Supplement to Doubly Constrained Factor Models with Applications

 Henghsiu TsaiInstitute of Statistical Science, Academia Sinica, Taiwan, R.O.C.
Ruey S. Tsay
Booth School of Business, University of Chicago, Illinois, U.S.A.
Edward M. H. Lin
Institute of Finance, National Chiao Tung University, Taiwan, R.O.C. and Ching-Wei Cheng

Department of Statistics, Purdue University, Indiana, U.S.A.

Proof of the identifiability of ω_{1}, ω_{2} and ω_{3} of the proposed model

Note that $\boldsymbol{\omega}_{1}, \boldsymbol{\omega}_{2}$ and $\boldsymbol{\omega}_{3}$ cannot be fully identified without additional restrictions. To see this, first note that the covariance matrix of $\operatorname{vec}\left(\boldsymbol{Z}^{\prime}\right)$ is $\widetilde{\boldsymbol{\Sigma}}=\boldsymbol{I}_{T} \otimes \boldsymbol{A}+\boldsymbol{G} \boldsymbol{G}^{\prime} \otimes \boldsymbol{B}$, where $\boldsymbol{A}=\boldsymbol{H} \boldsymbol{\omega}_{1} \boldsymbol{\omega}_{1}^{\prime} \boldsymbol{H}^{\prime}+\boldsymbol{\Psi}$, and $\boldsymbol{B}=\boldsymbol{\omega}_{2} \boldsymbol{\omega}_{2}^{\prime}+\boldsymbol{H} \boldsymbol{\omega}_{3} \boldsymbol{\omega}_{3}^{\prime} \boldsymbol{H}^{\prime}$. Let M_{1}, M_{2}, and M_{3} be $r \times r, p \times p$, and $q \times q$ matrix, respectively, such that $M_{1} M_{1}^{\prime}=I_{r}, M_{2} M_{2}^{\prime}=I_{p}$, and $M_{3} M_{3}^{\prime}=I_{q}$, then we have $\widetilde{\boldsymbol{\Sigma}}=$ $\boldsymbol{I}_{T} \otimes \tilde{A}+\boldsymbol{G} \boldsymbol{G}^{\prime} \otimes \tilde{B}$, where $\tilde{A}=\boldsymbol{H} \boldsymbol{\omega}_{1} M_{1} M_{1}^{\prime} \boldsymbol{\omega}_{1}^{\prime} \boldsymbol{H}^{\prime}+\boldsymbol{\Psi}$, and $\tilde{B}=\boldsymbol{\omega}_{2} M_{2} M_{2}^{\prime} \boldsymbol{\omega}_{2}^{\prime}+\boldsymbol{H} \boldsymbol{\omega}_{3} M_{3} M_{3}^{\prime} \boldsymbol{\omega}_{3}^{\prime} \boldsymbol{H}^{\prime}$. We thus have two equivalent forms for $\widetilde{\boldsymbol{\Sigma}}$. Since the number of free parameters of M_{1} is $r(r-$ $1) / 2$, we need $r(r-1) / 2$ restrictions to identify $\boldsymbol{\omega}_{1}$. Similarly, we need $p(p-1) / 2$ and $q(q-1) / 2$ restrictions to identify $\boldsymbol{\omega}_{2}$ and $\boldsymbol{\omega}_{3}$, respectively. This is the reason we put the conditions that $\boldsymbol{\Gamma}_{1}, \boldsymbol{\Gamma}_{2}$, and $\boldsymbol{\Gamma}_{3}$ of Equation (2.11) are all diagonal. Second, write $\boldsymbol{\omega}_{2} \boldsymbol{\omega}_{2}^{\prime}=\sum_{i=1}^{p} \boldsymbol{\omega}_{2(i)} \boldsymbol{\omega}_{2(i)}^{\prime}$, where $\boldsymbol{\omega}_{2(i)}$ represents the i-th column of $\boldsymbol{\omega}_{2}$, meaning that swapping the columns of $\boldsymbol{\omega}_{2}$ would not change the values of $\boldsymbol{\omega}_{2} \boldsymbol{\omega}_{2}^{\prime}$ at all, and there are p columns in total, so we add the conditions $\gamma_{11}^{2}>\gamma_{22}^{2}>\cdots>\gamma_{p p}^{2}$ for the identifiability of $\boldsymbol{\omega}_{2}$. Similar reasons apply to the conditions $\gamma_{11}^{1}>\gamma_{22}^{1}>\cdots>\gamma_{r r}^{1}$, and $\gamma_{11}^{3}>\gamma_{22}^{3}>\cdots>\gamma_{q q}^{3}$. Finally, $\boldsymbol{\omega}_{2} \boldsymbol{\omega}_{2}^{\prime}=\sum_{i=1}^{p}\left(-\boldsymbol{\omega}_{2(i)}\right)\left(-\boldsymbol{\omega}_{2(i)}^{\prime}\right)$, so we add the condition that the first non-zero element in each column of the matrix $\boldsymbol{\omega}_{2}$ is positive. Similar conditions apply to the corresponding elements of $\boldsymbol{\omega}_{1}$ and $\boldsymbol{\omega}_{3}$. This proves the identifiability of $\boldsymbol{\omega}_{1}, \boldsymbol{\omega}_{2}$ and $\boldsymbol{\omega}_{3}$.

