelihood. Although it is possible to
pose an approximate Bayesian procedure based on the Whittle (or approximate
Whittle) likelihood formulation, in moderate sample sizes our preference is for
an exact Bayesian approach. Nevertheless, in large sample sizes, and/or analyses
consisting of a large number of time series, an approximate Bayesian procedure
may be preferred due to the fact that implementation using an exact or approx-
imate Whittle specification is extremely computationally efficient.

Depending on the desired goals of a particular analysis, it is often advanta-
geous to treat the elements of the cepstral matrices as nuisance parameters and
average over different model specifications using stochastic search variable selec-
tion (SSVS) (George and McCulloch (1993, 1997); George, Sun and Ni (2008)).
This type of Bayesian model averaging (Hoeting et al. (1999)) implicitly weights
the elements of the cepstral matrices through the MCMC sampling algorithm.
This strategy is extremely effective in the context of forecasting (Holan et al.
(2012)), where interest resides in a target other than the cepstral matrix ele-
ments. If, instead, the main goal is inferential, then a model corresponding to
the posterior mode for each cepstral matrix, from the SSVS algorithm, could
be re-estimated. Alternatively, models could be considered without SSVS (e.g.,
with order selection proceeding through Bayes factor or DIC).

To implement the SSVS algorithm we begin by assuming that the likelihood
of Y = (X − µ)′ is specified as

L(δ,�|·) ∝ |Γ�|−1/2 exp

(
−1

2
Y ′Γ−1

� Y

)
,

where δ = (µ1, µ2, . . . , µm)′ and µ = 1T ⊗ δ. Non-constant µ could also be con-
sidered through straightforward modification of the Markov chain Monte Carlo
(MCMC) algorithm (e.g., µ can be specified in terms of covariates). We further
assume that the elements of δ and the diagonal elements Ω0 are in the model
with probability one. For the other elements of Ω0 and Ωj (j = 1, . . . , q), we
specify a SSVS prior based on a mixture of normal distributions.

Let γi, i = 1, . . . , p = m0 + qm2, denote a latent zero-one random variable,
where m0 = m(m−1)/2. Further, let V0 = (V01, . . . , V0m0) be the vector of length
m0 containing the unique off-diagonal elements of Ω0, Vj = vec(Ωj) (j = 1, . . . , q),
and V =(V ′

0 , V
′
1 , . . . , V

′
q )

′. Then, V =(V01, . . . , V0m0 , V11, V12, . . . , V1m2 , . . . , Vqm2)′

= (v1, . . . , vp)
′ and we have

vi|γi ∼ (1− γi)N(0, τ2i ) + γiN(0, c2i τ
2
i ),
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with P (γi = 1) = 1−P (γi = 0) = πi. Thus, V |γ ∼ N(0, DγRDγ), where R is the
prior correlation matrix – which in our case we assume to be the identity matrix
– and Dγ ≡ diag(a1τ1, . . . , apτp) with p = m0+ qm2. In this case, for i = 1, . . . , p,

γi
iid∼ Bern(πi), with πi ≡ 1/2 and ai = 1 if γi = 0, and ai = ci if γi = 1.
Here πi can be viewed as the prior probability that the i-th element of V

should be included in the model. Therefore, γi = 1 indicates that the i-th variable
is included in the model. Now, in general, ci, τi, and πi are fixed hyperparame-
ters; George and McCulloch (1993, 1997) describe various alternatives for their
specification. They suggest that one would like τi to be small so that when γi = 0
it is reasonable to specify an effective prior for the i-th element of V that is near
zero. Additionally, one typically wants ci to be large (greater than 1) so that if
γi = 1, our prior would favor a non-zero value for the i-th element of V .

To complete the Bayesian model, we need to specify prior distributions for
the remaining parameters. In terms of the mean, we assume that δ ∼ N(δ0,Σδ),
with δ0 = (u1, . . . , um)′ and Σδ = diag(σ2

µ1
, σ2

µ2
, . . . , σ2

µm
). Recall, the diagonal

elements of Ω0 are assumed to be in the model with probability one and, thus,
we assume that Ω0 ∼ N(0,ΣΩ0), where ΣΩ0 = diag(σ2

1, σ
2
2, . . . , σ

2
m). Lastly, for

(j = 1, . . . ,m), σ2
µj

∼ IG(Aµj , Bµj ) and σ2
j ∼ IG(Aj , Bj).

