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Abstract: An important problem in statistical methods for marked point processes

(MPPs) is to evaluate the relationship between points and marks, which can be

developed under either the concept of independence or the concept of separability.

Although both have been used, the connection between these two concepts is still

unclear in the literature. The present article provides a way to evaluate such

a connection, concluding that the concept of independence and the concept of

separability are equivalent if the Kolmogorov consistency condition is satisfied, but

not otherwise. We also provide a testing method to assess first-order independence

between points and marks, where first-order independence is concluded if the test

statistic is insignificant and first-order dependence is concluded if the test statistic

is significant. The performance of the testing method is evaluated under simulation

and case studies.
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1. Introduction

An important problem in statistical methods for marked point processes

(MPPs) is to evaluate the relationship between points and marks, which can

be considered under either the concept of independence or the concept of sepa-

rability. Although both have been used (Schlather, Ribeiro and Diggle (2004);

Schoenberg (2004)), the connection between the two concepts is still unclear in

literature. The goal here is to provide a rigorous theory to evaluate such a con-

nection. The theory will provide a basis for future development of statistical

methods of MPPs in both model specifications and applications.

MPPs are commonly used in a wide variety of applications when observa-

tions are described by spatial or spatiotemporal locations (i.e. points) and their

corresponding measurements (i.e. marks). Methods of MPPs are often used to

model a number of natural hazard events or other phenomena located in space

and time, and many successful applications can be found. Examples include

earthquakes (Holden, Sannan and Bungum (2003); Ogata (1998); Zhuang, Ogata

and Vere-Jones (2002)), forest wildfires (Peng, Schoenberg and Woods (2005);
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Schoenberg (2004); Zhang and Zhuang (2014)), tree locations and sizes (Guan

(2008)), and extreme events (Brown, Caesar and Ferro (1950); Hall and Tajvidi

(2000)). Among these, a three-dimensional space is involved if spatiotemporal

locations are considered, a two-dimensional space is involved if spatial locations

are considered, and a one-dimensional space is involved if temporal locations are

considered. The MPPs discussed here cover all the three cases.

Statistical approaches to MPPs rely on definitions. Classical geostatistical

methods including variogram analysis, various kinds of kriging, and geostatisti-

cal techniques (Cressie (1993)) is used to analyze marked point patterns. These

methods rely on the assumption often violated in applications that the depen-

dence between points and marks can be ignored (Diggle, Ribeiro and Christensen

(2003)). For instance, the relative positions of trees in a forest have repercussions

on their size owing to their competition for light or nutrient (Schlather, Ribeiro

and Diggle (2004)). Forest wildfire activities exhibit power-law relationships be-

tween frequency and burned area (Malamud, Millington and Perry (2005)).

For effective statistical approaches in applications, we need to describe and

understand the relationship between points and marks. Two approaches have

been proposed. The first is developed under the concept of independence (Guan

and Afshartous (2007); Schlather, Ribeiro and Diggle (2004)) formulated under

the framework of the distribution theory using the Janossy measure (Janossy

(1950)). The second is developed under the concept of separability (Schoenberg

(2004)) formulated under the framework of intensity theory using counting mea-

sure (Daley and Vere-Jones (2003)). The evaluation of the connection between

the two is important in both theory and applications.

It is convenient in modeling, estimation, and prediction of marked point

patterns if marks and points are independent or separable. Many commonly used

Hawkes models, such as the epidemic-type aftershock sequences (ETAS) model

(Ogata (1998)), assume marks and points are separable. SeveralR packages, such

as the spatstat (Baddeley and Turner (2005)) and PtProcess (Harte (2010)),

can be used if the assumption of independence or separability holds. If the

assumption is violated, then intensity-dependent models can be considered (Ho

and Stoyan (2008); Malinowski, Schlather and Zhang (2014); Myllymäki and

Penttinen (2009)). Before using these methods, it is necessary to account for

dependence. A few testing methods have been proposed. These include a test

for stationarity and isotropy of an MPP using variograms (Assuncao and Maia

(2007); Schlather, Ribeiro and Diggle (2004)), a nonparametric kernel-based test

to assess the separability of the first-order intensity function (Schoenberg (2004)),

a χ2-based test to assess the interaction effect between points and marks (Guan

and Afshartous (2007)), and a Kolmogorov-Smirnov type test for independence

(Zhang (2014)). However, theoretical connections between the two concepts are

still unclear.
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We investigate the connection between the methods of the Janossy measure

and counting measure for point processes. We find that the concepts of indepen-

dence and separability are equivalent under a few weak regularity conditions but

not otherwise, where the most important condition is Kolmogorov consistency.

The rest of the article is organized as follows. Section 2 provides the theory

for the connection between independence and separability, and includes a review

of the theories of MPPs based on the Janossy measure and the counting measure.

Section 3 provides a testing method for first-order independence or separability.

Section 4 records simulation results for the performance of the testing method.

Section 5 applies the testing method to an earthquake study. Section 6 provides a

discussion. Proofs of the theorems are given in the online supplementary material.

2. Marked Point Processes

The definition of MPPs can be found in many textbooks (Daley and Vere-

Jones (2003); Karr (1991)). Overall, an MPP can be treated as an unmarked

point process on the product space of points and marks, but the concept has

its own life in applications. Let S ∈ B(Rd) and M ∈ B(Rq) be the domains

of points and marks, respectively. Let S = B(S), M = B(M), X = S × M,

and X = σ(S × M ). An MPP N with points in S and marks in M is an

unmarked point process on X with Ns(A) = N (A ×M) < ∞ for any bounded

A ∈ S , where N (A×B) is the number of events in A×B. If S is bounded, then

N = N (X ) is an almost finite discrete random variable. Let n be the observed

value of N . If n ≥ 1 then, based on an artificial order, the observations of N can

be expressed as {xi = (si,mi) ∈ X : i = 1, . . . , n}.
The distribution of N can be defined using methods of unmarked point pro-

cesses. Two methods have been proposed, based on Janossy measure (Janossy

(1950)) and counting measure (Daley and Vere-Jones (2003)), respectively. Al-

though the second is more popular, the first is also important.

2.1. Janossy measure

The distribution of unmarked point process using Janossy measure has been

well-discussed (e.g., Moyal (1962); Daley and Vere-Jones (2003)); it can be easily

modified to generate the distribution of MPPs in three steps. It generates the

total number of events N in the first, the points in the second, and the marks

in the third. We write pn = P (N = n) and, conditioning on N = n, the joint

distribution of events, points and marks, is given by πn. Then,
∑∞

n=0 pn = 1 if

S is bounded and, for each n ≥ 1, the probability measure πn is defined on X n,

the n-fold product space of X . Let X n be the minimal σ-field of sets in X n,

Ω =
∑∞

n=0X n, and F =
∑∞

n=0 X n, where S0 = {0d ∈ Rd}, M0 = {0q ∈ Rq},
X 0 = {0d+q ∈ Rd+q}. Then, S 0 = {ϕ, {0d}}, M 0 = {ϕ, {0q}}, and X 0 =
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{ϕ, {0d+q}}, where ϕ is the empty set and 0k is the k-dimensional vector with

all components equal to 0.

Let x(n) = (x1,n, . . . ,xn,n) be the ordered state and xn = {x1,n, . . . ,xn,n} be

the unordered state of individual events, respectively. Let C(n) = (C1, . . . , Cn)

be the ordered sets and Cn = {C1, . . . , Cn} be the unordered sets of subsets

C1, . . . , Cn ∈ X , respectively. Then F is the minimal σ-field of sets in Ω con-

taining all sets C(n) ∈ X n for n ∈ N = {0, 1, . . . , }. The pair (Ω,F ) is called

the measurable space of N under the method of the Janossy measure, used to

define the probability measure P of N . A probability measure πn is uniquely

determined by

πn(C
(n)) = P (x(n) ∈ C(n)) = P (x1 ∈ C1, . . . ,xn ∈ Cn). (2.1)

If πn is continuous with respect to Lebesgue measure on X n, then there is a

unique nonnegative function fn(x
(n)) on X n such that for any C(n) ∈ X n there

is πn(C
(n)) =

∫
C(n) fn(x

(n))dx(n). To be consistent with treating N as a the-

ory of unordered sets, we assume that πn is permutation invariant, πn(C
(n)) =

πn(C
n) or πn(C1, . . . , Cn) = πn(Ci1 , . . . , Cin) for any permutation (i1, . . . , in) of

(1, . . . , n). Then, fn is also permutation invariant.