Proof of Lemma 1

To prove part (a), write $\boldsymbol{B}=\boldsymbol{\omega}_{B} \boldsymbol{\omega}_{B}^{\prime}$, where $\boldsymbol{\omega}_{B}=\left[\begin{array}{cc}\boldsymbol{\omega}_{2} & \boldsymbol{H} \boldsymbol{\omega}_{3}\end{array}\right]$, then we have

$$
\begin{aligned}
& |\widetilde{\boldsymbol{\Sigma}}| \\
= & \left|\boldsymbol{I}_{T} \otimes \boldsymbol{A}+\left(\boldsymbol{G} \otimes \boldsymbol{\omega}_{B}\right)\left(\boldsymbol{G}^{\prime} \otimes \boldsymbol{\omega}_{B}^{\prime}\right)\right|
\end{aligned}
$$

(by the definition of $\widetilde{\boldsymbol{\Sigma}}$ and Theorem 7.7 of Schott, 1997)
$=\left|\boldsymbol{I}_{T} \otimes \boldsymbol{A}\right|\left|\boldsymbol{I}_{m(p+q)}+\left(\boldsymbol{G}^{\prime} \otimes \boldsymbol{\omega}_{B}^{\prime}\right)\left(\boldsymbol{I}_{T} \otimes \boldsymbol{A}^{-1}\right)\left(\boldsymbol{G} \otimes \boldsymbol{\omega}_{B}\right)\right|$
(by Theorem 18.1.1 of Harville, 1997, and Theorem 7.9 (a) of Schott, 1997)
$=|\boldsymbol{A}|^{T}\left|\boldsymbol{I}_{m(p+q)}+\frac{T}{m} \boldsymbol{I}_{m} \otimes \boldsymbol{\omega}_{B}^{\prime} \boldsymbol{A}^{-1} \boldsymbol{\omega}_{B}\right|$
(by Equation (2), Theorems 7.7 and 7.11 of Schott, 1997)
$=|\boldsymbol{A}|^{T}\left|\boldsymbol{I}_{m N}+\frac{T}{m} \boldsymbol{I}_{m} \otimes \boldsymbol{A}^{-1 / 2} \boldsymbol{B} \boldsymbol{A}^{-1 / 2}\right|$
(by Theorem 7.7 of Schott, 1997, and Theorem 18.1.1 of Harville, 1997)