In high-dimensional cases (e.g., m ≥ 10 and/or large q) direct implementa-
tion of the SSVS algorithm may be slow and may not search the entire model
space. In these cases, it may be advantageous to do some form of dimension
reduction prior to specifying the VEXP model and carrying out Bayesian vari-
able selection (e.g., see Wikle and Holan (2011); Holan et al. (2012); Yang et
al. (2013), among others). Similarly, in high-dimensional settings, doing some
form of initial dimension reduction may help facilitate prior selection in the SSVS
algorithm.

In some cases it may be of interest to estimate the VEXP model without
conducting Bayesian model averaging through SSVS, as is the case in the example
we present involving squared coherence estimation (see Section 4.2). Under this
scenario, a prior distribution for the elements of V0 and Vj (j = 1, . . . , q) needs
to be specified. Here, for k′ = 1, . . . ,m0, we assume that V0k′ ∼ N(0, σ2

0k′) and,
for j = 1, . . . , q and k = 1, . . . ,m, we assume that Vjk ∼ N(0, σ2

jk).
In general, regardless of whether a SSVS prior is implemented, the full con-

ditional distributions are not of standard form, with the only exceptions being
δ and the elements of Σδ and ΣΩ0 . Consequently, all of the parameters aside
from δ and the elements of Σδ and ΣΩ0 can be sampled using a random walk
Metroplis-Hastings within Gibbs MCMC sampling algorithm. Sampling of δ and
the elements of Σδ and ΣΩ0 proceeds directly using a Gibbs step, as the full
conditionals distribution have a closed form.

4. VEXP Modeling Illustrations

THE CEPSTRAL MODEL FOR MULTIVARIATE TIME SERIES 13

To demonstrate the versatility and overall utility of the VEXP modeling

framework, we present two data examples. The first considers multi-step ahead

forecasts for a bivariate macroeconomic time series and uses Bayesian model av-

eraging through SSVS as a means of obtaining superior forecasts. The second

example examines the squared coherence between monthly sunspots and criti-

cal radio frequencies and does not make use of SSVS. Instead, the goal of this

analysis is to demonstrate the VEXP approach to multivariate spectral (squared

coherence) estimation.

4.1. Multi-step ahead forecasting

Multi-step ahead forecasting is an area of considerable interest in such

disciplines as atmospheric science and macroeconomics, among others. One

paramount concern when constructing long-lead forecasts is to ensure the model

specification is not explosive. In the context of VAR modeling (or VARMA) this

can be facilitated through imposing restrictions on the coefficient matrices to en-

sure that certain determinants are nonzero. In contrast, our method provides an

extremely convenient approach to model specification that does not require us to

impose any constraints a priori, making estimation exceedingly straightforward

within the Bayesian paradigm.

The macroeconomic time series we consider are regression adjusted (“Hol-

iday” and “Trading Day” effects are removed) monthly retail sales time series

from the U.S. Census Bureau. Specifically, we consider a bivariate analysis of (en-

tire) “Retail Trade Sector” (RTS) and “Automotive Parts, Accessories, and Tire

Stores” (APATS) from January 1992 through December 2007, T = 192 (Figure 1).

McElroy and McCracken (2014) describe multi-step forecasting for nonstationary

vector time series with a general MA form. From that work, the forecast filter

(from an infinite past) for h-step ahead forecasting for a stationary process with

invertible MA power series Ψ(z) is given by Π(z) = z−h[Ψ]∞h (z)Ψ−1(z).

The bivariate time series considered here are annual-differenced (the operator

(1−B12) is applied to the data) prior to estimation using the VEXP model. The

cross-correlation function of the differenced series indicates that they are cross-

correlated (Figure 2). From the acf (not shown), it appears that an AR(1) or

low-order ARMA model may be reasonable for each series; although some serial

correlation at lag 12 is indicated (which one would expect, given the crudeness of

seasonal adjustment achieved by the action of 1−B12), most of the dependence

is concentrated in the low lags. Therefore, we focus upon low order VEXP

models for our forecasting application; while we do not claim that our VEXP(5)

specification is the best possible for the data, our subsequent forecasting results

indicate that this specification is nonetheless adequate for our purposes.
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disciplines as atmospheric science and macroeconomics, among others. One

paramount concern when constructing long-lead forecasts is to ensure the model

specification is not explosive. In the context of VAR modeling (or VARMA) this

can be facilitated through imposing restrictions on the coefficient matrices to en-

sure that certain determinants are nonzero. In contrast, our method provides an

extremely convenient approach to model specification that does not require us to

impose any constraints a priori, making estimation exceedingly straightforward

within the Bayesian paradigm.