If there exist A1, . . . , An ∈ S and B1, . . . , Bn ∈ M such that Ci = Ai×Bi for

i = 1, . . . , n, then there is πn(C
(n)) = πn,m|s(m1 ∈ B1, . . . ,mn ∈ Bn|s1, . . . , sn)

πn,s(s1 ∈ A1, . . . , sn ∈ An). According to Dynkin’s π-λ theorem (e.g., Theorem

3.3 of Billingsley (1995)), πn is uniquely determined. Therefore, the distribu-

tion of N should contain a discrete probability distribution {pn : n ∈ N} (with∑∞
n=0 pn = 1), the conditional distribution (given n) of points πn,s, and the

conditional distribution (given n and s1, . . . , sn) of marks πn,m|s.

Theorem 1. Let P (n) be a finite measure on X n for a given n ∈ N. If∑∞
n=0 P

(n)(X n) = 1, then the function P given by P(C) =
∑∞

n=0 P
(n)(A(n)×B(n))

for any C =
∑∞

n=0A
(n) × B(n) with A(n) ∈ S n and B(n) ∈ M n is the unique

probability measure on F whose restriction on X n agrees with P (n) for all n ∈ N.

For any probability measure P on F , we can define its restriction P (n) to

X n as P (n)(C) = P(C) if C ∈ X n. Then, P (n) is a measure on X n. Therefore,

the expression of P provides a way to interpret a probability distribution of N .

Let µs and µm be some σ-finite measures on S and M , and µn
s and µn

m be

their n-fold product measures on S n and M n, respectively. If πn,s and πn,m|s are

continuous in µn
s and µn

m, then using the Radon-Nykodym Theorem (Billingsley

(1995)) there is

P(C) =

∞∑
n=0

pn

∫

A(n)

[∫

B(n)

fn,m|s(m
(n)|s(n))dµn

m

]
fn,s(s

(n))dµn
s , (2.2)
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where C =
∑∞

n=0A
(n) × B(n), {s} = {s(n) ∈ Sn : n ∈ N}, and {m} = {m(n) ∈

Mn : n ∈ N} such that ω = ({s}, {m}) ∈ Ω. The expression contains a discrete

probability distribution for the total number of points {pn : n ∈ N}, a class of

conditional densities of points on the total number of points {fn,s : n ∈ N}, a class
of conditional densities of marks on point locations and total number of points

{fn,m|s : n ∈ N}. A probability distribution of N can be almost surely expressed

by these three classes as displayed in (2.2). If µn
s and µn

m are the Lebesgue

measures on Sn and Mn for any n ≥ 1, respectively, then P can be expressed by

its derivatives with respect to the Lebesgue measure µ on F . Combining µ with

the ordinary counting measure on N, a mixed counting-Lebesgue measure µ on

F is derived. Based on µ, the mixed PMF-PDF function for P can be expressed

as f(ω) =
∑∞

n=0 pnfn,m|s(m
(n)|s(n))fn,s(s(n)). Then P(C) =

∫
C f(ω)µ(dω) for

any C ∈ F . The method based on the mixed counting-Lebesgue measure µ is

useful for continuous marks when Ns is simple.

As for independence between points and marks, note that the function fn,m|s
depends on both n and point locations. If marks are independent of points, then

fn,m|s should depend on n only.

Definition 1. (Independence) If the distribution of N is expressed by (2.2),

points and marks of N are independent if fn,m|s(m
(n)|s(n)) is independent of

s(n) for any n ∈ N, and N is an independent MPP if its points and marks are

independent.

For N an independent MPP, for any n ∈ N there is πn,m|s = πn,m, where

πn,m is the marginal distribution of marks by integrating out points, πn,m(B(n)) =

πn(Sn ×B(n)) for any B(n) ∈ M n. Then, Definition 1 can also be expressed as

πn(A
(n) ×B(n)) = πn,s(A

(n))πn,m(B(n)). (2.3)

Thus for any C ∈ F there is P(C) =
∑∞

n=0 pnπn,m(B(n))πn,s(A
(n)), and for any

ω ∈ Ω there is f(ω) =
∑∞

n=0 pnfn,m(m(n))fn,s(s
(n)).

2.2. Counting measure

Instead of focusing on the distribution of N , the method of counting mea-

sure focuses on the number of events using intensity functions. For any distinct

x1, . . . ,xk ∈ X , k ∈ N+ = {1, 2, · · · }, the kth order intensity function of N (if it

exists) is defined as

λk(x1, . . . ,xk) = lim
|dxi|→0,i=1,...,k

{
E[
∏k

i=1N(dxi)]∏k
i=1 |dxi|

}
, (2.4)

where dxi is an infinitesimal region containing xi ∈ S and |dxi| is its Lebesgue

measure. For convenience, one often writes λ(x) = λ1(x). The moments of

210



4 TONGLIN ZHANG

{ϕ, {0d+q}}, where ϕ is the empty set and 0k is the k-dimensional vector with

all components equal to 0.

Let x(n) = (x1,n, . . . ,xn,n) be the ordered state and xn = {x1,n, . . . ,xn,n} be

the unordered state of individual events, respectively. Let C(n) = (C1, . . . , Cn)

be the ordered sets and Cn = {C1, . . . , Cn} be the unordered sets of subsets

C1, . . . , Cn ∈ X , respectively. Then F is the minimal σ-field of sets in Ω con-

taining all sets C(n) ∈ X n for n ∈ N = {0, 1, . . . , }. The pair (Ω,F ) is called

the measurable space of N under the method of the Janossy measure, used to

define the probability measure P of N . A probability measure πn is uniquely

determined by

πn(C
(n)) = P (x(n) ∈ C(n)) = P (x1 ∈ C1, . . . ,xn ∈ Cn). (2.1)

If πn is continuous with respect to Lebesgue measure on X n, then there is a

unique nonnegative function fn(x
(n)) on X n such that for any C(n) ∈ X n there

is πn(C
(n)) =

∫
C(n) fn(x

(n))dx(n). To be consistent with treating N as a the-

ory of unordered sets, we assume that πn is permutation invariant, πn(C
(n)) =

πn(C
n) or πn(C1, . . . , Cn) = πn(Ci1 , . . . , Cin) for any permutation (i1, . . . , in) of

(1, . . . , n). Then, fn is also permutation invariant.

If there exist A1, . . . , An ∈ S and B1, . . . , Bn ∈ M such that Ci = Ai×Bi for

i = 1, . . . , n, then there is πn(C
(n)) = πn,m|s(m1 ∈ B1, . . . ,mn ∈ Bn|s1, . . . , sn)

πn,s(s1 ∈ A1, . . . , sn ∈ An). According to Dynkin’s π-λ theorem (e.g., Theorem

3.3 of Billingsley (1995)), πn is uniquely determined. Therefore, the distribu-

tion of N should contain a discrete probability distribution {pn : n ∈ N} (with∑∞
n=0 pn = 1), the conditional distribution (given n) of points πn,s, and the

conditional distribution (given n and s1, . . . , sn) of marks πn,m|s.

Theorem 1. Let P (n) be a finite measure on X n for a given n ∈ N. If∑∞
n=0 P

(n)(X n) = 1, then the function P given by P(C) =
∑∞

n=0 P
(n)(A(n)×B(n))

for any C =
∑∞

n=0A
(n) × B(n) with A(n) ∈ S n and B(n) ∈ M n is the unique

probability measure on F whose restriction on X n agrees with P (n) for all n ∈ N.

For any probability measure P on F , we can define its restriction P (n) to

X n as P (n)(C) = P(C) if C ∈ X n. Then, P (n) is a measure on X n. Therefore,

the expression of P provides a way to interpret a probability distribution of N .

