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Abstract: In this document, we present the assumptions and the proofs for Theorems 1-4.

Let f(y;θ,γ) be the density function. Denote the corresponding score functions,
evaluated at (θ0,0), by

T =

[
T1

T2

]
=

[
∂ log f(y;θ,γ)/∂θ

∂ log f(y;θ,γ)/∂γ

]
θ=θ0,γ=0

.

Denote the quasi-score functions, evaluated at (θ0,0), by

U =

[
U1

U2

]
=

[
∂Q(θ,γ; y)/∂θ

∂Q(θ,γ; y)/∂γ

]
θ=θ0,γ=0

.

The corresponding second derivatives are denoted as

H =

[
∂2Q/∂θ∂θ> ∂2Q/∂θ∂γ>

∂2Q/∂γ∂θ> ∂2Q/∂γ∂γ>

]
θ=θ0,γ=0

.

To study the large sample properties of the proposed model selection criterion ∆AIC,
we need some regularity conditions.

A.1 Assumptions and two preliminary lemmas

(C.1): The log density function logf(y;θ,γ) has continuous partial derivatives with re-
spect to (θ,γ) in a neighborhood around (θ0,0), which are dominated by func-
tions with finite means under fN (y) = f(y;θ0,0). The true density f0(y) =

f(y;θ0, δn
−1/2) can be represented by fN (y) as

f0(y) = fN (y)
{

1 + T>2 (y)δn−1/2 + r(y, δn−1/2)
}
,

where r(y, t) is small enough to make fN (y)r(y, t) is of order o (‖t‖) uniformly
in y.
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(C.2): The log quasi-likelihood functionQ(θ,γ; y) has third continuous derivatives with
respect to (θ,γ) in a neighborhood around (θ0,0), which are dominated by func-
tions with finite means under fN (y). The quasi-information matrix Σ (defined
below) exists and is non-singular under fN (y).

Σ = EN (−H) = varN (U) =

[
Σ00 Σ01

Σ10 Σ11

]
and Σ−1 =

[
Σ00 Σ01

Σ10 Σ11

]
.

(C.3): The integrals
∫

U(y)fN (y)r(y, t)dy and
∫
‖U(y)‖2fN (y)r(y, t)dy are of order

o (‖t‖2).

(C.4): For some ξ > 0, the integrals
∫
‖U(y)‖2+ξfN (y)dy and

∫
‖U(y)‖2+ξfN (y)r(y, t)dy

are of orderO(1). Also the variables |U2+ξ
1k (y)T2r(y)| and |U2+ξ

2l (y)T2r(y)| have
finite mean under the null density fN (y), for k ∈ {1, · · · , p} and r, l ∈ {1, · · · , q}
with U1k = ∂Q/∂θk, U2l = ∂Q/∂γl and T2r = ∂logf/∂γr.

The similar assumptions have customarily been assumed in the literature on quasi-
likelihood function, GEE and local misspecification framework. See, for example, Wed-
derburn (1974), McCullagh (1983), Liang and Zeger (1986) and Hjort and Claeskens
(2003) .

Lemma A.1. Under the misspecification framework and the regularity conditions given
in the Assumptions, we have[

R1,n

R2,n

]
d→ Np+q

([
Σ01

Σ11

]
δ,Σ

)
,

where

R1,n =
1√
n

n∑
i=1

U1(yi) and R2,n =
1√
n

n∑
i=1

U2(yi).

In particular, for the submodel S:[
R1,n

R2,S,n

]
d→ Np+qS

([
Σ01

πSΣ11

]
δ,ΣS

)
.

Here “ d→” denotes convergence in distribution under the sequence of f0(y).