$$
\begin{aligned}
& =|\boldsymbol{A}|^{T}\left|\boldsymbol{I}_{m} \otimes \boldsymbol{A}^{-1 / 2}\right|^{2}\left|\left(\boldsymbol{I}_{m} \otimes \boldsymbol{A}^{1 / 2}\right)\left(\boldsymbol{I}_{m} \otimes \boldsymbol{I}_{N}+\frac{T}{m} \boldsymbol{I}_{m} \otimes \boldsymbol{A}^{-1 / 2} \boldsymbol{B} \boldsymbol{A}^{-1 / 2}\right)\left(\boldsymbol{I}_{m} \otimes \boldsymbol{A}^{1 / 2}\right)\right| \\
& =|\boldsymbol{A}|^{T-m}\left(I_{m} \otimes \boldsymbol{A}+\boldsymbol{I}_{m} \otimes \frac{T}{m} \boldsymbol{B}\right) \quad \text { (by Theorems } 7.7 \text { and } 7.11 \text { of Schott, 1997) } \\
& =|\boldsymbol{A}|^{T-m}\left|\boldsymbol{I}_{m} \otimes \boldsymbol{Q}\right| \quad \text { (by the definition of } \boldsymbol{Q} \text { and Theorem 7.6 (e) of Schott, 1997) } \\
& =|\boldsymbol{Q}|^{m}|\boldsymbol{A}|^{T-m} \quad \text { (by Theorem 7.11 of Schott, 1997). }
\end{aligned}
$$

This proves part (a).
Now, we prove part (b). We will prove part (b) by showing that $\widetilde{\boldsymbol{\Sigma}} \widetilde{\boldsymbol{\Sigma}}^{-1}=\widetilde{\boldsymbol{\Sigma}}^{-1} \widetilde{\boldsymbol{\Sigma}}=\boldsymbol{I}_{N T}$. First note that, by the definitions of \boldsymbol{U} and \boldsymbol{Q}, we have $\boldsymbol{Q} \boldsymbol{U} \boldsymbol{A}=-\boldsymbol{B}$, and so $\boldsymbol{Q U}=-\boldsymbol{B} \boldsymbol{A}^{-1}$. Therefore,

$$
\begin{aligned}
\widetilde{\Sigma}_{\boldsymbol{\Sigma}^{-1}} & =\left(\boldsymbol{I}_{T} \otimes \boldsymbol{A}+\boldsymbol{G} \boldsymbol{G}^{\prime} \otimes B\right)\left(\boldsymbol{I}_{T} \otimes \boldsymbol{A}^{-1}+\boldsymbol{G} \boldsymbol{G}^{\prime} \otimes \boldsymbol{U}\right) \\
& =\left(\boldsymbol{I}_{T} \otimes \boldsymbol{I}_{N}\right)+\left(\boldsymbol{G} \boldsymbol{G}^{\prime} \otimes \boldsymbol{A} \boldsymbol{U}\right)+\left(\boldsymbol{G} \boldsymbol{G}^{\prime} \otimes \boldsymbol{B} \boldsymbol{A}^{-1}\right)+\left(\frac{T}{m} \boldsymbol{G} \boldsymbol{G}^{\prime} \otimes \boldsymbol{B} \boldsymbol{U}\right) \\
& =\boldsymbol{I}_{N T}+\left(\boldsymbol{G} \boldsymbol{G}^{\prime} \otimes \boldsymbol{Q} \boldsymbol{U}\right)+\left(\boldsymbol{G} \boldsymbol{G}^{\prime} \otimes \boldsymbol{B} \boldsymbol{A}^{-1}\right) \\
& =\boldsymbol{I}_{N T}
\end{aligned}
$$

Similarly, it can be shown that $\widetilde{\boldsymbol{\Sigma}}^{-1} \widetilde{\boldsymbol{\Sigma}}=\boldsymbol{I}_{N T}$. This proves (b).
Part (c) follows from part (b) and Theorem 7.17 of Schott (1997).

References

[1] Harville, D. A. (1997). Matrix Algebra From a Statistician's Perspective. New York: Springer.
[2] Schott, James R. (1997). Matrix Analysis for Statistics. New York: Wiley.