Let µs and µm be some σ-finite measures on S and M , and µn
s and µn

m be

their n-fold product measures on S n and M n, respectively. If πn,s and πn,m|s are

continuous in µn
s and µn

m, then using the Radon-Nykodym Theorem (Billingsley

(1995)) there is

P(C) =

∞∑
n=0

pn

∫

A(n)

[∫

B(n)

fn,m|s(m
(n)|s(n))dµn

m

]
fn,s(s

(n))dµn
s , (2.2)

INDEPENDENCE AND SEPARABILITY MPPs 5

where C =
∑∞

n=0A
(n) × B(n), {s} = {s(n) ∈ Sn : n ∈ N}, and {m} = {m(n) ∈

Mn : n ∈ N} such that ω = ({s}, {m}) ∈ Ω. The expression contains a discrete

probability distribution for the total number of points {pn : n ∈ N}, a class of

conditional densities of points on the total number of points {fn,s : n ∈ N}, a class
of conditional densities of marks on point locations and total number of points

{fn,m|s : n ∈ N}. A probability distribution of N can be almost surely expressed

by these three classes as displayed in (2.2). If µn
s and µn

m are the Lebesgue

measures on Sn and Mn for any n ≥ 1, respectively, then P can be expressed by

its derivatives with respect to the Lebesgue measure µ on F . Combining µ with

the ordinary counting measure on N, a mixed counting-Lebesgue measure µ on

F is derived. Based on µ, the mixed PMF-PDF function for P can be expressed

as f(ω) =
∑∞

n=0 pnfn,m|s(m
(n)|s(n))fn,s(s(n)). Then P(C) =

∫
C f(ω)µ(dω) for

any C ∈ F . The method based on the mixed counting-Lebesgue measure µ is

useful for continuous marks when Ns is simple.

As for independence between points and marks, note that the function fn,m|s
depends on both n and point locations. If marks are independent of points, then

fn,m|s should depend on n only.

Definition 1. (Independence) If the distribution of N is expressed by (2.2),

points and marks of N are independent if fn,m|s(m
(n)|s(n)) is independent of

s(n) for any n ∈ N, and N is an independent MPP if its points and marks are

independent.

For N an independent MPP, for any n ∈ N there is πn,m|s = πn,m, where

πn,m is the marginal distribution of marks by integrating out points, πn,m(B(n)) =

πn(Sn ×B(n)) for any B(n) ∈ M n. Then, Definition 1 can also be expressed as

πn(A
(n) ×B(n)) = πn,s(A

(n))πn,m(B(n)). (2.3)

Thus for any C ∈ F there is P(C) =
∑∞

n=0 pnπn,m(B(n))πn,s(A
(n)), and for any

ω ∈ Ω there is f(ω) =
∑∞

n=0 pnfn,m(m(n))fn,s(s
(n)).

2.2. Counting measure

Instead of focusing on the distribution of N , the method of counting mea-

sure focuses on the number of events using intensity functions. For any distinct

x1, . . . ,xk ∈ X , k ∈ N+ = {1, 2, · · · }, the kth order intensity function of N (if it

exists) is defined as

λk(x1, . . . ,xk) = lim
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measure. For convenience, one often writes λ(x) = λ1(x). The moments of

211



6 TONGLIN ZHANG

N can be derived using the method for unmarked point processes (Moller and
Waagepetersen (2007)) that provides

µ(C) = E[N(C)] =

∫

C
λ(x)dx

and

Cov[N(C1), N(C2)] =

∫

C1

∫

C2

[g(x1,x2)− 1]λ(x1)λ(x2)dx1dx2 + µ(C1 ∩ C2),

where g(x1,x2) = [λ2(x1,x2)− 1]/[λ(x1)λ(x2)] is the pair correlation function.
To compare the method of counting measure with the method of the Janossy

measure, we restrict our attention to the case that N is almost surely finite. If the
total number of events is n with points and marks being denoted by x1,n, . . . ,xn,n

then, based on an artificial order of events, there is

N (C|x(n)) =

n∑
i=1

IC(xi,n), (2.5)

where IC(u) is the indicator function and the right side of (2.5) is permutation
invariant. As the counting measure uses N (C) without conditioning on the total
number of events n, (2.5) cannot be directly used. To be consistent, we express
N (C) as

N (C) = N (C|ω) =
∞∑
n=0

N (C|x(n)) =
∞∑
n=0

n∑
i=1

IC(xi,n) (2.6)

for any ω = {x(n) : n ∈ N} ∈ Ω. Using the distribution of ω, which is determined
by the distribution of x(n) for each n, we have E[N (C)] = E{E[N (C|ω)]} =∑∞

n=1

∫
Xn

∑n
i=1 IC(xi,n)dP

(n) =
∑∞

n=1 nP
(n)(C × X n−1) for any C ∈ X . This

provides the expression of λ(x) if we choose C = dx×X n−1 above. Then,

λ(x) =
∞∑
n=1

npnf1,n(x), (2.7)

where fk,n(x) with 1 ≤ k < n and n ≥ 1 is the kth-order marginal density func-
tion of fn(x

(n)) given by fk,n(x1, . . . ,xk) =
∫
Xn−k fn(x1, . . . ,xn)dxk+1 · · · dxn.

We also derive the expression for the kth order intensity function of N for
any other k ∈ N+. Let C1, . . . , Ck be disjoint subsets of X containing distinct
x1, . . . ,xk, respectively. According to Moyal (1962), there is

∏k
i=1N (Ci) =∑∞

n=k

∑
i1 ̸=···̸=ik

∏k
j=1 I(xij ,n ∈ Cj) and E[

∏k
i=1N (Ci)] =

∑∞
n=k P

(n)(C1 × · · · ×
Ck ×X n−k)[n!/(n− k)!]. Using the same method for the derivation of (2.7) with
the definition given by (2.4), there is

λk(x1, . . . ,xk) =
∞∑
n=k

n!

(n− k)!
pnfk,n(x1, . . . ,xk). (2.8)

Therefore, λk(x1, . . . ,xk) is well defined if the right side of (2.8) always converges.
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Theorem 2. Assume πn is continuous with respect to the Lebesgue measure on

X n for every n ∈ N+. Let fn be the density of πn. If E(Nk) exists and for

every r ≤ k there exists a finite function Hr on X r such that fr,n(x1, . . . ,xr) ≤
Hr(x1, . . . ,xr), then λr(x1, . . . ,xr) is well-defined for all r ≤ k. If E(Nk) exists

for every k ∈ N+, then λk(x1, . . . ,xk) is always well-defined.

Definition 2 (Separability). If λk(x1, . . . ,xk) exists for every k ∈ N+, points and

marks of N are separable if for any k ∈ N+ there exist positive λk,s(s1, . . . , sk)

and λk,m(m1, . . . ,mk) with s1, . . . , sk ∈ S and m1, . . . ,mk ∈ M such that

λk(x1, . . . ,xk)

λk,s(s1, . . . , sk)λk,m(m1, . . . ,mk)
(2.9)

does not depend on x1, . . . ,xk; N is a separable MPP if its points and marks are

separable.

One can compare the concept of separability given by Definition 2 with

the concept of separability of space-time correlation or covariance functions in

geostatistics (Cressie and Huang (1999)). Let c(h, u) be a stationary space-time

correlation or covariance function in geostatistics, where h ∈ Rd represents space

and u ∈ R represents time. If c(h, u) is chosen as a correlation function, then

separability means c(h, u) = cs(h)ct(u) for any h and u, where cs(h) = c(h, 0)

and ct(u) = c(0, u). If c(h, u) is chosen as a covariance function, then separability

means c(h, u) = cs(h)ct(u)/c(0, 0) for any h and u, where c(0, 0) is the variance of

the variable of interest. In Definition 2, we usually do not have λk(x1, . . . ,xk) =

λk,s(s1, . . . , sk)λk,m(m1, . . . ,mk). A quick example is the Poisson case where

λ1(x1) = [λ1,s(s1)λ1.m(m1)]/E(N) under the assumption of separability.

2.3. The relationship

As the formal concepts of independence and separability may be too strong

for applications, we provide their weaker versions.

Definition 3. If the distribution of N is expressed as (2.2), points and marks of

N are rth-order independent if fn,m|s(m
(n)|s(n)) is independent of s(n) for every

n ≤ r.

Definition 4. If λk(x1, . . . ,xk) positively exists for every k ≤ r, points and

marks of N are rth-order separable if (2.9) holds for every k ≤ r.

The concepts of independence and separability are equivalent under some

conditions.