The macroeconomic time series we consider are regression adjusted (“Hol-

iday” and “Trading Day” effects are removed) monthly retail sales time series

from the U.S. Census Bureau. Specifically, we consider a bivariate analysis of (en-

tire) “Retail Trade Sector” (RTS) and “Automotive Parts, Accessories, and Tire

Stores” (APATS) from January 1992 through December 2007, T = 192 (Figure 1).

McElroy and McCracken (2014) describe multi-step forecasting for nonstationary

vector time series with a general MA form. From that work, the forecast filter

(from an infinite past) for h-step ahead forecasting for a stationary process with

invertible MA power series Ψ(z) is given by Π(z) = z−h[Ψ]∞h (z)Ψ−1(z).

The bivariate time series considered here are annual-differenced (the operator

(1−B12) is applied to the data) prior to estimation using the VEXP model. The

cross-correlation function of the differenced series indicates that they are cross-

correlated (Figure 2). From the acf (not shown), it appears that an AR(1) or

low-order ARMA model may be reasonable for each series; although some serial

correlation at lag 12 is indicated (which one would expect, given the crudeness of

seasonal adjustment achieved by the action of 1−B12), most of the dependence

is concentrated in the low lags. Therefore, we focus upon low order VEXP

models for our forecasting application; while we do not claim that our VEXP(5)

specification is the best possible for the data, our subsequent forecasting results

indicate that this specification is nonetheless adequate for our purposes.
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Figure 1. Pointwise multi-step ahead (12-steps ahead) forecast plots for the
(entire) “Retail Trade Sector” (RTS) and “Automotive Parts, Accessories,
and Tire Stores” (APATS) series (Section 4.1). The dashed lines and the
additional solid line (beginning January 2007) denote the pointwise 95%
credible intervals and the posterior mean, respectively, for the distribution
of forecasts at each time.

seasonal adjustment achieved by the action of 1−B12), most of the dependence

is concentrated in the low lags. Therefore, we focus upon low order VEXP

models for our forecasting application; while we do not claim that our VEXP(5)

specification is the best possible for the data, our subsequent forecasting results

indicate that this specification is nonetheless adequate for our purposes.

Prior specification was identical to that of Simulated Example I (Supplemen-

tal Appendix S3), except in this example we conducted a factorial experiment

over various combinations of the SSVS hyperparameters and chose the combi-

nation of c and τ that minimized the out-of-sample mean squared prediction

error (MSPE) over the last 12 values of the series. Based on previous forecasting

analyses (Holan et al. (2012)), for q = 2, . . . , 5, the SSVS hyperparameters consid-

ered for this experiment were πi ≡ π = 0.5 and (τ, c) = (0.001, 10), (0.001, 100),

(0.01, 10), (0.01, 100), (0.1, 10), (0.1, 100). Judging from the overall MSPE, the

parameters q = 5, τ = 0.1, and c = 10 gave the best performance among the
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(entire) “Retail Trade Sector” (RTS) and “Automotive Parts, Accessories,
and Tire Stores” (APATS) series (Section 4.1). The dashed lines and the
additional solid line (beginning January 2007) denote the pointwise 95%
credible intervals and the posterior mean, respectively, for the distribution of
forecasts at each time.

Prior specification was identical to that of Simulated Example I (Supplemen-

tal Appendix S3), except in this example we conducted a factorial experiment

over various combinations of the SSVS hyperparameters and chose the combi-

nation of c and τ that minimized the out-of-sample mean squared prediction

error (MSPE) over the last 12 values of the series. Based on previous forecasting

analyses (Holan et al. (2012)), for q = 2, . . . , 5, the SSVS hyperparameters consid-

ered for this experiment were πi ≡ π = 0.5 and (τ, c) = (0.001, 10), (0.001, 100),

(0.01, 10), (0.01, 100), (0.1, 10), (0.1, 100). Judging from the overall MSPE, the pa-

rameters q = 5, τ = 0.1, and c = 10 gave the best performance among the values

considered. Although these hyperparameters could be tuned further, our experi-

ence is that such tuning leads to minimal gains in forecasting monthly retail sales.

