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Abstract: This article discusses regression analysis of length-biased and right-

censored failure time data arising from the accelerated failure time model. A key

feature of such data is the informative censoring induced by the length-biased sam-

pling, and several methods have been proposed in the literature for their analysis.

However, these may be less efficient or apply only to limited situations. We pro-

pose a kernel-smoothed composite likelihood method for estimation of covariate

effects. The proposed estimators are proved to be consistent and asymptotically

normal. Simulation studies conducted to assess the finite sample performance of the

method suggest that it works well for practical situations. An illustrative example

is provided.
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1. Introduction

Length-biased and right-censored failure time data arise naturally in the

studies in which samples are drawn only from the individuals with a condition or

disease at the time of enrollment Vardi (1989). It is well known that such designs

are commonly used due to their relative efficiency in large epidemiological studies

among others, especially when the disease is rare (Keiding (1991); Sansgiry and

Akman (2000)). On the other hand, in these situations, one has to deal with

selection bias as the observed failure time tends to be longer than the actual

one from the target population. It is easy to see that length-biased data are a

special case of left-truncated data when disease onset follows a stationary Poisson

distribution.

A number of methods have been developed in the literature for regression

analysis of length-biased and right-censored failure time data under various sit-

uations. For example, Wang (1996) considered the problem without censoring
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under the proportional hazards model and developed a pseudo-likelihood ap-

proach. Tsai (2009) and Qin and Shen (2010) studied the same problem in the

presence of right censoring, and generalized the partial likelihood approach by

using some weighted and bias-adjusted risk sets. Huang and Qin (2012) inves-

tigated the same problem and developed a composite partial likelihood method,

motivated by the exchangeability of the truncation time and the forward recur-

rence time. One advantage of their method is that it can be easily carried out by

using standard statistical software. Chen and Zhou (2012) discussed the quantile

regression of length-biased and right-censored data.

The accelerated failure time (AFT) model is commonly used in failure time

data analysis, and many inference procedures have been proposed for it when

only right censoring exists (Cox and Oakes (1984); Jin, Lin and Ying (2003);

Kalbfleisch and Prentice (2002); Lai and Ying (1991); Zeng and Lin (2007)). In

the presence of length bias, a few methods have also been developed for esti-

mation of covariate effects in Shen, Ning and Qin (2009), Ning, Qin and Shen

(2011), Ning, Qin and Shen (2014a), and Ning, Qin and Shen (2014b). In partic-

ular, Shen, Ning and Qin (2009) gave some inverse weighted estimating equation

approaches with the advantage that the resulting estimator has a closed form and

thus is easy to determine. However, it may be less efficient and could be biased.

Ning, Qin and Shen (2011) proposed a Buckley-James-type estimator that can

be more efficient than the former approach, but the estimator does not have a

closed form expression and its determination is not easy. Corresponding to these,

Ning, Qin and Shen (2014a) presented two rank-based estimating equation meth-

ods, and Ning, Qin and Shen (2014b) derived some estimation equations based

on the score equations derived from the likelihood functions under the embedded

models for transformed failure data. A shortcoming of these estimating equation-

based methods is that they are non-smooth to the parameter, which can make

numerical computation and variance estimation difficult.

A common feature of all existing methods for fitting the AFT model to

length-biased data is that they are estimating equation-based and thus may not

be efficient. Corresponding to this, we develop a composite conditional likelihood

approach that allows both length bias and right censoring and is expected to im-

prove the efficiency. For this, we describe the AFT model in terms of the hazard

function of the related random error, and then construct a composite conditional

likelihood by following Huang and Qin (2012). For computational simplicity,

we approximate the hazard function of the error by a piecewise constant func-

tion, treated as a nuisance function. After profiling out the nuisance function,

we can show that the resulting log composite likelihood function converges to a

function that involves several unknown distribution functions. To further opti-

mize it, a kernel-smoothed function is employed to approximate them. We use
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the composite likelihood method and the resulting approach is more efficient

and has computational simplicity because the optimization of the log composite

likelihood function can be easily implemented by existing procedures.

The remainder of the paper is organized as follows. We begin in Section 2

by introducing some notation and assumptions, and discussing some likelihood

functions. A kernel smoothing estimation procedure is then presented in Sec-

tion 3, and the asymptotic properties of the resulting estimators are established.

Section 4 gives some results obtained from a simulation study for evaluating the

performance of the proposed method; they indicate that it works well for prac-

tical situations. An illustrative example is provided in Section 5, and Section 6

contains some discussion and concluding remarks.

2. Notation, Assumptions and Likelihood Functions

2.1. Notation and assumptions

Consider a study in which a failure time of interest is the time between

an initial event and an end or failure event. Let T̃ denote the failure time of

interest and Ã the time from the initiating event to an examination before the

failure event, and suppose that there exists a vector of covariates X̃. The study

consists only of the subjects with T̃ ≥ Ã > 0 and it is assumed that Ã follows

the uniform distribution. Thus, we have length-biased sampling. We use T , A

and X to denote the same as T̃ , Ã and X̃, but for the subjects included in the

study. Let V denote the time from the examination to the failure event. Then

we have T = A+ V and the joint distribution of (T,A), given X, is the same as

that of (T̃ , Ã) | T̃ ≥ Ã, X̃.

We assume that the covariate X̃ is time-independent and, given X̃, T̃ can

be expressed as

log T̃ = −βT X̃+ ϵ, (2.1)

where ϵ is a measurement error whose distribution is assumed to be unknown

and independent of X̃. Thus, T̃ follows the accelerated failure time (AFT) model

(Kalbfleisch and Prentice (2002)). Let λ(t) and Λ(t) denote the hazard and

cumulative hazard functions of eϵ, respectively. Then the hazard and cumulative

hazard functions of T̃ , given X̃, have the forms

λT̃ |X̃(t) = λ
(
teβ

T X̃
)
eβ

T X̃ , ΛT̃ |X̃(t) = Λ
(
teβ

T X̃
)
,

respectively.