Regularity Conditions:

(C1) πn satisfies the Kolmogorov consistency condition πn+k(C
(n)×X k) = πn(C

(n))

for every n, k ≥ 1 and C(n) ∈ X n;
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N can be derived using the method for unmarked point processes (Moller and
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µ(C) = E[N(C)] =
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λ(x)dx

and

Cov[N(C1), N(C2)] =

∫

C1

∫

C2

[g(x1,x2)− 1]λ(x1)λ(x2)dx1dx2 + µ(C1 ∩ C2),

where g(x1,x2) = [λ2(x1,x2)− 1]/[λ(x1)λ(x2)] is the pair correlation function.
To compare the method of counting measure with the method of the Janossy

measure, we restrict our attention to the case that N is almost surely finite. If the
total number of events is n with points and marks being denoted by x1,n, . . . ,xn,n

then, based on an artificial order of events, there is

N (C|x(n)) =

n∑
i=1

IC(xi,n), (2.5)

where IC(u) is the indicator function and the right side of (2.5) is permutation
invariant. As the counting measure uses N (C) without conditioning on the total
number of events n, (2.5) cannot be directly used. To be consistent, we express
N (C) as

N (C) = N (C|ω) =
∞∑
n=0

N (C|x(n)) =
∞∑
n=0

n∑
i=1

IC(xi,n) (2.6)

for any ω = {x(n) : n ∈ N} ∈ Ω. Using the distribution of ω, which is determined
by the distribution of x(n) for each n, we have E[N (C)] = E{E[N (C|ω)]} =∑∞

n=1

∫
Xn

∑n
i=1 IC(xi,n)dP

(n) =
∑∞

n=1 nP
(n)(C × X n−1) for any C ∈ X . This

provides the expression of λ(x) if we choose C = dx×X n−1 above. Then,

λ(x) =
∞∑
n=1

npnf1,n(x), (2.7)

where fk,n(x) with 1 ≤ k < n and n ≥ 1 is the kth-order marginal density func-
tion of fn(x

(n)) given by fk,n(x1, . . . ,xk) =
∫
Xn−k fn(x1, . . . ,xn)dxk+1 · · · dxn.

We also derive the expression for the kth order intensity function of N for
any other k ∈ N+. Let C1, . . . , Ck be disjoint subsets of X containing distinct
x1, . . . ,xk, respectively. According to Moyal (1962), there is

∏k
i=1N (Ci) =∑∞

n=k

∑
i1 ̸=···̸=ik

∏k
j=1 I(xij ,n ∈ Cj) and E[

∏k
i=1N (Ci)] =

∑∞
n=k P

(n)(C1 × · · · ×
Ck ×X n−k)[n!/(n− k)!]. Using the same method for the derivation of (2.7) with
the definition given by (2.4), there is

λk(x1, . . . ,xk) =
∞∑
n=k

n!

(n− k)!
pnfk,n(x1, . . . ,xk). (2.8)

Therefore, λk(x1, . . . ,xk) is well defined if the right side of (2.8) always converges.
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Theorem 2. Assume πn is continuous with respect to the Lebesgue measure on

X n for every n ∈ N+. Let fn be the density of πn. If E(Nk) exists and for

every r ≤ k there exists a finite function Hr on X r such that fr,n(x1, . . . ,xr) ≤
Hr(x1, . . . ,xr), then λr(x1, . . . ,xr) is well-defined for all r ≤ k. If E(Nk) exists

for every k ∈ N+, then λk(x1, . . . ,xk) is always well-defined.

Definition 2 (Separability). If λk(x1, . . . ,xk) exists for every k ∈ N+, points and

marks of N are separable if for any k ∈ N+ there exist positive λk,s(s1, . . . , sk)

and λk,m(m1, . . . ,mk) with s1, . . . , sk ∈ S and m1, . . . ,mk ∈ M such that

λk(x1, . . . ,xk)

λk,s(s1, . . . , sk)λk,m(m1, . . . ,mk)
(2.9)

does not depend on x1, . . . ,xk; N is a separable MPP if its points and marks are

separable.

One can compare the concept of separability given by Definition 2 with

the concept of separability of space-time correlation or covariance functions in

geostatistics (Cressie and Huang (1999)). Let c(h, u) be a stationary space-time

correlation or covariance function in geostatistics, where h ∈ Rd represents space

and u ∈ R represents time. If c(h, u) is chosen as a correlation function, then

separability means c(h, u) = cs(h)ct(u) for any h and u, where cs(h) = c(h, 0)

and ct(u) = c(0, u). If c(h, u) is chosen as a covariance function, then separability

means c(h, u) = cs(h)ct(u)/c(0, 0) for any h and u, where c(0, 0) is the variance of

the variable of interest. In Definition 2, we usually do not have λk(x1, . . . ,xk) =

λk,s(s1, . . . , sk)λk,m(m1, . . . ,mk). A quick example is the Poisson case where

λ1(x1) = [λ1,s(s1)λ1.m(m1)]/E(N) under the assumption of separability.

2.3. The relationship

As the formal concepts of independence and separability may be too strong

for applications, we provide their weaker versions.

Definition 3. If the distribution of N is expressed as (2.2), points and marks of

N are rth-order independent if fn,m|s(m
(n)|s(n)) is independent of s(n) for every

n ≤ r.

Definition 4. If λk(x1, . . . ,xk) positively exists for every k ≤ r, points and

marks of N are rth-order separable if (2.9) holds for every k ≤ r.

The concepts of independence and separability are equivalent under some

conditions.

Regularity Conditions:

(C1) πn satisfies the Kolmogorov consistency condition πn+k(C
(n)×X k) = πn(C

(n))

for every n, k ≥ 1 and C(n) ∈ X n;
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(C2) πn is continuous with respect to Lebesgue measure on X n for any n ≥ 1;

(C3) E(Nk) exists for a certain k ∈ N+.

The Kolmogorov consistency condition (C1) is the most important to jus-

tify in practice. In modeling MPPs one does not need to consider change in

distribution if events with small mark values are ignored.

Theorem 3. If (C1)−(C3) hold, a sufficient and necessary condition for N to

be kth-order separable is that N be kth-order independent.

Corollary 1. If (C1)−(C3) hold with (C3) holding for every k ∈ N+, a sufficient

and necessary condition for N to be separable is that N be independent.

2.4. Examples

We provide six examples to evaluate the importance of (C1). The condition

is satisfied in the first five examples but not in the last. We have S×M ⊆ Rd×Rq

with almost surely finite N in all of these examples. We use Ns to represent the

unmarked underlying point process of N that ignores the marks.

Example 1 (Poisson Model). If N is Poisson, then λk(x1, . . . ,xk) =
∏k

i=1 λ(xi),

fn(x
(n)) =

∏n
i=1 f(xi), and pn = κne−κ/n!, where κ =

∫
X λ(x)dx and f(x) =

λ(x)/κ. Then

fk,n(x1, . . . ,xk) =
k∏

i=1

f(xi)

∫

Rn−k

n∏
i=k+1

f(xi)dxk+1 · · · dxk = fk(x1, . . . ,xk)

(2.10)

for any k ≤ n, and fn satisfies the Kolmogorov consistency condition. Therefore,

for Poisson MPPs, the concept of independence and the concept of separability

are equivalent.

Example 2 (Compound Model). If N is a compound MPP, then fn(x
(n)) =∏n

i=1 f(xi) and
∑∞

n=0 pn = 1 for some PMF {pn : n ∈ N} . Then, λ(x) =

f(x)
∑∞

n=1 npn and λk(x1, . . . ,xk) = [
∏k

i=1 f(xi)][
∑∞

n=k n!pn/(n − k)!]. There-

fore, λk is well-defined if E(Nk) is finite. Using (2.10), there is fk = fk,n for

any k ≤ n. Therefore, the Kolmogorov consistency condition is satisfied. The

concept of independence and the concept of separability are equivalent.

Example 3 (Point Cluster Model). If Ns is a cluster point process, then N
is a cluster MPP. A particular form of a cluster point process is the Neyman-

Scott process on a bounded S (Neyman and Scott (1958)), where the parent

points form a stationary Poisson process with Poisson numbers of offspring points

independently from a multivariate Gaussian distribution around their parent

points. In the general case, the parent points may not be stationary and the

INDEPENDENCE AND SEPARABILITY MPPs 9

distribution of offspring points may not be Gaussian. Let the intensity function

of the parent points be λ0(c) and the distribution of offspring points be ψ(s− c)

with the total number Poisson(γ), where c ∈ S is the parent point. Then,

fn,s(s
(n)) =

∑∞
r=1{

∏n
i=1[

1
r

∑r
j=1 ψ(si − cj)]}{

∏r
j=1 f0(cj)}{κr0e−κ0/r!} for n ≥ 1

and pn =
∑∞

r=1[(rγ)
ne−rγ/n!][κr0e

−κ0/r!], where f0(c) = λ0(c)/κ0 and κ0 =∫
S λ0(c)dc. Thus, fn,s(s

(n)) satisfies the Kolmogorov consistency condition. If

marks are independently distributed with conditional density f(m0|s0) (m0 ∈ M
and s0 ∈ S) given points, then fn(x

(n)) = [
∏n

i=1 f(mi|si)]fn,s(s(n)), which implies

that f1,n(x) = f(m|s)f1,s(s). Therefore, N satisfies the Kolmogorov consistency

condition and the concept of independence and the concept of separability are

equivalent. If f(m0|s0) does not depend on s0, then N is independent and also

separable; otherwise N is neither independent nor separable.