Proof. We shall finish the proof by three steps. In the first two steps, we calculate
the expectation and variance of the quasi-score under f0(y), respectively. In the third
step, we verify the requirement for the Lyapounov central limit theorem, and complete
the proof.
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Step 1. Consider E0(U1) first. E0(U2) can be manipulated by the similar arguments. A
direct calculation yields that

E0(U1) =

∫
U1(y)fN (y)dy +

∫
U1(y)fN (y)T>2 (y)δn−1/2dy

+

∫
U1(y)fN (y)r(y, δn−1/2)dy. (A.1)

It is easy to see that the first term in (A.1) equals to zero by the fact U(y) = D>V−1(y−
µ) with µ = EN (y). Note that∫

U(y)fN(y)T>(y)dy =

∫
U(y)fN(y) [∂ log fN(y)/∂β]> dy

=

∫
D>V−1(y − µ) [∂fN(y)/∂β]> dy

=D>V−1
∫

y
[
∂fN(y)/∂β>

]
dy −D>V−1µ

∫ [
∂fN(y)/∂β>

]
dy

=D>V−1
∂

∂β>

∫
yfN(y)dy −D>V−1µ

∂

∂β>

∫
fN(y)dy

=D>V−1
∂µ

∂β>
− 0 = D>V−1D = Σ,

where the interchanges are justified by Assumption (C.1) that |T(y)| is dominated by
function with finite mean under fN (y) and (C.4) that |U(y)T(y)| has finite mean under
fN (y). So the second term in (A.1) is Σ01δn

−1/2. Also by Assumption (C.3), we
conclude that the third term in (A.1) is of order o(1/

√
n).

By the similar arguments, E0(U2) = Σ11δ/
√
n+o(1/

√
n). As a result, the expec-

tation of the quasi-score under f0(y) becomes

E0

[
U1

U2

]
=

[
Σ01

Σ11

]
δ√
n

+ o(1/
√
n).

Step 2. Similarly to calculating the expectation of the quasi-score, we first consider
var0(U1). The rest terms can be manipulated by the similar arguments. Note that

E0(U1U
>
1 ) =

∫
U1(y)U>1 (y)fN (y)dy +

∫
U1(y)U>1 (y)fN (y)T>2 (y)δn−1/2dy

+

∫
U1(y)U>1 (y)fN (y)r(y, δn−1/2)dy.

(A.2)

The first term is EN (U1U
>
1 ). By Assumption (C.4), we see that∣∣∣∣∫ U2

1k(y)T2r(y)fN (y)dy

∣∣∣∣ ≤ ∫ ∣∣U2
1k(y)T2r(y)

∣∣fN (y)dy = O(1)
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and for k1, k2 ∈ {1, · · · , p},∣∣∣∣∫ U1k1(y)U1k2(y)T2r(y)fN (y)dy

∣∣∣∣
≤ 1

2

[∫ ∣∣U2
1k1(y)T2r(y)fN (y)

∣∣dy +

∫ ∣∣U2
1k2(y)T2r(y)fN (y)

∣∣dy

]
= O(1).

Therefore
∫

U1(y)U>1 (y)fN (y)T>2 (y)dy is of order O(1). It follows that the second
term in (A.2) is of order O(1/

√
n). By Assumption (C.3), we conclude that the third

term in (A.2) is of order o(1/
√
n).

A direct simplification yields that var0(U1) = varN (U1) + O(1/
√
n) = Σ00 +

O(1/
√
n).Go through the similar arguments for var0(U2), cov0(U1,U

>
2 ) and cov0(U2,U

>
1 ).

The variance of the quasi-score can be expressed under f0(y) as

var0

[
U1

U2

]
=

[
Σ00 Σ10

Σ10 Σ11

]
+O(1/

√
n) = Σ +O(1/

√
n).

Step 3. Because yi’s are independent, the corresponding quasi-scores, denoted by
UF,i = U(yi), are independent too. By Assumption (C.4), for some ξ > 0

E0

(
‖U(y)‖2+ξ

)
=

∫
‖U(y)‖2+ξfN (y)dy +

∫
‖U(y)‖2+ξfN (y)T>2 (y)δn−1/2dy

+

∫
‖U(y)‖2+ξfN (y)r(y, δn−1/2)dy = O(1).

Therefore ‖UF,i‖2+ξ has bounded mean under the true density f0(y). So is ‖UF,i −
E0(UF,i)‖2+ξ. Denote the true distribution of UF,i by F0,i(u). Then

lim
n→∞

n−(1+ξ/2)
n∑
i=1

∫
‖u− E0(UF,i)‖2+ξdF0,i(u)→ 0.