In practice, one may not observe T as there may exist a right censoring time.

Then we may only observe the censored failure time Y = min(T,A+C) and the

censoring indicator δ = I(V ≤ C), where C denotes the residual censoring time

measured from the examination. In the following, we assume that (A, V ) is
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,

respectively.
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independent of C given X. Note that for the situation here, however, we do not

have independent right censoring on T since T and A+ C share the variable A.

Thus, T and A+ C are related, or T is subject to informative censoring.

2.2. Likelihood functions

Suppose that the study consists of n independent subjects and the observed

data are { (Yi, Ai, δi,Xi); i = 1, . . . , n}, where Yi, Ai, δi, and Xi are Y , A, δ, and

X, but associated with subject i. Let fT̃ |X̃(t|x) and ST̃ |X̃(t|x) denote the density
and survival functions of T̃ given X̃, respectively. As the joint distribution of

(T,A), given X, is

f(t|x)
µ(x)

I(t ≥ a), where µ(x) =

∫
tf(t|x)dt, (2.2)

the full likelihood function of β and Λ has the form

LF =
1

n

n∏
i=1

fT̃ |X̃(Yi|Xi)
δiST̃ |X̃(Yi|Xi)

1−δi

µ(Xi)

=
1

n

n∏
i=1

[
λ
(
Yie

βTXi
)
eβ

TXi

]δi
exp

(
− Λ

(
Yie

βTXi
))

∫∞
0 tλ

(
teβTXi

)
eβTXi exp

(
− Λ

(
teβTXi

))
dt
.

For estimation of β and Λ, it is apparent that one can directly maximize the

full likelihood function. On the other hand, it is easy to see that the maximiza-

tion process is computationally cumbersome because of the complex integration

involved in the denominator, and the way that Λ is involved. To deal with this,

we consider the composite conditional likelihood method (Arnold and Strauss

(1988)).

To construct a composite conditional likelihood, note that V = T −A repre-

sents the residual survival time from the examination and, in the absence of right

censoring, it follows from (2.2) that given X, the pair (A, V ) has an exchangable

joint density function

fA,V (a, v|x) =
fT̃ |X̃(a+ v|x)

µ(x)
, a ≥ 0, v ≥ 0.

Furthermore, it is easy to show that the conditional distribution of T given A

is the same as that of T given V . This motivates the composite conditional

likelihood

L∗
C =

1

n

n∏
i=1

fT̃ |X̃(Ti|Xi)

ST̃ |X̃(Ai|Xi)
×

fT̃ |X̃(Ti|Xi)

ST̃ |X̃(Vi|Xi)
(2.3)

if there is no right censoring.
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In the presence of right censoring, the residual failure time V is unobservable

for censored subjects and thus the composite conditional likelihood function L∗
C

is not available. For this, define V 0 = min{T − A,C}, the observed residual

failure time. It can be shown that, although the joint distribution of V 0 and

A are not exchangeable, the conditional density function of A given V 0 is still

identical to that of V 0 given A for uncensored failure times:

fA|V 0,δ=1,X(a, v) = fV 0|A,δ=1,X(a, v|x) =
fT̃ |X̃(a+ v|x)
ST̃ |X̃(v|x)

, a ≥ 0, v ≥ 0.

Then by following Huang and Qin (2012), we can construct the composite con-

ditional likelihood as

LC =
1

n

n∏
i=1

[ fT̃ |X̃(Yi|Xi)

ST̃ |X̃(Ai|Xi)
×

fT̃ |X̃(Yi|Xi)

ST̃ |X̃(V 0
i |Xi)

]δi[ ST̃ |X̃(Yi|Xi)

ST̃ |X̃(Ai|Xi)

](1−δi)

=
1

n

n∏
i=1

[
λ
(
Yie

βTXi
)
eβ

TXi

]2δi
exp

(
− (1 + δi)Λ

(
Yie

βTXi
))

exp
(
− Λ

(
Aieβ

TXi
)
− δiΛ

(
V 0
i e

βTXi
)) .

The resulting log composite conditional likelihood function of β and Λ is then

proportional to

ℓC =
1

n

n∑
i=1

[
2δiβ

TXi + 2δi log λ(e
Ri(β))− (1 + δi)Λ(e

Ri(β))

+Λ(eHi(β)) + δiΛ(e
Ii(β))

]
, (2.4)

where Ri(β) = log(Yie
βTXi), Hi(β) = log(Aie

βTXi), and Ii(β) = log(V 0
i e

βTXi).

For estimation of β and Λ, although it seems natural to maximize (2.4), the

process may not be easy, or yield efficient estimators, due to the nonsmoothness;

One may want to approximate Λ by some smooth functions first.

Although the key components of our method are the smoothed likelihood

approach in Zeng and Lin (2007) and the composite likelihood in Huang and Qin

(2012), their combination process is not straightforward. The extension of the

composite likelihood approach from Cox model to the AFT model with length-

biased data is not easy. The baseline hazard function under Cox model, is simply

a function of time t, the baseline hazard function under the AFT model also

involves the parameter of interest. Further compared to right-censored data, the

structure of length-biased and right-censored data is more complicated, it yields

informative censoring. That makes kernel smoothing process of the resulting

likelihood function more difficult. In all, the derivation of the kernel-smoothed
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log composite likelihood function and the asymptotic properties are more difficult
and complicated.