Example 4 (Mark Geostatistical Model). The model has been previously con-

sidered by Schlather, Ribeiro and Diggle (2004). When q = 1, individual marks

are univariate. Let m(n) be the ordered state of marks. Suppose the Kolmogorov

consistency condition is satisfied in Ns and given Ns marks follow a mean zero

Gaussian process with a stationary variance σ2 and a correlation function c(s, s′),

where s and s′ represent any two points observed in Ns. Then m(n)|s(n) follows
a multivariate normal distribution with mean zero and covariance Rs(n) , where

the (i, j)th entry of Rs(n) is rij = σ2c(si, sj). We find

fk,n(x
(k)) = fk(x

(k)) =
e
−(1/2σ2)m(k)R−1

s(k)
m(k)

(2π)kσk| det(Rs(k))|
fk,s(s

(k)).

Then f1(x) = [e−m2/(2σ2)/(
√
2πσ)]f1,s(s) and

f2(x
(2)) =

e−(m2
1−2c(s1,s2)m1m2+m2

2)/(2σ
2(1−c2(s2,s2)))

2πσ2
√
1− c2(s1, s2)

f2,s(s
(2)).

Therefore, N is first-order but not second-order independent.

Example 5 (Intensity-Dependent Model). Intensity dependent models have been

previously used to account for the influence of points on marks (Ho and Stoyan

(2008); Malinowski, Schlather and Zhang (2014); Myllymäki and Penttinen (2009)).

Suppose q = 1. Usem(n) as in the previous example. AssumeNs satisfies the Kol-

mogorov consistency condition and the distribution of marks depends on points

via the intensity function of points. If marks occur independently with density

f(m|λs(s)), then fk,n(x
(n)) = fk(x

(k)) = [
∏k

i=1 f(mi|λs(si)]fk,s(s
(k)). ForNs sta-

tionary, marks and points are independent. Since the Kolmogorov consistency

condition is satisfied, the concept of independence and the concept of separability

are equivalent.
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(C2) πn is continuous with respect to Lebesgue measure on X n for any n ≥ 1;

(C3) E(Nk) exists for a certain k ∈ N+.

The Kolmogorov consistency condition (C1) is the most important to jus-

tify in practice. In modeling MPPs one does not need to consider change in

distribution if events with small mark values are ignored.

Theorem 3. If (C1)−(C3) hold, a sufficient and necessary condition for N to

be kth-order separable is that N be kth-order independent.

Corollary 1. If (C1)−(C3) hold with (C3) holding for every k ∈ N+, a sufficient

and necessary condition for N to be separable is that N be independent.

2.4. Examples

We provide six examples to evaluate the importance of (C1). The condition

is satisfied in the first five examples but not in the last. We have S×M ⊆ Rd×Rq

with almost surely finite N in all of these examples. We use Ns to represent the

unmarked underlying point process of N that ignores the marks.

Example 1 (Poisson Model). If N is Poisson, then λk(x1, . . . ,xk) =
∏k

i=1 λ(xi),

fn(x
(n)) =

∏n
i=1 f(xi), and pn = κne−κ/n!, where κ =

∫
X λ(x)dx and f(x) =

λ(x)/κ. Then

fk,n(x1, . . . ,xk) =
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i=1

f(xi)

∫

Rn−k

n∏
i=k+1

f(xi)dxk+1 · · · dxk = fk(x1, . . . ,xk)

(2.10)

for any k ≤ n, and fn satisfies the Kolmogorov consistency condition. Therefore,

for Poisson MPPs, the concept of independence and the concept of separability

are equivalent.

Example 2 (Compound Model). If N is a compound MPP, then fn(x
(n)) =∏n

i=1 f(xi) and
∑∞

n=0 pn = 1 for some PMF {pn : n ∈ N} . Then, λ(x) =

f(x)
∑∞

n=1 npn and λk(x1, . . . ,xk) = [
∏k

i=1 f(xi)][
∑∞

n=k n!pn/(n − k)!]. There-

fore, λk is well-defined if E(Nk) is finite. Using (2.10), there is fk = fk,n for

any k ≤ n. Therefore, the Kolmogorov consistency condition is satisfied. The

concept of independence and the concept of separability are equivalent.

Example 3 (Point Cluster Model). If Ns is a cluster point process, then N
is a cluster MPP. A particular form of a cluster point process is the Neyman-

Scott process on a bounded S (Neyman and Scott (1958)), where the parent

points form a stationary Poisson process with Poisson numbers of offspring points

independently from a multivariate Gaussian distribution around their parent

points. In the general case, the parent points may not be stationary and the
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distribution of offspring points may not be Gaussian. Let the intensity function

of the parent points be λ0(c) and the distribution of offspring points be ψ(s− c)

with the total number Poisson(γ), where c ∈ S is the parent point. Then,

fn,s(s
(n)) =

∑∞
r=1{

∏n
i=1[

1
r

∑r
j=1 ψ(si − cj)]}{

∏r
j=1 f0(cj)}{κr0e−κ0/r!} for n ≥ 1

and pn =
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r=1[(rγ)
ne−rγ/n!][κr0e

−κ0/r!], where f0(c) = λ0(c)/κ0 and κ0 =∫
S λ0(c)dc. Thus, fn,s(s

(n)) satisfies the Kolmogorov consistency condition. If

marks are independently distributed with conditional density f(m0|s0) (m0 ∈ M
and s0 ∈ S) given points, then fn(x

(n)) = [
∏n

i=1 f(mi|si)]fn,s(s(n)), which implies

that f1,n(x) = f(m|s)f1,s(s). Therefore, N satisfies the Kolmogorov consistency

condition and the concept of independence and the concept of separability are

equivalent. If f(m0|s0) does not depend on s0, then N is independent and also

separable; otherwise N is neither independent nor separable.

Example 4 (Mark Geostatistical Model). The model has been previously con-

sidered by Schlather, Ribeiro and Diggle (2004). When q = 1, individual marks

are univariate. Let m(n) be the ordered state of marks. Suppose the Kolmogorov

consistency condition is satisfied in Ns and given Ns marks follow a mean zero

Gaussian process with a stationary variance σ2 and a correlation function c(s, s′),

where s and s′ represent any two points observed in Ns. Then m(n)|s(n) follows
a multivariate normal distribution with mean zero and covariance Rs(n) , where

the (i, j)th entry of Rs(n) is rij = σ2c(si, sj). We find

fk,n(x
(k)) = fk(x

(k)) =
e
−(1/2σ2)m(k)R−1

s(k)
m(k)

(2π)kσk| det(Rs(k))|
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(k)).

Then f1(x) = [e−m2/(2σ2)/(
√
2πσ)]f1,s(s) and

f2(x
(2)) =

e−(m2
1−2c(s1,s2)m1m2+m2

2)/(2σ
2(1−c2(s2,s2)))

2πσ2
√

1− c2(s1, s2)
f2,s(s

(2)).

Therefore, N is first-order but not second-order independent.

Example 5 (Intensity-Dependent Model). Intensity dependent models have been

previously used to account for the influence of points on marks (Ho and Stoyan

(2008); Malinowski, Schlather and Zhang (2014); Myllymäki and Penttinen (2009)).

Suppose q = 1. Usem(n) as in the previous example. AssumeNs satisfies the Kol-

mogorov consistency condition and the distribution of marks depends on points

via the intensity function of points. If marks occur independently with density

f(m|λs(s)), then fk,n(x
(n)) = fk(x

(k)) = [
∏k

i=1 f(mi|λs(si)]fk,s(s
(k)). ForNs sta-

tionary, marks and points are independent. Since the Kolmogorov consistency

condition is satisfied, the concept of independence and the concept of separability

are equivalent.
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Example 6 (Violation of the Kolmogorov Consistency Condition). Let N be an
MPP defined on X = S × M = [0, 1]d × Rq and {pn : pn > 0 ∀n ∈ N} be the
PMF of N . Assume conditioning on N = n, the events x1, . . . ,xn are iid. Then,
fn(x1, . . . ,xn) =

∏n
i=1 f1,n(xi) for each n ≥ 1. Assume there is a positive integer

n0 such that f1,n(s,m) = g1(s)h1(m) if n ≤ n0 and f1,n(s,m) = g2(s)h2(m)
if n > n0. Then λ(s,m) = g1(s)h1(m)

∑n0
n=1 npn + g2(s)h2(m)

∑∞
n=n0+1 npn.