The SSVS sampler results were based on 60,000 iterations with a 40,000 itera-

tion burn-in. Convergence was assessed through visual inspection of the sample

chains, with no lack of convergence detected. When conducting out-of-sample

THE CEPSTRAL MODEL FOR MULTIVARIATE TIME SERIES 15THE CEPSTRAL MODEL FOR MULTIVARIATE TIME SERIES 15

Figure 2. Cross-correlation function plot for the regression-adjusted and
annual-differenced (entire) “Retail Trade Sector” (RTS) and “Automotive
Parts, Accessories, and Tire Stores” (APATS) time series (Section 4.1).

values considered. Although these hyperparameters could be tuned further, our

experience is that such tuning leads to minimal gains in forecasting monthly

retail sales. The SSVS sampler results were based on 60,000 iterations with a

40,000 iteration burn-in. Convergence was assessed through visual inspection

of the sample chains, with no lack of convergence detected. When conducting

out-of-sample forecasting, our h-step-ahead forecasts were based on the poste-

rior mean forecast h steps ahead over all iterations of the SSVS MCMC run.

Similar to Holan et al. (2012), this forecasting represents a “model averaging”

over all possible elements of the cepstral matrices, and accounts for their relative

importance through the SSVS procedure. Specifically, our approach produces

a posterior distribution of forecasts rather than associating the forecasts with a

single estimated model, as would be the case in OLS estimation (or maximum

likelihood estimation). This can similarly be done using a Bayesian VAR(p) (or

VARMA) formulation. However, in the Bayesian VAR case problems of identi-

fying the stationary region persist and may lead to an unstable representation.

Using the VEXP model, the MSPE for this example was 21.59 and 0.0112

for the RTS and APATS series, respectively. In contrast, conducting the same

experiment with a VAR(1) model, estimated through OLS, yielded a MSPE of

22.95 and 0.0244 for the RTS and APATS series respectively. Therefore, relative

to the OLS VAR(1) model, the Bayesian VEXP(5) model provides roughly a

6% decrease in MSPE for the RTS series and a 55% decrease for the APATS

series. Figure 1 displays the forecasted values along with their pointwise 95%

Figure 2. Cross-correlation function plot for the regression-adjusted and
annual-differenced (entire) “Retail Trade Sector” (RTS) and “Automotive
Parts, Accessories, and Tire Stores” (APATS) time series (Section 4.1).

forecasting, our h-step-ahead forecasts were based on the posterior mean forecast

h steps ahead over all iterations of the SSVS MCMC run. Similar to Holan et al.

(2012), this forecasting represents a “model averaging” over all possible elements

of the cepstral matrices, and accounts for their relative importance through the

SSVS procedure. Specifically, our approach produces a posterior distribution of

forecasts rather than associating the forecasts with a single estimated model, as

would be the case in OLS estimation (or maximum likelihood estimation). This

can similarly be done using a Bayesian VAR(p) (or VARMA) formulation. How-

ever, in the Bayesian VAR case problems of identifying the stationary region

persist and may lead to an unstable representation.

Using the VEXP model, the MSPE for this example was 21.59 and 0.0112

for the RTS and APATS series, respectively. In contrast, conducting the same

experiment with a VAR(1) model, estimated through OLS, yielded a MSPE of

22.95 and 0.0244 for the RTS and APATS series respectively. Therefore, relative

to the OLS VAR(1) model, the Bayesian VEXP(5) model provides roughly a

6% decrease in MSPE for the RTS series and a 55% decrease for the APATS

series. Figure 1 displays the forecasted values along with their pointwise 95%

CIs and clearly demonstrates the effectiveness of our approach. These results

are not unexpected. In general, model-averaged forecasts typically out-perform

forecasts from a single model. In contrast, the single VAR(1) model is easy to fit,

but likely misspecified. Ultimately, this example illustrates the ease with which
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Figure 1. Pointwise multi-step ahead (12-steps ahead) forecast plots for the
(entire) “Retail Trade Sector” (RTS) and “Automotive Parts, Accessories,
and Tire Stores” (APATS) series (Section 4.1). The dashed lines and the
additional solid line (beginning January 2007) denote the pointwise 95%
credible intervals and the posterior mean, respectively, for the distribution
of forecasts at each time.
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The SSVS sampler results were based on 60,000 iterations with a 40,000 itera-

tion burn-in. Convergence was assessed through visual inspection of the sample

chains, with no lack of convergence detected. When conducting out-of-sample
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(2012), this forecasting represents a “model averaging” over all possible elements

of the cepstral matrices, and accounts for their relative importance through the

SSVS procedure. Specifically, our approach produces a posterior distribution of

forecasts rather than associating the forecasts with a single estimated model, as

would be the case in OLS estimation (or maximum likelihood estimation). This

can similarly be done using a Bayesian VAR(p) (or VARMA) formulation. How-

ever, in the Bayesian VAR case problems of identifying the stationary region

persist and may lead to an unstable representation.

