Statistica Sinica: Supplement

SMOOTH COMPOSITE LIKELIHOOD ANALYSIS OF
LENGTH-BIASED AND RIGHT-CENSORED
DATA WITH AFT MODEL

Xuerong Chen!, Na Hu? and Jianguo Sun®*

L Center of Statistical Research, School of Statistics,
Southwestern University of Finance and Economics, Chengdu, 611130, China
2Boehringer Ingelheim (China) Investment Co., Ltd., Shanghai, 200040, China
3 Department of Statistics, University of Missouri, Columbia, Missouri, 65201, U.S.A
4 Institute of Mathematics, Jilin University, Changchun, 130012, China

Supplementary Material

Appendix I: Proof of the Asymptotic Properties.
In this supplementary material, we will sketch the proofs for the asymptotic properties of
the proposed estimator of regression parameters. For this, we first give Lemma 1 below, which

is needed below.

Lemma 1. Suppose that f(Z) and E{¢(Z,u)|Z = z} are continuous and twice differentiable
at z and E{|¢(Z,U)|*> < co}. Then as n — oo, we have

O L L [ o) e

— —1
where Z is the support of Z, 8, = b2 + (M)I/Q.

nbp

Lemma 1 could be proved along the lines of Lemma A.2 in Xia and Li (1999).

Proof of Theorem 1: To prove Theorem 1, by Theorem 5.7 in Van der Vaart (1998), it is

suffices to prove that:
(1). supgepll6n(B) — £(B)Il = 0p(1)
(2). B, is the unique maximizer of ¢(3).

The proof of statement (1) can be obtained by the following results,

= sup ds

I ¢ (Ri(B)—s, dP@=1,R(B)<s)
o BEB,s nbn, ;&K( bn )- |

2= sw =S [ K- PRG) > 9)] = oy(0)
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J3

BEBS nb Z/H () u)du — P(H(B) = s)| = 0p(1),

Ji = sup |nb Z/R o1 w)du — P(6 =1,R(B) > s)| = 0,(1),

BEB,s
o - . — = > =
Js sup. |nbn > /I oy O (u)du — P(6 = 1,1(B) > 5)| = 0p(1)

We just need to verify J1 = 0p(1). The remaining terms can be obtained in similar way. By
Lemma 2.8 of Pakes and Pollard (1989), it is sufficient to verify that e; = {5K(%i_s), B € B,s}
is an Euclidean class with an integrable envelope function. The Euclidean property of €1 can be
obtained by the Euclidean properties of {4}, {K(%};S,ﬁ, s} with constant envelope Fi = 1,
F, = sup |K(.)|. By example (2.10) in Pakes and Pollard (1989), and condition (C5), the latter
class has Euclidean property. By Lemma 22(ii) in Nolan and Pollard (1987), the former class
is Euclidean class as the indicator function is bounded variation function. Hence, J1 = o,(1).
By similar argument, we have J; = 0,(1),7 = 2, 3,4, 5. Therefore, statement (1) holds.

For statement (2), note that £(3) has unique maximizer is equivalent to that the score

function has unique root. We just need to verify that:

su
Be{lB—Bollzs}

‘ oL(B)

2|0

Note that by condition (C4),

7“ = in M,%| _
Be{llB-Bol>s} || OB oB B=Bo

= inf [1€9(8)(8 - Byl

Be{l1B-Boll =5}
dP(5=1,YeP X < t)/dt
3EQ61 ’ = _
‘Vﬁ log | N N2y V- N B:B*(ﬁ Bo)

in
BefliB—Boll=5}

inf
Be{llIB-Boll=d}
> 0,

where 3" lies between 8 and B,. This completes the proof.

Proof of Theorem 2: For simplicity, for any functions f1, f2 and f, denote f1(Y,X;08) +
F2(Y, X; 8) = {f1+ f2}(Y, X; B) and define f) to be the first derivative of f. Since %gm =0,

we have

l Z {61X _ (SZREU(,B) 5 gln(Kaleﬂ) {an gan + gsn — g6n}(Y;7Xi§ﬁ) } =0,

i=1 g2n()/zszn6) {g7n gsn + gon _QIOn}(}/MXi;B)



COMPOSITE LIKELIHOOD ANALYSIS OF LENGTH-BIASED DATA WITH AFT MODEL

where

U(y,:B8) = log(yexp(8'x)), w”z%{f’m,

1 < R:(B) — .8y RV(B) — vV (y,z: 8
gin(y,z;8) = ﬁ;(st(l)( i (B) bf(y,xyﬂ)) j (B) ;é (y,x )’
g2n(y,7;8) = ij_l %K(Rj(ﬁ) _bf(yﬂf?ﬂ))’

n RY(8) — D (y, z; A .
gy, 2 8) = % 5 (B) ;/J (yxﬂ)K(Rj(,B) bw(y,m,,B)L

j=1 n n

n HD(B) = D (y, z; oy '
gan(y, 75 8) = % ;B bw v.2:8) o Hy(B) bw(w,g))’

j=1 n n

n R(-l) () T ) _ )

j=1 n n

n 1) — D (y, x; A _
gen(y,x; B) = %Zéjg (B) zb (ywﬁ)K(lg(ﬂ) ;ﬂ(y,x,ﬂ))7

j=1 n n

1]n Ry —vywi)
gm(y,z;B8) = EZ " K(s)ds,

j=17—-00
gsn(y,2;8) = EZ " K(s)ds,
—~ | &

1]n LHORITET)

ggn(y,x;ﬁ) = EZ(%/ " K(s)ds,
R

ljn LB v riB)
gion(y,2;8) = 5253'/ "’ K (s)ds,

j=1  J-eo

Furthermore, we denote the expectations of gi.n(y,z;8),k =1, ..., 10 as gk,o(y, z; B).