3. Kernel-Smoothed Composite Likelihood Estimation

3.1. Estimation procedure

To approximate the cumulative hazard function Λ by some smooth functions,
we partition the interval [0, τ ] into Jn equally spaced intervals 0 = t0 < t1 < · · · <
tJn = τ , where τ = supβ

{(
Ri(β), Hi(β), Ii(β)

)
, i = 1, . . . , n

}
. We consider the

piecewise constant hazard function

λ(t) =

Jn∑
k=1

ckI(t ∈ [tk−1, tk),

which gives

Λ(t) =

Jn∑
k=1

ck(t− tk−1)I(tk−1 ≤ t < tk) +
τ

Jn

Jn∑
k=1

ckI(t ≥ tk),

where the ck’s are some unknown constants. By plugging this into ℓC , we have

ℓn(β, c
′
ks) = n−1

n∑
i=1

2δiβ
TXi + n−1

Jn∑
k=1

log ck

{ n∑
i=1

2δiI(e
Ri(β) ∈ [tk−1, tk)

}

−n−1
Jn∑
k=1

ck

{ n∑
i=1

(1 + δi)(e
Ri(β) − tk−1)I(tk−1 ≤ eRi(β) < tk)

+
τ

Jn

n∑
i=1

(1 + δi)I(e
Ri(β) ≥ tk)

}

+n−1
Jn∑
k=1

ck

{ n∑
i=1

(eHi(β) − tk−1)I(tk−1 ≤ eHi(β) < tk)

+
τ

Jn

n∑
i=1

I(eHi(β) ≥ tk)
}

+n−1
Jn∑
k=1

ck

{ n∑
i=1

δi(e
Ii(β) − tk−1)I(tk−1 ≤ eIi(β) < tk)

+
τ

Jn

n∑
i=1

δiI(e
Ii(β) ≥ tk)

}
.

For given β, one can easily obtain the maximum likelihood estimators of the ck’s
as ĉk = M0k/(M1k −M2k −M3k), where

M0k =

n∑
i=1

2δiI(e
Ri(β) ∈ [tk−1, tk)),
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M1k =

n∑
i=1

(1 + δi)(e
Ri(β) − tk−1)I

(
eRi(β) ∈ [tk−1, tk)

)

+
n∑

i=1

(1 + δi)I(e
Ri(β) ≥ tk)

τ

Jn
,

M2k =

n∑
i=1

(eHi(β) − tk−1)I
(
eHi(β) ∈ [tk−1, tk)

)
+

n∑
i=1

I(eHi(β) ≥ tk)
τ

Jn
,

M3k =
n∑

i=1

δi(e
Ii(β) − tk−1)I

(
eIi(β) ∈ [tk−1, tk)

)
+

n∑
i=1

δiI(e
Ii(β) ≥ tk)

τ

Jn
.

It follows that the profile, approximate log composite conditional likelihood func-

tion has the form

ℓn(β) =
1

n

n∑
i=1

2δiβ
TXi+

Jn∑
k=1

M0k

n
× log

M0k

n
−

Jn∑
k=1

M0k

n
× log

M1k −M2k −M3k

n

by plugging the ĉk’s into ℓn(β, c
′
ks).

To further smooth this function, by following Zeng and Lin (2007), we note

that as n → ∞, Jn → ∞ and n−1Jn → 0, it can be shown that ℓn(β) converges

uniformly in a compact set of β to

ℓ(β) = E
[
δβTX+ δ log

(dP (δ = 1, Y eβ
TX ≤ t)/dt

N1 −N2 +N3 −N4

)���
t=Y eβTX

]
,

where

N1 = P
(
Y eβ

TX ≥ t
)

, N2 = P
(
Aeβ

TX ≥ t
)
,

N3 = P
(
δ = 1, Y eβ

TX ≥ t
)

, N4 = P
(
δ = 1, V 0eβ

TX ≥ t
)
.

The proof of this is sketched in the Supplementary Material. In addition, for a

given kernel functionK with bandwidth bn, and under some regularity conditions,

one can prove that

1

nbn

n∑
i=1

δiK
(Ri(β)−log t

bn

)
→ dP (δ = 1, R(β)≤s)

ds

���
s=log t

=
dP (δ = 1, eR(β)≤ t)

dt
t,

1

nbn

n∑
i=1

∫ ∞

log t
K
(Ri(β)− s

bn

)
ds→ P (R(β) ≥ log t) = N1,

1

nbn

n∑
i=1

∫ ∞

log t
K
(Hi(β)− s

bn

)
ds→ P (H(β) ≥ log t) = N2,
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log composite likelihood function and the asymptotic properties are more difficult
and complicated.

3. Kernel-Smoothed Composite Likelihood Estimation

3.1. Estimation procedure
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Ri(β), Hi(β), Ii(β)
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}
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λ(t) =

Jn∑
k=1

ckI(t ∈ [tk−1, tk),
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Λ(t) =

Jn∑
k=1

ck(t− tk−1)I(tk−1 ≤ t < tk) +
τ

Jn

Jn∑
k=1

ckI(t ≥ tk),
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′
ks) = n−1

n∑
i=1

2δiβ
TXi + n−1

Jn∑
k=1
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{ n∑
i=1

2δiI(e
Ri(β) ∈ [tk−1, tk)

}

−n−1
Jn∑
k=1

ck

{ n∑
i=1

(1 + δi)(e
Ri(β) − tk−1)I(tk−1 ≤ eRi(β) < tk)

+
τ

Jn

n∑
i=1

(1 + δi)I(e
Ri(β) ≥ tk)

}
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Jn∑
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{ n∑
i=1
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τ

Jn
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I(eHi(β) ≥ tk)
}

+n−1
Jn∑
k=1

ck
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i=1

δi(e
Ii(β) − tk−1)I(tk−1 ≤ eIi(β) < tk)

+
τ

Jn

n∑
i=1

δiI(e
Ii(β) ≥ tk)

}
.