Here N is first-order independent but not first-order separable. Since N does
not satisfies the Kolmogorov consistency condition, the concepts of independence
and separability are not equivalent.

It is important to know whether the Kolmogorov consistency condition holds
in the analysis of MPP data. If marks occur independently, then the justification
of the Kolmorogov consistency condition for Ns is enough. If the condition
holds, then we can conclude that points and marks are independent provided that
distributions of individual marks do not depend on their locations. However, if
marks are spatially correlated, then points and marks are generally second-order
dependent. We expect that the Kolmogorov consistency condition is violated
if the distribution of an MPP has a significant change after a few events are
removed from the data set. Since this usually cannot happen, we believe that
the Kolmogorov consistency condition generally holds in practice.

3. Testing Methods

If the Kolmogorov consistency condition holds, then another interest is to
test the independence between points and marks. If independence is concluded,
then points and marks can be modeled separately; otherwise they must be mod-
eled jointly. To test independence, we provide a method which can be treated
as a modification from the classical Kolmogorov-Smirnov test for multivariate
independence, where a similar idea has been previously used (Zhang and Zhuang
(2014)).

3.1. Kolmogorov-Smirnov test for multivariate independence

The Kolmogov-Smirnov test for multivariate independence appeared in Blum,
Kiefer and Rosenblatt (1961). Let y be a continuous random vector on Rp with
a joint CDF F and marginal CDFs Fj for j = 1, . . . , p. Suppose one wants to
test H0 : F (y1, . . . , yp) =

∏p
j=1 Fj(yj) for all (y1, . . . , yp) ∈ Rp. The Kolmogorov-

Smirnov statistic for multivariate independence is

Tn,i = sup
y1,...,yp∈R

√
n

����F̂ (y1, . . . , yp)−
p∏

j=1

F̂j(yj)

����, (3.1)

where n is the sample size, F̂ and F̂j are the joint and marginal sample CDFs,
respectively. If observations are identically and independently collected, then
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under H0, Tn,i
D→ ∥Wp∥∞ = supt∈[0,1]p |Wp(t)|, where Wp is the p-dimensional

(standard) Brownian pillow (explained in the online supplementary material).

The α-level test rejects H0 if Tn,i > ∥Wp∥α, where ∥Wp∥∞ is the upper α quantile

of ∥Wp∥α. As neither the exact nor the approximate distribution of Wp is known

(Keifer (1958); Koning and Protasov (2003); Kruglova (2008, 2010)), a simulation

method is used. We find ∥W2∥0.1 = 0.7298, ∥W2∥0.05 = 0.7948, ∥W2∥0.01 =

0.9234, and ∥W2∥10−6 < 1.5.

3.2. Modification to marked point processes

Since F and Fj are not well defined in an MPP, Tn,i given by (3.1) cannot

be directly used. Therefore, one needs to to modify Tn,i for MPPs. This idea

was previously used (Zhang (2014)).

To modify the test, one can consider a testing problem based on (2.3) with

n = 1, with the null hypothesis H0 : π1(A×B) = π1,s(A)π1,m(B) for any A ∈ S
and B ∈ M , and the alternative hypothesis H1 : π1(A × B) ̸= π1,s(A)π1,m(B)

for some A ∈ S and B ∈ M . One can test whether π1(A×B) = π1,s(A)π1,m(B)

for any A ∈ A and B ∈ B, where A ⊆ S and B ⊆ M are π-systems in S and

M, respectively. If n ≥ 1, then the test statistic can be

Tn,A,B = sup
A∈A,B∈B

√
n|π̂1(A×B)− π̂1,s(A)π̂1,m(B)|, (3.2)

where π̂1(A× B) = N (A× B)/n, π̂1,s(A) = Ns(A)/n, and π̂1,m = Nm(B)/n. If

Tn,A,B is large, H0 is rejected.

There are many choices for A and B. To find a p-value, a convenient way

is to choose A and B such that both A and B can be generated by a univariate

function from S to R or from M to R, respectively. Then one can reject the

null hypothesis if Tn,A,B > ∥W2∥α if the significance level of the test is α. For

example, if S ⊆ R2 (or S ⊆ S2) and M = R, then one can choose A = As0 =

{{s ∈ S : ∥s− s0∥ ≤ a} : a ≥ 0} and B = {(−∞, b] : b ∈ R}, inducing

Tn,s0 = sup
a≥0,b∈R

√
n
��� 1
n

n∑
i=1

I∥si−s0∥≤a,mi≤b −
( 1

n

n∑
i=1

I∥si−s0∥≤a

)( 1

n

n∑
i=1

Imi≤b

)���.
(3.3)

We recommend rejecting H0 if Tn,s0 ≥ 0.7948 at the significance level 0.05 (Zhang

(2014)). In practice, one can choose s0 as a corner point of the study area in the

construction of As0 .

With rejection of H0, one concludes that the points and marks are not in-

dependent. Since σ(As0) is much smaller than the collection of all Borel subsets

in S, rejection of H0 is not enough for independence.
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Table 1. Upper α quantiles of ∥WF1,F2∥∞ when F1 is the CDF of p1-
dimensional mean zero normal distribution with all variances equal to one
and all correlations equal to ρ for selected ρ, and F2 is the CDF of uniform
distribution on [0, 1], where results were derived based on 10,000 replications.

Values of ∥WF1,F2∥α for selected α
p1 = 2 for selected α p1 = 3 for selected α

ρ 0.1 0.05 0.01 0.1 0.05 0.01
hline 0.0 0.8874 0.9507 1.0803 0.9975 1.0566 1.1842
0.5 0.8651 0.9267 1.0509 0.9556 1.0221 1.1515
0.9 0.8191 0.8819 1.0084 0.8711 0.9317 1.0570
0.95 0.8006 0.8650 0.9925 0.8392 0.9096 1.0481
0.99 0.7717 0.8342 0.9587 0.8028 0.8691 1.0012
0.999 0.7583 0.8247 0.9552 0.7743 0.8408 0.9652

3.3. A new method

We provide another method to modify the classical Kolmogorov-Smirnov test

for multivariate independence. The method replies on a test for the independence

between two continuous random vectors y1 ∈ Rp1 and y2 ∈ Rp2 , and is different

from the classical problem.

Let the joint CDF of y = (y1,y2) be F , the marginal CDF of y1 be F1,

and the marginal CDF of y2 be F2. Consider the test for H0 : F (y1,y2) =

F1(y1)F2(y2) for any y1 ∈ Rp1 and y2 ∈ Rp2 . Let (y11,y12), . . . , (yn1,yn2) be n

iid copies of (y1,y2). Then, the test statistic is

Tn,p1,p2 = sup
y1∈Rp1 ,y2∈Rp2

√
n
∣∣∣F̂ (y1,y2)− F̂1(y1)F̂2(y2)

∣∣∣ ,

where F̂ , F̂1, and F̂2 are empirical distributions of F , F1, and F2, respectively.

Under H0, there is Tn,p1,p2
D→ ∥WF1,F2∥∞, where WF1,F2 is the (F1, F2)-functional

Brownian pillow on Rp1+p2 . Since the asymptotic distribution of ∥WF1,F2∥∞
depends on F1 and F2, the computation of the p-value of Tn,p1,p2 is complicated.

The interpretation of WF1,F2 is given in our online supplementary material.

We carried out a simulation study to investigate the performance of the lim-

iting distribution of ∥WF1,F2∥∞. We chose F1 as the CDF of the p1-dimensional

mean zero normal distribution with all variances equal to one and all correlations

equal to ρ, and F2 as the uniform distribution on [0, 1]. We computed the values

of ∥WF1,F2∥α for selected α (Table 1). We found the values of ∥WF1,F2∥α almost

constant for ρ not close to 1. At 0.05 significance, we can simply reject H0 if

Tn,p1,p2 ≥ 0.9507 for p1 = 2 or Tn,p1,p2 ≥ 1.0566 for p1 = 3 when ρ is not close to

1. This is enough in most applications.

Based on our findings in Table 1, we recommend using critical values from

the (p1, p2)-standard Brownian pillow on [0, 1]p1 × [0, 1]p2 in our method, where
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the definition is also in our online supplementary material. Let ∥Wp1,p2∥α be

the upper α-quantile of Wp1,p2 . Then, ∥W1,1∥α = ∥W2∥α. Based on Table 1, we

have ∥W2,1∥0.1 = 0.8874, ∥W2,1∥0.05 = 0.9507, ∥W2,1∥0.01 = 1.0803, ∥W3,1∥0.1 =

0.9975, ∥W3,1∥0.05 = 1.0566, and ∥W3,1∥0.01 = 1.1842, roughly.