Using the VEXP model, the MSPE for this example was 21.59 and 0.0112

for the RTS and APATS series, respectively. In contrast, conducting the same

experiment with a VAR(1) model, estimated through OLS, yielded a MSPE of

22.95 and 0.0244 for the RTS and APATS series respectively. Therefore, relative

to the OLS VAR(1) model, the Bayesian VEXP(5) model provides roughly a

6% decrease in MSPE for the RTS series and a 55% decrease for the APATS

series. Figure 1 displays the forecasted values along with their pointwise 95%

CIs and clearly demonstrates the effectiveness of our approach. These results

are not unexpected. In general, model-averaged forecasts typically out-perform

forecasts from a single model. In contrast, the single VAR(1) model is easy to fit,

but likely misspecified. Ultimately, this example illustrates the ease with which
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Bayesian model averaging can be done using the VEXP model specification.

4.2. Modeling of squared coherence

This example considers bivariate spectral estimation and, in particular, esti-

mation of the squared coherence

ρ2X1·X2
(λ) =

|fX1X2(λ)|2

fX1X1(λ)fX2X2(λ)
.

Specifically, we consider a monthly bivariate time series of critical radio frequen-

cies and sunspots (Newton (1988)). The first series consists of the monthly

median noon-hour value of the critical radio frequencies (the highest radio fre-

quency that can be used for broadcasting) in Washington D.C. for the period of

May 1934 through April 1954. The second series consists of the total number of

monthly sunspots over the same period.

For this illustration, we considered a VEXP(5) model without SSVS. Prior

specification was identical to that of Simulated Example II (Supplemental Ap-

pendix S3). The MCMC sampling algorithm consisted of 60,000 iterations with a

40,000 iteration burn-in. Convergence was assessed through visual inspection of

the sample chains, with no lack of convergence detected. The spectral estimates

and squared coherence were obtained by taking the pointwise (by frequency)

posterior mean and 95% CIs.

The coherence between the two series is illustrated through a plot of the

squared coherence (Figure 3a). From this plot, we see that there is strong coher-

ence at low frequencies (i.e., λ ≈ π/66) corresponding to the so-called sunspot

cycle (≈ 11 years) Additionally, there is also relatively strong coherence at higher

frequencies (i.e., λ ≈ 2.5), which may correspond to some sort of (approximately

quarterly) seasonal relationship. These relationships are corroborated through

an empirical plot of the squared coherence using a modified Daniell window

in R (using kernel (“modified.daniell”, c(8,8,8)) with taper=.2 in the function

spec.pgram); see Figure 3b. Discussion regarding these series in the univariate

setting can be found in Newton (1988, p. 194).

5. Conclusion

We propose a new class of cepstral models for multivariate time series – the

VEXP. Conveniently, this model is cast in the frequency domain and has an

unrestricted parameter space. This is in stark contrast to the VARMA modeling

paradigm where one must impose restrictions on the coefficient matrices to ensure

that certain determinants are nonzero in order to ensure the model is stationary

(or nonexplosive).

THE CEPSTRAL MODEL FOR MULTIVARIATE TIME SERIES 17

We provide theoretical justification for this new class of models and show

that this model is dense in the class of short memory time series. Addition-

ally, for q < ∞, we show that the VEXP(q) process is always stable, invertible,

and identifiable. Importantly, we derive the necessary computational formulas

for efficient model implementation and discuss several approaches to estimation,

including maximum likelihood and Bayesian estimation. In fact, one of the pri-

mary strengths of the VEXP class of models is that a precise Bayesian treatment

proceeds naturally.

Similar to other multivariate time series models, issues regarding the dimen-

sion of the parameter space remain an area of concern. In cases where the model

order and/or the number of series is substantially large, the number of parame-

ters in the model causes difficulty in estimation. In these cases, further dimension

reduction of the cepstral matrices is advantageous and can be achieved through

low-rank methods or scientifically motivated parameterizations (e.g., see Cressie

and Wikle (2011)). Another practical consideration concerns the number of MA

coefficients, M , used for estimation, which needs to be chosen by the practitioner.