For given β, one can easily obtain the maximum likelihood estimators of the ck’s
as ĉk = M0k/(M1k −M2k −M3k), where

M0k =

n∑
i=1

2δiI(e
Ri(β) ∈ [tk−1, tk)),
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τ
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τ

Jn
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+
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δiI(e
Ii(β) ≥ tk)

τ
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.

It follows that the profile, approximate log composite conditional likelihood func-

tion has the form
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× log
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−
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× log

M1k −M2k −M3k
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by plugging the ĉk’s into ℓn(β, c
′
ks).

To further smooth this function, by following Zeng and Lin (2007), we note

that as n → ∞, Jn → ∞ and n−1Jn → 0, it can be shown that ℓn(β) converges

uniformly in a compact set of β to

ℓ(β) = E
[
δβTX+ δ log

(dP (δ = 1, Y eβ
TX ≤ t)/dt

N1 −N2 +N3 −N4

)���
t=Y eβTX

]
,

where

N1 = P
(
Y eβ

TX ≥ t
)

, N2 = P
(
Aeβ

TX ≥ t
)
,

N3 = P
(
δ = 1, Y eβ

TX ≥ t
)

, N4 = P
(
δ = 1, V 0eβ

TX ≥ t
)
.

The proof of this is sketched in the Supplementary Material. In addition, for a

given kernel functionK with bandwidth bn, and under some regularity conditions,

one can prove that

1

nbn

n∑
i=1

δiK
(Ri(β)−log t

bn

)
→ dP (δ = 1, R(β)≤s)

ds

���
s=log t

=
dP (δ = 1, eR(β)≤ t)

dt
t,

1

nbn

n∑
i=1

∫ ∞

log t
K
(Ri(β)− s

bn

)
ds→ P (R(β) ≥ log t) = N1,

1

nbn

n∑
i=1

∫ ∞

log t
K
(Hi(β)− s

bn

)
ds→ P (H(β) ≥ log t) = N2,
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1

nbn

n∑
i=1

∫ ∞

log t
δiK

(Ri(β)− s

bn

)
ds→ P (δ = 1, R(β) ≥ log t) = N3,

1

nbn

n∑
i=1

∫ ∞

log t
δiK

(Ii(β)− s

bn

)
ds→ P (δ = 1, I(β) ≥ log t) = N4.

It is then natural to approximate

dP (δ = 1, Y eβ
TX ≤ t)/dt

N1 −N2 +N3 −N4

by

1

t

(nbn)
−1

∑n
i=1 δiK((Ri(β)− log t)/bn)∫∞

log t(nbn)
−1

∑n
i=1{K(Ri(β)−s

bn
)−K(Hi(β)−s

bn
) + δiK(Ri(β)−s

bn
)− δiK( Ii(β)−s

bn
)}ds

and ℓ(β) by

ℓsn(β) =
1

n

n∑
i=1

δiβ
TXi −

1

n

n∑
i=1

δiRi(β) +
1

n

n∑
i=1

δi log
{ 1

nbn

n∑
j=1

δjK
(Rj(β)−Ri(β)

bn

)}

− 1

n

n∑
i=1

δi log

{
1

n

n∑
j=1

∫ (Rj(β)−Ri(β))/bn

(Hj(β)−Ri(β))/bn

K(s)ds

+
1

n

n∑
j=1

δj

∫ (Rj(β)−Ri(β))/bn

(Ij(β)−Ri(β))/bn

K(s)ds

}
,

its kernel-smoothed empirical version.

For estimation of β, we take �βn as the value of β that maximizes ℓsn(β).

Given �βn, it is natural to estimate λ(t) and Λ(t) by

�λn(t) =
2(nbnt)

−1
∑n

i=1 δiK((Ri( �βn)− log t)/bn)

(1/n)
∑n

i=1

∫ (Ri(β̂n)−log t)/bn

(Hi(β̂n)−log t)/bn
K(s)ds+ δi

∫ (Ri(β̂n)−log t)/bn

(Ii(β̂n)−log t)/bn
K(s)ds

,

�Λn(t) =

∫ log t

−∞

2(nbnt)
−1

∑n
i=1 δiK((Ri( �βn)− u)/bn)

(1/n)
∑n

i=1

∫ (Ri(β̂n)−u)/bn

(Hi(β̂n)−u)/bn
K(s)ds+ δi

∫ (Ri(β̂n)−u)/bn

(Ii(β̂n)−u)/bn
K(s)ds

du,

respectively. In the next subsection, we establish the asymptotic properties of
�βn and �Λn(t).

It is apparent that to implement this estimation procedure, one needs to

choose a bandwidth bn, for simplicity, one use a single value for bn in all quantities.

Among the quantities involving bn, there are two kinds of density functions. One

is for all subjects, such asN1 andN2, and the other is only for uncensored subjects

such as P (δ = 1, Y eβ
TX ≤ t), N3, and N4 with δ = 1. In these situations,
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as suggested by Zeng and Lin (2007) one may want to employ two different

bandwidths. In the numerical studies below, we use the optimal bandwidth

bn = Cn−1/3 suggested in Zeng and Lin (2007), with different C for the two

types of the quantities. Alternative is to employ a data-driven method such as

the cross-validation procedure.

3.2. Asymptotic properties

Let β0 and Λ0 denote the true values of β and Λ, respectively. To establish

the asymptotic properties of �βn and �Λn(t), we need some regularity conditions.

(C1). The parameter space B for β is compact.

(C2). If there exist a constant vector η and a deterministic function g(.) such

that ηTX = g(ϵ) with probability 1, then η = 0 and g = 0.

(C3). The hazard function λ0(t) is three times continuously differentiable with

λ
′
0(0) > 0 for all t ≥ 0.

(C4). The matrix ∇2
βE{δ log((dP (δ=1, Y eβ

TX ≤ t)/dt)/(N1−N2+N3−N4))}
is nonsingular in a neighborhood of β0.