For our testing method, assume S is bounded such that N is almost surely

finite. Let As = {s′ ∈ S : s′ ≼ s} and Bm = {m′ ∈ M : m′ ≼ m}, F (x) =

E[N (As × Bm)]/κ, Fs(s) = E[N (As ×M)]/κ, and Fm(m) = E[N (S × Bm)]/κ,

where κ = E(N). Let f(x) = λ(x)/κ, fs(s) =
∫
M λ(x)dm, and fm(m) =∫

S λ(x)ds. Then, f , fs, and fm are probability density functions on Rd+p, Rd,

and Rp, respectively. If N satisfies the Kolmogorov consistency condition, then

F (x) =
∫
As×Bm

f(u)du, Fs(s) =
∫
As

fs(u)du, and Fm(m) =
∫
Bm

fm(u)du are

CDFs on Rd+q, Rd, and Rq, respectively. We consider H0 : F (x) = Fs(s)Fm(m)

for all s ∈ S and m ∈ M. Our test statistic is

Tn = sup
s∈S,m∈M

√
n

����
N (As ×Bm)

n
− N (As ×M)

n

N (S ×Bm)

n

���� (3.4)

if n ≥ 1, and Tn = 0 if n = 0. We recommend rejecting H0 if Tn > ∥Wd,q∥α at

the α significance level.

3.4. Asymptotics

We provide the asymptotic properties of Tn under the framework of increas-

ing domain asymptotics (Guan (2006)). Let M = Rq. Assume S ⊆ Rd is

bounded. The properties of Tn are investigated under |S| → ∞ with |∂S| = 0,

where ∂S is the boundary of S. We assume that S = Sη = {ηs : s ∈ S0}, where
S0 is a fixed bounded subset of Rd with |S0| > 0 and |∂S0| = 0. We take η → ∞
and assume that N is observed from a larger MPP NL on Rd × Rq when only

points in S are observed.

A critical condition in the derivation of the asymptotic distribution of Tn is

the mixing condition (Rosenblatt (1956)) for NL,s, the points for NL. Here, we

use the mixing coefficient αη(v) for NL defined as

αη(v) = sup{|Ps(C1 ∩ C2)− Ps(C1)Ps(C2)| : C1 ∈ σ(Ns(A1)),

C2 ∈ σ(Ns(A2)), ρ(A1, A2) ≥ v,A1, A2 ⊆ [−η, η]d}, (3.5)

where Ps is the distribution of NL,s and ρ is the distance function between sets.

The coefficient of strong mixing first introduced by Rosenblatt (1956), and later

modified by Ivanoff (1982), is α(v) = supη≥0 αη(v). The definition of the mixing

condition can be similarly explained by the approach provided by Herrdnorf

(1984).

We need regularity conditions.
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(1984).

We need regularity conditions.
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(A1) There exist positive c1 and c2 such that c1 < λs(s) < c2 for all s ∈ Rd.

(A2) λs(s) and λ2,s(s1, s2) are positive, uniformly bounded, and invariant as η →
∞.

(A3) Conditioning on points, the marks are independently observed with a con-

ditional density function fm|s(m|s) on Rq.

(A4) There exists a β > 2 such that
∫
Rd α

1−2/β(∥u∥)du < ∞.

(A5) N satisfies the Kolmogorov consistency condition.

Theorem 4. If (A1)−(A5) hold and fm|s(m|s) = fm(m), then Tn
D→ ∥WF1,F2∥

as η → ∞.

4. Simulation

We carried out simulation studies to compare the performance of Tn and

Tn,s0 . We simulated realizations from MPP on [0, 1]2 × R, where S = [0, 1]2

and M = R. We considered Poisson MPPs and Poisson cluster MPPs. We

chose these processes here due to their popularity in modeling geological and

ecological data. For Poisson MPPs, we first generated Poisson point processes

on [0, 1]2 with λ(s) = κβ(sx; γ)β(sy; γ), where β(u; γ) was the density of the

Beta(γ, γ) distribution and κ was the expected number of points. After that,

we independently generated marks at each points from N(µ(si), 1), where the

values of µ(si) were equal to δ/2, −δ/2, δ, and −δ according to the cases of si
displayed in Figure 1, respectively. For Poisson cluster MPPs, we first generated

parent points from a Poisson point process with λ(s) = (κ/k)β(sx; γ)β(sy; γ) and

then we independently generated offspring points around parent points, where

each parent point had a Poisson(k) number of offsprings and the locations of

offspring points to their parent points were determined by a bivariate Gaussian

distribution with the standard deviation σ. We fixed k = 4 and σ = 0.01. After

points were derived, we used the same method in the Poisson MPP for marks.

Then, points and marks were independent if and only if δ = 0.

We used Tn and Tn,s0 to test the first-order independence between points and

marks, which could be equivalently expressed as H0 : δ = 0 against H1 : δ ̸= 0.

To study the impact of the choice of s0, we chose s0 = (0, 0) and s0 = (0, 1) in

the definition of Tn,s0 . We used Tn,1 to represent Tn,s0 when s0 = (0, 0) and Tn,2

to represent Tn,s0 when s0 = (0, 1). According to Table 1, if Tn was used, we

rejected H0 if Tn ≥ 0.9507. According to Zhang (2014), if Tn,s0 was used, then

we rejected H0 if Tn,s0 ≥ 0.7948. We evaluated the type I error probabilities and

the power functions of Tn, Tn,1, and Tn,2 with respect to γ = 1 and γ = 2 in our

simulation at 0.05 significance.
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We simulated 1,000 realizations from the Poisson MPP and the Poisson clus-

ter MPP for each selected κ, γ, and δ in our simulation, and the rejection rates

of Tn, Tn,1, Tn,2 were computed (Table 2). Results showed that the type I er-

ror probabilities (when δ = 0) were all close to 0.05 but the power functions

(when δ > 0) were significantly different from each other. The power functions

of Tn were higher than the power functions of Tn,1 and Tn,2 in all cases that we

studied. In comparisons between Tn,1 and Tn,2, we found that that the rejec-

tion rates of Tn,1 were all close to the significance level but the rejection rates

of Tn,2 increased as δ increased, which meant that the performance of Tn,s0 was

significantly affected by the choice of s0. For a particular choice of s0, we were

not able to conclude that the points and marks were independent if Tn,s0 was

not significant. Therefore, different choices of s0 should be considered. This was

expected because the null hypothesis of Tn,s0 was not equivalent to the first-order

independence between points and marks. As the null hypothesis and the alter-

native for Tn were equivalent to the first-order independence and the first-order

dependence between points and marks, respectively, it seems more convenient

to use Tn in applications. In addition to the cases in Table 2, we studied simi-

lar issues for smaller κ values (not included). We concluded that our modified

Kolmogorov-Smirnov test could still be used if the count of points was low (e.g.

around 100).

5. Application

We expected the concept of independence or separability and the correspond-

ing tests to have wide applications in natural hazard studies. As earthquakes are

considered most important natural hazard phenomena, we applied our test for

independence to earthquake data. Many sources of earthquake data are available

via the internet and can be downloaded for free. Examples include the websites of
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Table 2. Simulations (with 1,000 replications) for Type I error probabilities
(δ = 0) and power functions (δ > 0) of Tn and Tn,s0 at 0.05 significance
level in Poisson MPPs and Poisson cluster MPPs, where Tn,1 = Tn,s0 for
s0 = (0, 0) and Tn,2 = Tn,s0 for s0 = (0, 1).