Thus Lyapounov condition is guaranteed. Applying Lyapounov central limit theorem to
the quasi-score UF,i indicates that

1√
n

n∑
i=1

{
UF,i − E0(UF,i)

} d→ Np+q(0,Σ).

Therefore [
R1,n

R2,n

]
d→ Np+q

([
Σ01

Σ11

]
δ,Σ

)
.

Q.E.D.
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Lemma A.2. Under the misspecification framework and the regularity conditions given
the Assumptions, the GEE estimates have the following equivalence in distribution form:

√
n

[
θ̂ − θ0

γ̂

]
= Σ−1

[
R1,n

R2,n

]
+ op(1),

In particular, with the submodel S:

√
n

[
θ̂ − θ0

γ̂S

]
= Σ−1S

[
R1,n

πSR2,n

]
+ op(1).

Proof. Consider a Taylor series expansion of the quasi-score around (θ0,0):[
R1,n(θ̂, γ̂)

R2,n(θ̂, γ̂)

]
=

[
R1,n

R2,n

]
+

[
∂R1,n(θ,γ)/∂θ> ∂R1,n(θ,γ)/∂γ>

∂R2,n(θ,γ)/∂θ> ∂R2,n(θ,γ)/∂γ>

]
θ=θ0,γ=0

×
[
θ̂ − θ0

γ̂ − 0

]
+

1

2

[
θ̂ − θ0

γ̂ − 0

]>
×
[
∂2R1,n(θ,γ)/∂θ>∂θ ∂2R1,n(θ,γ)/∂γ>∂θ

∂2R2,n(θ,γ)
/
∂θ>∂γ ∂2R2,n(θ,γ)

/
∂γ>∂γ

]
θ=θ∗,γ=γ∗

×
[
θ̂ − θ0

γ̂ − 0

]
,

(A.3)

with θ∗ being between θ0 and θ̂, and γ∗ between 0 and γ̂. Recalling the consistency of
the GEE estimates, it is easy to see θ∗ = θ0 + op(1) and γ∗ = op(1). Also Assumption
(C.1) indicates the matrix of the second derivative in the third term of (A.3) is stochastic
bounded, so the third term is of order op(1). Thus, (A.3) becomes[

0

0

]
=

[
R1,n

R2,n

]
+

[
∂R1,n(θ,γ)/∂θ> ∂R1,n(θ,γ)/∂γ>

∂R2,n(θ,γ)/∂θ> ∂R2,n(θ,γ)/∂γ>

]
θ=θ0,γ=0

×
[
θ̂ − θ0

γ̂ − 0

]
+op(1).

Therefore

√
n

[
θ̂ − θ0

γ̂ − 0

]
= −
√
n

[
∂R1,n(θ,γ)/∂θ> ∂R1,n(θ,γ)/∂γ>

∂R2,n(θ,γ)/∂θ> ∂R2,n(θ,γ)/∂γ>

]−1
θ=θ0,γ=0

×
[

R1,n

R2,n

]
+op(1).

Again Assumption (C.2) and the law of large number yield

1√
n

[
∂R1,n(θ,γ)/∂θ> ∂R1,n(θ,γ)/∂γ>

∂R2,n(θ,γ)/∂θ> ∂R2,n(θ,γ)/∂γ>

]
θ=θ0,γ=0

= −Σ + op(1)

and

√
n

[
∂R1,n(θ,γ)/∂θ> ∂R1,n(θ,γ)/∂γ>

∂R2,n(θ,γ)/∂θ> ∂R2,n(θ,γ)/∂γ>

]−1
θ=θ0,γ=0

= −Σ−1 + op(1).

Consequently,

√
n

[
θ̂ − θ0

γ̂ − 0

]
=
{
Σ−1 + op(1)

}[ R1,n

R2,n

]
+ op(1)

= Σ−1
[

R1,n

R2,n

]
+ op(1).