(C5). The kernel functionK(.) is three times continuously differentiable with the

derivatives having bounded variations. For the bandwidth bn, nb
2
n → ∞,

nb4n → 0, and log n/nbn → 0 as n → ∞.

(C6). The censoring time C has a positive and twice-continuously differentiable

density function in [0, τ) and there exists a positive constant c0 such that

P (C ≥ τ |X, s ≤ τ) > c0 with probability 1.

The latter part of condition (C6) ensures that some subjects are censored at

the end of study to avoid some technical complications regarding the tail behavior

of the related limiting distribution. Many kernel functions, such as the Gaussian

kernel and smooth kernels with a bounded support, satisfy.

Theorem 1. If conditions (C1)−(C6) hold, as n → ∞, �βn
P−→ β0 and supt∈[0,τ ]

|�Λn(t)− Λ0(t)|
P−→ 0.

Theorem 2. If conditions (C1)−(C6) hold, as n → ∞,
√
n(�βn − β0) converges

in distribution to normal with mean 0 and the variance-covariance matrix that

can be consistently estimated by Â−1V̂Â−1, where

�A =
∂2ℓsn(β̂)

∂β2
, �V =

1

n

n∑
i=1

(∂lsi (β̂)
∂β

)(∂lsi (β̂)
∂β

)T
,

with
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1

nbn

n∑
i=1

∫ ∞

log t
δiK

(Ri(β)− s

bn

)
ds→ P (δ = 1, R(β) ≥ log t) = N3,

1

nbn

n∑
i=1

∫ ∞

log t
δiK

(Ii(β)− s

bn

)
ds→ P (δ = 1, I(β) ≥ log t) = N4.

It is then natural to approximate

dP (δ = 1, Y eβ
TX ≤ t)/dt

N1 −N2 +N3 −N4

by

1

t

(nbn)
−1

∑n
i=1 δiK((Ri(β)− log t)/bn)∫∞

log t(nbn)
−1

∑n
i=1{K(Ri(β)−s

bn
)−K(Hi(β)−s

bn
) + δiK(Ri(β)−s

bn
)− δiK( Ii(β)−s

bn
)}ds

and ℓ(β) by

ℓsn(β) =
1

n

n∑
i=1

δiβ
TXi −

1

n

n∑
i=1

δiRi(β) +
1

n

n∑
i=1

δi log
{ 1

nbn

n∑
j=1

δjK
(Rj(β)−Ri(β)

bn

)}

− 1

n

n∑
i=1

δi log

{
1

n

n∑
j=1

∫ (Rj(β)−Ri(β))/bn

(Hj(β)−Ri(β))/bn

K(s)ds

+
1

n

n∑
j=1

δj

∫ (Rj(β)−Ri(β))/bn

(Ij(β)−Ri(β))/bn

K(s)ds

}
,

its kernel-smoothed empirical version.

For estimation of β, we take �βn as the value of β that maximizes ℓsn(β).

Given �βn, it is natural to estimate λ(t) and Λ(t) by

�λn(t) =
2(nbnt)

−1
∑n

i=1 δiK((Ri( �βn)− log t)/bn)

(1/n)
∑n

i=1

∫ (Ri(β̂n)−log t)/bn

(Hi(β̂n)−log t)/bn
K(s)ds+ δi

∫ (Ri(β̂n)−log t)/bn

(Ii(β̂n)−log t)/bn
K(s)ds

,

�Λn(t) =

∫ log t

−∞

2(nbnt)
−1

∑n
i=1 δiK((Ri( �βn)− u)/bn)

(1/n)
∑n

i=1

∫ (Ri(β̂n)−u)/bn

(Hi(β̂n)−u)/bn
K(s)ds+ δi

∫ (Ri(β̂n)−u)/bn

(Ii(β̂n)−u)/bn
K(s)ds

du,

respectively. In the next subsection, we establish the asymptotic properties of
�βn and �Λn(t).

It is apparent that to implement this estimation procedure, one needs to

choose a bandwidth bn, for simplicity, one use a single value for bn in all quantities.

Among the quantities involving bn, there are two kinds of density functions. One

is for all subjects, such asN1 andN2, and the other is only for uncensored subjects

such as P (δ = 1, Y eβ
TX ≤ t), N3, and N4 with δ = 1. In these situations,
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as suggested by Zeng and Lin (2007) one may want to employ two different

bandwidths. In the numerical studies below, we use the optimal bandwidth

bn = Cn−1/3 suggested in Zeng and Lin (2007), with different C for the two

types of the quantities. Alternative is to employ a data-driven method such as

the cross-validation procedure.

3.2. Asymptotic properties

Let β0 and Λ0 denote the true values of β and Λ, respectively. To establish

the asymptotic properties of �βn and �Λn(t), we need some regularity conditions.

(C1). The parameter space B for β is compact.

(C2). If there exist a constant vector η and a deterministic function g(.) such

that ηTX = g(ϵ) with probability 1, then η = 0 and g = 0.

(C3). The hazard function λ0(t) is three times continuously differentiable with

λ
′
0(0) > 0 for all t ≥ 0.

(C4). The matrix ∇2
βE{δ log((dP (δ=1, Y eβ

TX ≤ t)/dt)/(N1−N2+N3−N4))}
is nonsingular in a neighborhood of β0.

(C5). The kernel functionK(.) is three times continuously differentiable with the

derivatives having bounded variations. For the bandwidth bn, nb
2
n → ∞,

nb4n → 0, and log n/nbn → 0 as n → ∞.

(C6). The censoring time C has a positive and twice-continuously differentiable

density function in [0, τ) and there exists a positive constant c0 such that

P (C ≥ τ |X, s ≤ τ) > c0 with probability 1.