δ for γ = 1 δ for γ = 2
Process κ 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3
Poisson 1,000 Tn 0.032 0.082 0.175 0.452 0.038 0.074 0.168 0.422

Tn,1 0.036 0.047 0.052 0.050 0.034 0.049 0.051 0.050
Tn,2 0.038 0.080 0.178 0.353 0.038 0.069 0.167 0.348

2,000 Tn 0.045 0.119 0.339 0.862 0.040 0.115 0.379 0.822
Tn,1 0.049 0.055 0.053 0.055 0.048 0.051 0.049 0.064
Tn,2 0.051 0.117 0.309 0.585 0.055 0.112 0.348 0.636

Cluster 1,000 Tn 0.041 0.201 0.776 0.991 0.047 0.189 0.746 0.981
Tn,1 0.041 0.062 0.103 0.198 0.053 0.054 0.091 0.206
Tn,2 0.032 0.185 0.541 0.801 0.052 0.196 0.574 0.847

2,000 Tn 0.045 0.415 0.988 1.000 0.037 0.414 0.983 1.000
Tn,1 0.044 0.055 0.102 0.293 0.054 0.055 0.114 0.276
Tn,2 0.046 0.318 0.827 0.975 0.048 0.346 0.851 0.982

the United States National Geophysical (USGS) data center, the Northern Cali-

fornia Earthquake Data Center (NCEDC), and the GeoCommunity data center.

We used the data from the NCEDC website on global earthquake activities

since 1900. We focused on Japanese earthquakes because Japan is considered

the highest risk country for earthquakes in the World. We found that most

earthquakes occurred in an area between latitude 30 and latitude 45 North, and

longitude 130 and 150 East. With this area as the study region, we collected

earthquakes with magnitude greater than or equal to 4.0 from January 1, 2000

to December 31, 2014. There were 11,493 earthquakes in the dataset, 150 of

them with magnitude between 6 and 7, 12 of them with magnitude between 7

and 8, and 2 of them with magnitude ≥ 8.0. A serious earthquake was the

Great Tohoku Earthquake occurred in March 11, 2011 at 38.30 latitude North

and 142.37 longitude East with magnitude 9.1 (Stein, Geller and Liu (2012)).

An important issue was to analyze earthquake clusters caused by aftershocks.

A number of statistical methods have been proposed for earthquake clusters. As

important framework for this is the epidemic-type aftershock sequences (ETAS)

model (Ogata (1998); Zhuang, Ogata and Vere-Jones (2002); Ogata and Zhuang

(2006)), which has widely been applied recently (Bansia, Dimri and Babu (2013);

Console, Murru and Falcone (2010); Vere-Jones and Zhuang (2010)). Based on

a few assumptions, the conditional intensity function of the ETAS model can be

expressed as

λ(s, t,M |Ht) = j(M)[µ(s) +
∑

k:tk<t

κ(M∗
k )u(t− tk)v(s− s∗k|M∗

k )], (5.1)
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Figure 2. Aftershock occurrences with magnitude ≥ 4.0 within 180 days
after the Great Tohoku Earthquake (March 11, 2011, magnitude 9.1).

where j(M) is a standardized term, µ(s) is the background intensity function, Ht

denotes the space-time magnitude occurrence history of earthquakes up to time

t, and κ(M∗
k ) is the expected number of aftershocks from a mainshock ancestor.

If an extremely large mainshock earthquake occurs then, within a short time pe-

riod, the performance of the ETAS model is primarily dominated by its aftershock

earthquakes, implying that the impact of the background and other mainshock

earthquakes can be ignored. The magnitude and the spatiotemporal location of

an extremely large mainshock earthquake is denoted by M∗ and (s∗, t∗), respec-

tively. Then, the conditional intensity function can be approximately expressed

as

λ∗(s, t,M) ≈ j(M)κ(M∗)u(t− t∗)v(s− s∗|M∗). (5.2)

Since the ETAS model assumes that each mainshock earthquake produces after-

shock earthquakes independently, aftershock occurrences caused by an extremely

large mainshock earthquake can be roughly treated as a Poisson MPP with the

first-order intensity function given by λ∗(s, t,M).

We treated locations of occurrence as points and magnitudes as marks. We

used Tn and Tn,s0 to test the first-order independence between points and marks,

where we chose s0 at 30 latitude North and 130 longitude East. We tested the

first-order independence between points and marks in the whole period as well

as the period for the aftershocks of the Great Tohoku Earthquake. In the test

for the whole fifteen year study period, we had Tn = 2.961 and Tn,s0 = 3.054

with both p-values almost 0. Therefore, we concluded that the points and marks
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k ) is the expected number of aftershocks from a mainshock ancestor.
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tively. Then, the conditional intensity function can be approximately expressed
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Since the ETAS model assumes that each mainshock earthquake produces after-

shock earthquakes independently, aftershock occurrences caused by an extremely

large mainshock earthquake can be roughly treated as a Poisson MPP with the

first-order intensity function given by λ∗(s, t,M).

We treated locations of occurrence as points and magnitudes as marks. We

used Tn and Tn,s0 to test the first-order independence between points and marks,

where we chose s0 at 30 latitude North and 130 longitude East. We tested the

first-order independence between points and marks in the whole period as well

as the period for the aftershocks of the Great Tohoku Earthquake. In the test

for the whole fifteen year study period, we had Tn = 2.961 and Tn,s0 = 3.054

with both p-values almost 0. Therefore, we concluded that the points and marks
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Table 3. Test for the first-order independence between locations and mag-
nitudes of aftershock earthquakes within the first 180 days produced by the
Great Tohoku Earthquake, where each period contains 30 days.

Number of Aftershocks
Period Total Strong Major Tn(p-value) Tn,s0(p-value)

1 3047 46 3 1.394(< 0.001) 1.203(< 0.001)
2 554 5 0 0.778(0.279) 0.594(0.321)
3 317 2 0 0.717(0.420) 0.596(0.317)
4 203 1 0 0.651(0.603) 0.472(0.646)
5 213 4 0 0.570(0.807) 0.412(0.802)
6 169 2 0 0.681(0.515) 0.599(0.310)

Total 4503 60 3 1.457(< 0.001) 1.183(< 0.001)

were not independent in the whole study period. This was expected because

the ETAS model given by (5.1) was not separable in the whole study period.

We also tested the first-order independence between points and marks for the

aftershock pattern within the first 180 days after the occurrence of the Great

Tohoku Earthquake (Figure 2 and Table 3). Our results showed that first-order

independence was rejected in the whole period. To understand the pattern,

we partitioned the 180 days into six periods. Each contained 30 days. The

results showed that first-order independence was rejected only in the first period;

the ETAS model (5.2) was roughly separable in this period. We conclude that

strong dependence between points and marks present just after the occurrence

of mainshock earthquake. Because the dependence between points and marks

disappeared quickly, we conclude that the ETAS model is still appropriate for

modeling the patterns of earthquake clusters and aftershock activities.

In the end, we evaluated the Kolmogorov consistency condition in the Great

Tohoku Earthquake data and concluded it was not violated because if it were

violated the earthquake pattern would be significantly affected by a few events.

To evaluate whether the Kolmogorov consistency condition was a concern, we

looked at whether larger earthquake patterns, magnitude ≥ 5.0 or ≥ 6.0, could

be affected by smaller earthquake events if they were removed from the data set.

It was clear that the patterns were not affected if smaller earthquake events were

removed.

6. Discussion

The justification of Kolmogorov consistency is important in practice. If it is

satisfied, then the distribution of a portion of the events is not affected by the

occurrences of other events. Since the distribution of large events is generally

more important than the distribution of small events, it is then not necessary to

consider the information of small events if one attempts to study the distribution
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of large events. However, if Kolmogorov consistency condition is violated, then

one must consider the information of small events, which implies that the analysis

becomes more complicated. According to the nature of such applications as

earthquakes or forest wildfires, we do not think occurrences of a few events can

significantly change the entire pattern.

We expect that the connection between the concepts of independence and

separability to clarify research on natural hazards, infectious diseases, forestry,

and social sciences where MPP data are common. Many natural hazard phenom-

ena can be described by SMPPs or STMPPs. It is important to know whether

points and marks are independent in such data. If Kolmogorov consistency con-

dition is satisfied, methods based on distribution functions and methods based

on intensity functions are equivalent. Otherwise, one should carefully address

the difference between the methods.

Methods based on the count measure are more popular than methods based

on the Janossy measure, the interaction effect between points and marks is mostly

focused on the intensity dependent model (Ho and Stoyan (2008); Malinowski,

Schlather and Zhang (2014); Myllymäki and Penttinen (2009)). If Kolmogorov

consistency condition is satisfied, then it does not matter how one attempts to

account for the interaction and one should look to unify the two approaches to

modeling.

Supplementary Materials

The online supplememntary material includes the definitions of the Brownian

sheet, pinned Brownian sheet, and Brownian pillow, the defintions of (F1, F2)-

functional Brownian pillow and (p1, p2)-standard Brownian pillow. It contains

the proofs of Theorem 1, Theorem 2, Theorem 3, Corollary 1, and Theorem 4,

as well as the associated lemmas.
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