This completes the proof. Q.E.D.
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A.2 Proof of Theorem 1

Based on Lemma A.2, the estimator of the uncertain parameters under the full model
becomes

√
nγ̂ = Σ10R1,n + Σ11R2,n + op(1)

= Σ11(R2,n −Σ10Σ
−1
00 R1,n) + op(1).

The estimator of the uncertain parameters under the submodel S can be written as
√
nγ̂S = Σ11

S (πSR2,n −Σ10,SΣ
−1
00 R1,n) + op(1)

= Σ11
S πS(R2,n −Σ10Σ

−1
00 R1,n) + op(1).

(A.4)

A direct calculation indicates the relationship between γ̂S and γ̂ as follows
√
nγ̂S =

√
nΣ11

S πS

(
Σ11

)−1
γ̂ + op(1). (A.5)

Also the large sample behavior of the GEE estimators can be derived by Lemmas A.1
and A.2:

√
n

[
θ̂ − θ0

γ̂

]
d→ Np+q

(
Σ−1

[
Σ01

Σ11

]
δ,Σ−1

)
. (A.6)

Now, we are going to prove the main theorem. To derive the specific form of ∆AIC,
consider a Taylor series expansion of the log quasi-likelihood around (θ0,0):

Q(θ̂, γ̂;D) = Q(θ0,0;D) +
√
n

[
R1,n

R2,n

]>
×
[
θ̂ − θ0

γ̂ − 0

]
+

√
n

2

[
θ̂ − θ0

γ̂ − 0

]>[
∂R1,n(θ,γ)/∂θ> ∂R1,n(θ,γ)/∂γ>

∂R2,n(θ,γ)/∂θ> ∂R2,n(θ,γ)/∂γ>

]
θ=θ∗,γ=γ∗

[
θ̂ − θ0

γ̂ − 0

]
,

where θ∗ is between θ0 and θ̂ and γ∗ between 0 and γ̂. It follows that

Q(θ̂,γ̂;D)−Q(θ0,0;D)

=

[
R1,n

R2,n

]>
×
√
n

[
θ̂ − θ0

γ̂ − 0

]
+

√
n

2

[
θ̂ − θ0

γ̂ − 0

]>{
−
√
n{Σ + op(1)}

}[ θ̂ − θ0

γ̂ − 0

]
=

[
R1,n

R2,n

]>
×
{

Σ−1
[

R1,n

R2,n

]
+ op(1)

}
− 1

2

{
Σ−1

[
R1,n

R2,n

]
+ op(1)

}>{
Σ + op

(
1
)}{

Σ−1
[

R1,n

R2,n

]
+ op(1)

}
=

1

2

[
R1,n

R2,n

]>
Σ−1

[
R1,n

R2,n

]
+ op(1),
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where the second equality follows from Lemma A.2. In particular,

Q(θ̂, γ̂S;D)−Q(θ0,0;D) =
1

2

[
R1,n

πSR2,n

]>
Σ−1S

[
R1,n

πSR2,n

]
+ op(1). (A.7)

For the narrow model, it becomes

Q(θ̂,0;D)−Q(θ0,0;D) =
1

2
R>1,nΣ

−1
00 R1,n + op(1). (A.8)

Recall the definition of ∆AICn,S, which gives

∆AICn,S = −2
n∑
i=1

Q(θ̂, γ̂S; yi) + 2

n∑
i=1

Q(θ̂,0; yi) + 2|S/N|

= −2
[
Q(θ̂, γ̂S;D)−Q(θ̂,0;D)

]
+ 2|S/N|.

(A.7) and (A.8) indicate that

∆AICn,S = −2
[
Q(θ̂, γ̂S;D)−Q(θ0,0;D)

]
+ 2
[
Q(θ̂N ,0;D)−Q(θ0,0;D)

]
+ 2|S/N|

= −
[

R1,n

πSR2,n

]>
Σ−1S

[
R1,n

πSR2,n

]
+ R>1,nΣ−100 R1,n + 2|S/N|+ op(1).