Note that
n R;(B)—¢(y,z;8 R (B)—¢(y,z;8
o) = L3g o KO G KBS RO v .aih)
gin\Y, T; = nj71 5 m h/bn b%
a ) 1 )
— lim 2|1 o (Ri(B) — ¥(y,z;8) + b\ By (B) — v (y, 2 8)
i=

1 jw(w) i) RV(B) - wm(y,x;m}

n j=1 bn b%

.1
=: }IILI%) E{Jl + Jo},
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and
. 1) _ D .
(1 (
_ { [ ( y,m,@_’_i)XRJ 1/)1(971’5) }}
bn 5;, RSV (8)
_ R 6h) R;(B) — (y, =; B) ) 1 ]}
R R R L L e i = L= MO

= B{5(RY(8) = 0 0 5 D) 00 )., (V57 8) = B) + OB},

where fr 5 r1)(g),s 18 the conditional density function of R(3) given RW(B) and 4.

Similarly, we have
BJz = B8 (B (8) = 0 (0,55 B S (g ) (.5, (002 8)) + OB}

By lemma 1, we have supp_(g)c, |J1 — EJi| = O(5,) and SUDR, (8)ey |J2 — EJa| = O(5,), where
X is the support of R(3) and &, = b2 + %. Hence J; = EJ;1 4+ 0(8,) and Jo = EJ> 4+ 0(8,)

and

o1
g1n(y,x;,3) = }lllj)% E{Jl _JQ}

h—0

= Jim 1 B |5 (R8) — 0 08B g 0 5, (G0 338) 1)

Ty 00, (0080 + O3] |

- —E{5(R(B) — vV (g2 8)) Wy, z;8))}.

(8RS (8),6

Therefore,

91 (y:380) > —B{0;(Ry — vy 3 B S, A5,

(¥ (y, x5 8)) },

and similarly we can obtain that

92n(y,2:80) = B[S friols, (¥(y, x5 Bg))ls

gan(y,7380) —  El(RS) — v (y,; BN g1 5, (¥ (057 Bo))],
gan(y 3 B0) = Bl(H =00 (0 2:80) w5, (00073 80))),
9on(y 3 B0) = BIO; (R =0 (1,2 80) o) 5, (0555 Bo)),
gon(y,m:8) —  El6; (I — w(l)(y,m;ﬁo))f,jollﬁﬁj (¥ (y, 2 Bo)));
gm(y,z:80) —  P(Rjo > ¢(y, 2 6)),

gsn(y, 23 80) —  P(Hjo > ¥(y,7;8)),

gon (Y, 23 80)  —  P(Rjo > (y,2;8),6; = 1),

gion(y, 23 80)  —  PLjo > ¥(y,z;8),0; = 1),
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D (1) (1) J2asy 7w ...
where Rjo = R;(8y), R;y) = (Bo), Hjo, Hjy' and Ijo, I}’ have same definition. ijUIHJ{é)wéj’ijOIIJ(-é)v‘Sj

h fi
ave same definition as f ﬁ0)|R(1)(ﬁ0) 5;
By Taylor expansion, We can obtaln

0 - va2s®
9L3.(8) ‘ :2(B)
nos B lp=p, i 9B lp—p,

V(B = By) + 0p(1)

Yi, X4;8,) {g30 — gao + g50 — 960 } (Y3, Xi; B¢)
- 85X — 6; R +591°( 0o/ _ g, 5
f Z { (Bo) 40 (3 X Be) ~ Tgro —gs0 T go0 — gr00} (Vi Xo: By)

31322 (B)

a3 ’B—Bo \/ﬁ(ﬁ = Bo) +op(1).

Jr

Hence it is easy to obtain that

B-B,) — - f%ff(ﬂ)‘ ) {5 5,2 5M
V(B —B,) = (8/62 oo \FZ X —6,RV(B,) + S XB)

{930 — g40 + gs0 — 960}(Y17Xu/60) } +0,(1)
{970 — gso + goo — g100 (Y3, X4; Bo) P

(8215?)\”)}2{” R+ 0 )

{gso — g0 + gs0 — ge0 } (Y3, Xi; Bg) } +o,(1).
{970 — gso + 990 — g100 } (Y, Xi; By) P

Thus it follows that \/n(3 — 3,) converges to the normal distribution with mean 0 and the
variance-covariance matrix that can be consistently estimated by A“'VA~'. The proof of this
theorem is completed.

Proof of Theorem 3: By the Taylor expansion and Theorem 1, we have

Rot) /bgf 2(nbnt) T SO7 6,k (RilBa)= )
" - U
o %Z?:l f((f}; ((g(?)) :))//::Ll K( )ds + b f([ (BL:;))H;L%:TL K(s)ds
N, () -~ A
+ GJe] ’ﬁ—ﬁo(ﬁn_ﬁO)—’—OP('IBn_BO)
Y dP(5 = 1,R(8 )g w)/du
; /m 2P(H(ﬁ)§ugR(ﬂ)) P(6=1,1(8) < SR(Q))dquop(l)-

Note that © = logt in the equation above. By the third equation on page 1194 of Shen, Ning,
and Qin (2009) and the third equation on page 955 of Huang and Qin (2012), we have

feEIX( ‘X
—o0 Seeix(s]X)

where fee;x (u|X) and See;x (u|X) are the density function and survival function of e given X,

Kn(t) = du +op(1) = A(t) + 0p(1),

respectively. Hence, the proof is completed.
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