The latter part of condition (C6) ensures that some subjects are censored at

the end of study to avoid some technical complications regarding the tail behavior

of the related limiting distribution. Many kernel functions, such as the Gaussian

kernel and smooth kernels with a bounded support, satisfy.

Theorem 1. If conditions (C1)−(C6) hold, as n → ∞, �βn
P−→ β0 and supt∈[0,τ ]

|�Λn(t)− Λ0(t)|
P−→ 0.

Theorem 2. If conditions (C1)−(C6) hold, as n → ∞,
√
n(�βn − β0) converges

in distribution to normal with mean 0 and the variance-covariance matrix that

can be consistently estimated by Â−1V̂Â−1, where

�A =
∂2ℓsn(β̂)

∂β2
, �V =

1

n

n∑
i=1

(∂lsi (β̂)
∂β

)(∂lsi (β̂)
∂β

)T
,

with
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lsi (β) = δiβ
TXi − δiRi(β) + δi log

{
1

nbn

n∑
j=1

δjK
(Rj(β)−Ri(β)

bn

)}

−δi log

{
1

n

n∑
j=1

∫ (Rj(β)−Ri(β))/bn

(Hj(β)−Ri(β))/bn

K(s)ds

+
1

n

n∑
j=1

δj

∫ (Rj(β)−Ri(β))/bn

(Ij(β)−Ri(β))/bn

K(s)ds

}
.

The proofs of these theorems are sketched in the Supplementary Material.

4. A Simulation Study

In this section, we present some results obtained from a simulation study

conducted to assess the finite sample performance of the proposed estimation

procedure. In the study, we assumed that T̃ follows the log-linear model log T̃ =

2 + X1 + X2 + ϵ with X1 generated from the uniform distribution over (0, 1),

and X2 from the Bernoulli distribution with the success probability of 0.5. For

the error term distribution, we considered several choices: S1: N(0, 0.5); S2:

extreme(0, 1) (the standard extreme distribution); S3: 0.5N(0, 0.25)+0.5N(0, 1);

and S4: exp(1) (the exponential distribution). Furthermore, the examination

time Ã was assumed to follow the uniform distribution over (0, ω) with ω being

larger than the upper bound of T̃ to ensure the stationary assumption. The

censoring time C was also generated from the uniform over (0, a) with a chosen

to give proper censoring percentages. The results given below are based on

n = 200, the Gaussian kernel function, and 1,000 replications.

Table 1 presents the results on estimation of β = (β1, β2)
′ given by the

proposed estimation procedure with the percentage of right-censored observa-

tions (PCR) being 15%, 30%, or 50%, respectively. They include the estimated

bias, the sample standard deviation of the estimators (SE), the average of the

estimated standard errors (SEE), and the 95% empirical coverage probabilities

(CP). For the bandwidths, we used 2.6σ̂1n
−1/3 and 1.6σ̂2n

−1/3 for the quantities

involving uncensored subjects and all subjects, respectively, where σ̂1 and σ̂2 are

the sample standard deviations of ϵ among the uncensored subjects and all sub-

jects, respectively. For comparison, we considered the estimation procedure given

in Shen, Ning and Qin (2009) referred to as SNQ, and obtained and included in

the table the estimated bias and the sample standard deviation.

The results in Table 1 suggest that the proposed estimator is unbiased

and the variance estimation is reasonable. As expected, the parameters can

be estimated more accurately when the percentage of right-censored obser-

vations decreases. There seems to exist some biases for the estimators in
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Table 1. Simulation results on estimation of β.

Proposed SNQ
Model PCR Bias SE SEE CP Bias SE
S1 15% β1 -0.027 0.148 0.171 0.962 -0.027 0.114

β2 0.024 0.089 0.095 0.928 0.020 0.079
30% β1 -0.036 0.155 0.182 0.960 -0.015 0.119

β2 0.020 0.097 0.102 0.912 0.041 0.083
50% β1 -0.038 0.184 0.211 0.958 0.018 0.127

β2 0.025 0.122 0.118 0.932 0.082 0.092
S2 15% β1 -0.053 0.303 0.467 0.966 -0.157 0.597

β2 -0.028 0.311 0.279 0.972 0.012 0.521
30% β1 -0.073 0.343 0.364 0.958 -0.110 0.607

β2 -0.080 0.405 0.390 0.952 0.047 0.521
50% β1 -0.062 0.391 0.404 0.940 -0.007 0.635

β2 -0.067 0.479 0.416 0.948 -0.122 0.554
S3 15% β1 -0.015 0.262 0.283 0.932 -0.003 0.267

β2 -0.003 0.170 0.183 0.930 0.018 0.194
30% β1 -0.030 0.276 0.307 0.928 0.024 0.278

β2 0.010 0.190 0.189 0.938 0.056 0.206
50% β1 -0.053 0.295 0.327 0.930 0.090 0.303

β2 0.010 0.212 0.199 0.924 0.110 0.220
S4 15% β1 -0.051 0.301 0.444 0.964 -0.164 0.598

β2 -0.015 0.317 0.272 0.974 0.014 0.519
30% β1 -0.068 0.345 0.334 0.944 -0.121 0.600

β2 -0.080 0.504 0.492 0.958 0.049 0.518
50% β1 -0.062 0.391 0.404 0.940 -0.007 0.635

β2 -0.067 0.479 0.435 0.948 0.122 0.554

Table 2. Estimated mean square errors of the proposed estimators.

bw bw1 bw2 bw3 bw4

PCR β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

15% 0.024 0.008 0.068 0.046 0.028 0.012 0.031 0.011 0.059 0.029
30% 0.025 0.010 0.089 0.057 0.043 0.014 0.027 0.011 0.034 0.014
50% 0.035 0.016 0.093 0.062 0.052 0.018 0.036 0.014 0.045 0.018

Shen, Ning and Qin (2009) when the data were generated from models S2 and S4.