Using the expressions given in (A.4) and (A.5), ∆AICn,S can be further expressed as

−
(
πSR2,n − πSΣ10Σ

−1
00 R1,n

)>
Σ11

S

(
πSR2,n − πSΣ10Σ

−1
00 R1,n

)
+ 2|S/N|+ op(1)

=−
√
nγ̂>S

(
Σ11

S

)−1√
nγ̂S + 2|S/N|+ op(1)

=− nγ̂>
(
Σ11

)−1
π>S Σ11

S πS

(
Σ11

)−1
γ̂ + 2|S/N|+ op(1).

Recalling (A.6), we see that
√
nγ̂

d→Nq(δ,Σ
11). Thus, the first term of ∆AICn,S con-

verges to a noncentral chi-squared distribution and so

∆AICn,S
d→− χ2

|S/N|(λS) + 2|S/N|

with λS = nγ>0
(
Σ11

)−1
π>S Σ11

S πS

(
Σ11

)−1
γ0. This completes the proof. Q.E.D.

A.3 Proof of Theorem 2

From Lemmas A.1 and A.2, we have

√
n

[
θ̂S − θ0
γ̂S

]
→d

[
(Σ00,SΣ01 + Σ01,SπSΣ11)δ + Σ00,SM1 + Σ01,SπSM2

(Σ10,SΣ01 + Σ11,SπSΣ11)δ + Σ10,SM1 + Σ11,SπSM2

]
=

[
Σ−100 Σ01δ + Σ−100 M1 −Σ−100 Σ01π

>
S Σ11

S πS

(
Σ11

)−1
∆

Σ11
S πS

(
Σ11

)−1
∆

]
.
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Since ζ is a function of (θ,γ),
√
n(ζ̂S − ζ0

)
can be expanded by Taylor expansion and

a delta method as:
√
n(ζ̂S − ζ0) =

√
n
{
ζ(θ̂S, γ̂S)− ζ(θ0, δ/

√
n)
}

=

(
∂ζ

∂θ

)>√
n(θ̂S − θ0) +

(
∂ζ

∂γS

)>√
n(γ̂S − γ0)−

(
∂ζ

∂γ

)>
δ+op(1)

d→
(
∂ζ

∂θ

)> {
Σ−100 Σ01δ + Σ−100 M1 −Σ−100 Σ01π

>
S Σ11

S πS

(
Σ11

)−1
∆
}

+

(
∂ζ

∂γS

)>
Σ11

S πS

(
Σ11

)−1
∆−

(
∂ζ

∂γ

)>
δ

=

{(
∂ζ

∂θ

)>
Σ−100 Σ01 −

(
∂ζ

∂γ

)>}
δ −

{(
∂ζ

∂θ

)>
Σ−100 Σ01π

>
S −

(
∂ζ

∂γS

)>}

Σ11
S πS

(
Σ11

)−1
∆ +

(
∂ζ

∂θ

)>
Σ−100 M1

=

(
∂ζ

∂θ

)>
Σ−100 M1 + ω>δ − ω>π>S Σ11

S πS

(
Σ11

)−1
∆.

Therefore,

√
n(ζ̂S − ζ0)

d→ ΩS = Ω0 + ω>δ − ω>π>S Σ11
S πS

(
Σ11

)−1
∆

where Ω0 ∼ Np(0, τ
2
0 ). The limiting variable ΩS follows Normal distribution with mean

ω>δ − ω>π>S Σ11
S πS

(
Σ11

)−1
δ and variance τ 2

0 + ω>π>S Σ11
S πSω.

Q.E.D.

A.4 Proof of Theorem 3

Since the compromise estimator has the form of ζ̂ =
∑

S
p(S|∆)ζ̂S and (θ̂S, γ̂S) is a

linear function of (θ̂, γ̂) in addition to a term of op(1), we have

√
n(ζ̂ − ζ0

) d→ Ω =
∑

S

p(S|∆)ΩS = Ω0 + ω>δ − ω>
∑

S

p(S|∆
)
π>S Σ11

S πS

(
Σ11

)−1
∆

The limiting variable Ω has meanω>δ−ω>E
[
δ̂(∆)

]
and variance τ 2

0 +ω>var
[
δ̂(∆)

]
ω.
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