In order to guarantee a sufficient approximation, this choice would depend on

the underlying dependence structure. In the short memory cases considered in

Section 4 and Supplemental Appendix S3, we have taken M = 15, and found

that to be sufficient for our intended purpose.

The methodology is illustrated through multi-step ahead forecasting of bi-

variate retail trade series from the U.S. Census Bureau and through estimation

of squared coherence for a bivariate time series of monthly sunspots and crit-

ical radio frequencies. The forecasting example uses SSVS and thus provides

an implicit model averaging. We demonstrate the superiority of our approach,

in terms of MSPE for multi-step-ahead forecasting, relative to an OLS VAR(1)

model. Figures 1 and 2, respectively, illustrated the effectiveness of our approach

and the need for a multivariate model. In contrast, the squared coherence ex-

ample does not impose SSVS and, instead, illustrates various aspects concern-

ing spectral estimation. Specifically, Figure 3 highlights our ability to capture

cross-dependence in the spectral domain for correlated bivariate time series. Our

results corroborate those of previous analyses, while providing a straightforward

path to parametric squared coherence estimation.

Many other applications of the VEXP model exist. For example, multivariate

long memory modeling and multivariate unobserved component models using the

VEXP framework are areas of open research. In summary, any multivariate short

memory time series application can be posed using the VEXP framework, thereby

providing a rich class of models for multivariate time series.
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ing spectral estimation. Specifically, Figure 3 highlights our ability to capture

cross-dependence in the spectral domain for correlated bivariate time series. Our
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Many other applications of the VEXP model exist. For example, multivariate

long memory modeling and multivariate unobserved component models using the
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memory time series application can be posed using the VEXP framework, thereby

providing a rich class of models for multivariate time series.
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Figure 3. (a) Pointwise posterior mean squared coherence plot between the
critical-radio frequency - sunspots time series corresponding to the period
May 1934 through April 1954. (b) Empirical squared coherence and point-
wise 95% confidence intervals using modified Daniell window; see Section 4.2.

Supplementary Materials

The Supplemental Appendix contains proofs of technical results, a descrip-

tion of applications of the VEXP model, results of two simulated examples, and

asymptotic theory for parameter estimates.
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BAYESIAN ANALYSIS OF SHAPE-RESTRICTED FUNCTIONS

USING GAUSSIAN PROCESS PRIORS

Peter J. Lenk and Taeryon Choi

University of Michigan and Korea University

Abstract: This paper proposes a Bayesian method to estimate shape-restricted func-

tions using Gaussian process priors. The proposed model enforces shape-restrictions

by assuming that the derivatives of the functions are squares of Gaussian processes.

The resulting functions, after integration, are monotonic, monotonic convex or con-

cave, U–Shaped, and S–shaped. The latter two allow estimation of extreme points

and inflection points. The Gaussian process’s covariance function has hyper param-

eters to control the smoothness of the function and the tradeoff between the data

and the prior distribution. The Bayesian analysis of these hyper parameters pro-

vides a data–driven method to identify the appropriate amount of smoothing. The

posterior distributions of the proposed models are consistent. We modify the basic

model with a spike-and-slab prior that improves model fit when the true function

is on the boundary of the constraint space. We also examine Bayesian hypoth-

esis testing for shape restrictions and discuss its potentials and limitations. We

contrast our approach with existing Bayesian regression models with monotonicity

and concavity and illustrate the empirical performance of the proposed models with

synthetic and actual data.

Key words and phrases: Adaptive Markov chain Monte Carlo, isotonic regression,

Karhunen-Loève expansion, lasso, model choice, semiparametric regression, shape

restriction, smoothing, spectral representation.

1. Introduction

Shape constrained regression models arise naturally in a wide variety of ap-

plications: children grow taller; star light intensity decreases with distance given

fixed luminosity; demand for electricity increases as temperatures depart from

68◦F; and an occupation’s prestige tends to increase with its salary and educa-

tional requirements. Researchers often assume that such shape restrictions as

monotonicity and convexity are known a priori or plausible in theory. Semipara-

metric Bayesian models express these a priori shape constraints in the prior dis-

tribution of the unknown function. Neelon and Dunson (2004) and Cai and Dun-

son (2007) developed methods for Bayesian isotonic regression using piece-

wise linear models and monotone splines based on order-restricted infer-

ence. Other approaches to shape constraints are Brezger and Steiner (2008)
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