Under the scenarios S1 and S3, SNQ seems to have comparable or even better

efficiency than the proposed method; it was derived based on the least square

principle and tends to be more efficient when the distribution of log T̃ is close to

normal. For the non-normal S2 and S4, the proposed method is more efficient

than SNQ. For simplicity, we used a fixed bandwidth, performance can be im-

proved if a dynamic optimal bandwidth selection method such as cross-validation

is used.

For the proposed estimation procedure, a question of interest concerns the
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lsi (β) = δiβ
TXi − δiRi(β) + δi log

{
1

nbn

n∑
j=1

δjK
(Rj(β)−Ri(β)

bn

)}

−δi log

{
1

n

n∑
j=1

∫ (Rj(β)−Ri(β))/bn

(Hj(β)−Ri(β))/bn

K(s)ds

+
1

n

n∑
j=1

δj

∫ (Rj(β)−Ri(β))/bn

(Ij(β)−Ri(β))/bn

K(s)ds

}
.

The proofs of these theorems are sketched in the Supplementary Material.

4. A Simulation Study

In this section, we present some results obtained from a simulation study

conducted to assess the finite sample performance of the proposed estimation

procedure. In the study, we assumed that T̃ follows the log-linear model log T̃ =

2 + X1 + X2 + ϵ with X1 generated from the uniform distribution over (0, 1),

and X2 from the Bernoulli distribution with the success probability of 0.5. For

the error term distribution, we considered several choices: S1: N(0, 0.5); S2:

extreme(0, 1) (the standard extreme distribution); S3: 0.5N(0, 0.25)+0.5N(0, 1);

and S4: exp(1) (the exponential distribution). Furthermore, the examination

time Ã was assumed to follow the uniform distribution over (0, ω) with ω being

larger than the upper bound of T̃ to ensure the stationary assumption. The

censoring time C was also generated from the uniform over (0, a) with a chosen

to give proper censoring percentages. The results given below are based on

n = 200, the Gaussian kernel function, and 1,000 replications.

Table 1 presents the results on estimation of β = (β1, β2)
′ given by the

proposed estimation procedure with the percentage of right-censored observa-

tions (PCR) being 15%, 30%, or 50%, respectively. They include the estimated

bias, the sample standard deviation of the estimators (SE), the average of the

estimated standard errors (SEE), and the 95% empirical coverage probabilities

(CP). For the bandwidths, we used 2.6σ̂1n
−1/3 and 1.6σ̂2n

−1/3 for the quantities

involving uncensored subjects and all subjects, respectively, where σ̂1 and σ̂2 are

the sample standard deviations of ϵ among the uncensored subjects and all sub-

jects, respectively. For comparison, we considered the estimation procedure given

in Shen, Ning and Qin (2009) referred to as SNQ, and obtained and included in

the table the estimated bias and the sample standard deviation.

The results in Table 1 suggest that the proposed estimator is unbiased

and the variance estimation is reasonable. As expected, the parameters can

be estimated more accurately when the percentage of right-censored obser-

vations decreases. There seems to exist some biases for the estimators in
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Table 1. Simulation results on estimation of β.

Proposed SNQ
Model PCR Bias SE SEE CP Bias SE
S1 15% β1 -0.027 0.148 0.171 0.962 -0.027 0.114

β2 0.024 0.089 0.095 0.928 0.020 0.079
30% β1 -0.036 0.155 0.182 0.960 -0.015 0.119

β2 0.020 0.097 0.102 0.912 0.041 0.083
50% β1 -0.038 0.184 0.211 0.958 0.018 0.127

β2 0.025 0.122 0.118 0.932 0.082 0.092
S2 15% β1 -0.053 0.303 0.467 0.966 -0.157 0.597

β2 -0.028 0.311 0.279 0.972 0.012 0.521
30% β1 -0.073 0.343 0.364 0.958 -0.110 0.607

β2 -0.080 0.405 0.390 0.952 0.047 0.521
50% β1 -0.062 0.391 0.404 0.940 -0.007 0.635

β2 -0.067 0.479 0.416 0.948 -0.122 0.554
S3 15% β1 -0.015 0.262 0.283 0.932 -0.003 0.267

β2 -0.003 0.170 0.183 0.930 0.018 0.194
30% β1 -0.030 0.276 0.307 0.928 0.024 0.278

β2 0.010 0.190 0.189 0.938 0.056 0.206
50% β1 -0.053 0.295 0.327 0.930 0.090 0.303

β2 0.010 0.212 0.199 0.924 0.110 0.220
S4 15% β1 -0.051 0.301 0.444 0.964 -0.164 0.598

β2 -0.015 0.317 0.272 0.974 0.014 0.519
30% β1 -0.068 0.345 0.334 0.944 -0.121 0.600

β2 -0.080 0.504 0.492 0.958 0.049 0.518
50% β1 -0.062 0.391 0.404 0.940 -0.007 0.635

β2 -0.067 0.479 0.435 0.948 0.122 0.554

Table 2. Estimated mean square errors of the proposed estimators.

bw bw1 bw2 bw3 bw4

PCR β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

15% 0.024 0.008 0.068 0.046 0.028 0.012 0.031 0.011 0.059 0.029
30% 0.025 0.010 0.089 0.057 0.043 0.014 0.027 0.011 0.034 0.014
50% 0.035 0.016 0.093 0.062 0.052 0.018 0.036 0.014 0.045 0.018

Shen, Ning and Qin (2009) when the data were generated from models S2 and S4.

Under the scenarios S1 and S3, SNQ seems to have comparable or even better

efficiency than the proposed method; it was derived based on the least square

principle and tends to be more efficient when the distribution of log T̃ is close to

normal. For the non-normal S2 and S4, the proposed method is more efficient

than SNQ. For simplicity, we used a fixed bandwidth, performance can be im-

proved if a dynamic optimal bandwidth selection method such as cross-validation

is used.

For the proposed estimation procedure, a question of interest concerns the
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effect of the bandwidth on the resulting estimators. To investigate this, we

repeated the simulation study using different bandwidths and compared the mean

square errors (MSE) of the resulting estimators. Table 2 gives the MSE when

the data were generated from model S1. Here, in addition to the bandwidth

bw = {2.6σ̂1n−1/3, 1.6σ̂1n
−1/3} used above, we also considered bw1 = 0.3bw,

bw2 = 0.5bw, bw3 = 1.5bw, and bw4 = 2bw. The results suggest that the proposed

estimator is robust with respect to the bandwidth selection. We also investigated

some other kernel functions and obtained similar results.

5. An Illustration

To illustrate our estimation procedure proposed above, we apply it to the

set of length-biased and right-censored data discussed in Shen, Ning and Qin

(2009), among others. It arose from the Canadian Study of Health and Aging

on the patients diagnosed with dementia. After excluding the patients with the

missing date of disease onset or classification of dementia subtype, it consists of

818 patients with probable Alzheimer’s disease, possible Alzheimer, or vascular

dementia. Among them, 638 subjects died during follow-up and the others gave

right-censored death times. The main objective was to evaluate and compare

the impact of different subtypes of dementia on the overall survival time. For

the data here, the stationarity assumption has been validated by Addona and

Wolfson (2006).

For the analysis, take X1 = 1 if the patient had Vascular dementia and

0 otherwise and X2 = 1 if the patient had possible Alzheimer’s disease and 0

otherwise. Using the Gaussian kernel function we obtained β̂n1 = −0.065 and

β̂n2 = 0.184, with estimated standard errors 0.073 and 0.095, respectively. For

the bandwidths, we used 3.2σ̂1n
−1/3 and 3.9σ̂2n

−1/3 for the kernel densities of

uncensored subjects and the cumulative kernel densities of all subjects, respec-

tively. The results suggest that the patients with possible Alzheimer’s disease

have significantly longer lifetime than those with either probable Alzheimer’s dis-

ease or Vascular dementia. However, there is no significant difference between

the lifetimes of the patients in the two latter groups. For comparison, we also

performed the analysis by using the method given in Shen, Ning and Qin (2009)

and obtained β̂n1 = −0.075 and β̂n2 = 0.129, with estimated standard errors of

0.143 and 0.152, respectively. They indicate no significant differences among the

lifetimes of all three types of patients.

6. Discussion and Concluding Remarks

Our focus has been on the failure time data arising from the AFT model.

Sometimes the data arise from such other regression models as the additive haz-

ards model or the linear transformation model, and it would be useful to develop
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estimation procedures for these models too. Although the idea discussed above

can still apply to these situations, the development of specific estimation pro-

cedures is not straightforward due to the different structures of the models. In

approximating the hazard or cumulative hazard function in Section 3, we used

the piecewise constant functions. There are other approximations, such as B-

spline functions, and it is straightforward to generalize the proposed estimation

procedure to these situations.

Supplementary Materials

The proofs of our main results are given in the supplementary material avail-

able online.
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effect of the bandwidth on the resulting estimators. To investigate this, we

repeated the simulation study using different bandwidths and compared the mean

square errors (MSE) of the resulting estimators. Table 2 gives the MSE when

the data were generated from model S1. Here, in addition to the bandwidth
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−1/3} used above, we also considered bw1 = 0.3bw,

bw2 = 0.5bw, bw3 = 1.5bw, and bw4 = 2bw. The results suggest that the proposed

estimator is robust with respect to the bandwidth selection. We also investigated

some other kernel functions and obtained similar results.

5. An Illustration

To illustrate our estimation procedure proposed above, we apply it to the

set of length-biased and right-censored data discussed in Shen, Ning and Qin

(2009), among others. It arose from the Canadian Study of Health and Aging

on the patients diagnosed with dementia. After excluding the patients with the

missing date of disease onset or classification of dementia subtype, it consists of

818 patients with probable Alzheimer’s disease, possible Alzheimer, or vascular

dementia. Among them, 638 subjects died during follow-up and the others gave

right-censored death times. The main objective was to evaluate and compare

the impact of different subtypes of dementia on the overall survival time. For

the data here, the stationarity assumption has been validated by Addona and
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For the analysis, take X1 = 1 if the patient had Vascular dementia and

0 otherwise and X2 = 1 if the patient had possible Alzheimer’s disease and 0

otherwise. Using the Gaussian kernel function we obtained β̂n1 = −0.065 and

β̂n2 = 0.184, with estimated standard errors 0.073 and 0.095, respectively. For

the bandwidths, we used 3.2σ̂1n
−1/3 and 3.9σ̂2n

−1/3 for the kernel densities of

uncensored subjects and the cumulative kernel densities of all subjects, respec-

tively. The results suggest that the patients with possible Alzheimer’s disease

have significantly longer lifetime than those with either probable Alzheimer’s dis-

ease or Vascular dementia. However, there is no significant difference between

the lifetimes of the patients in the two latter groups. For comparison, we also

performed the analysis by using the method given in Shen, Ning and Qin (2009)

and obtained β̂n1 = −0.075 and β̂n2 = 0.129, with estimated standard errors of

0.143 and 0.152, respectively. They indicate no significant differences among the

lifetimes of all three types of patients.
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Sometimes the data arise from such other regression models as the additive haz-
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estimation procedures for these models too. Although the idea discussed above

can still apply to these situations, the development of specific estimation pro-

cedures is not straightforward due to the different structures of the models. In

approximating the hazard or cumulative hazard function in Section 3, we used

the piecewise constant functions. There are other approximations, such as B-

spline functions, and it is straightforward to generalize the proposed estimation

procedure to these situations.
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