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Proof of the identifiability of ω1, ω2 and ω3 of the proposed model

Note that ω1, ω2 and ω3 cannot be fully identified without additional restrictions. To

see this, first note that the covariance matrix of vec(Z ′) is Σ̃ = IT ⊗A + GG′ ⊗B, where

A = Hω1ω
′
1H
′+Ψ, and B = ω2ω

′
2+Hω3ω

′
3H
′. Let M1, M2, and M3 be r×r, p×p, and q×q

matrix, respectively, such that M1M
′
1 = Ir, M2M

′
2 = Ip, and M3M

′
3 = Iq, then we have Σ̃ =

IT⊗Ã+GG′⊗B̃, where Ã = Hω1M1M
′
1ω
′
1H
′+Ψ, and B̃ = ω2M2M

′
2ω
′
2+Hω3M3M

′
3ω
′
3H
′.

We thus have two equivalent forms for Σ̃. Since the number of free parameters of M1 is r(r−

1)/2, we need r(r−1)/2 restrictions to identify ω1. Similarly, we need p(p−1)/2 and q(q−1)/2

restrictions to identify ω2 and ω3, respectively. This is the reason we put the conditions that

Γ1, Γ2, and Γ3 of Equation (2.11) are all diagonal. Second, write ω2ω
′
2 =

∑p
i=1ω2(i)ω

′
2(i),

where ω2(i) represents the i-th column of ω2, meaning that swapping the columns of ω2 would

not change the values of ω2ω
′
2 at all, and there are p columns in total, so we add the conditions

γ211 > γ222 > · · · > γ2pp for the identifiability of ω2. Similar reasons apply to the conditions

γ111 > γ122 > · · · > γ1rr, and γ311 > γ322 > · · · > γ3qq. Finally, ω2ω
′
2 =

∑p
i=1(−ω2(i))(−ω′2(i)),

so we add the condition that the first non-zero element in each column of the matrix ω2 is

positive. Similar conditions apply to the corresponding elements of ω1 and ω3. This proves

the identifiability of ω1, ω2 and ω3.

Proof of Lemma 1
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To prove part (a), write B = ωBω
′
B, where ωB = [ω2 Hω3], then we have

|Σ̃|

=
∣∣IT ⊗A + (G⊗ ωB)(G′ ⊗ ω′B)

∣∣
(by the definition of Σ̃ and Theorem 7.7 of Schott, 1997)

= |IT ⊗A|
∣∣Im(p+q) + (G′ ⊗ ω′B)(IT ⊗A−1)(G⊗ ωB)

∣∣
(by Theorem 18.1.1 of Harville, 1997, and Theorem 7.9 (a) of Schott, 1997)

= |A|T
∣∣∣∣Im(p+q) +

T

m
Im ⊗ ω′BA

−1ωB

∣∣∣∣
(by Equation (2), Theorems 7.7 and 7.11 of Schott, 1997)

= |A|T
∣∣∣∣ImN +

T

m
Im ⊗A−1/2BA−1/2

∣∣∣∣
(by Theorem 7.7 of Schott, 1997, and Theorem 18.1.1 of Harville, 1997)

= |A|T
∣∣∣Im ⊗A−1/2

∣∣∣2 ∣∣∣∣(Im ⊗A1/2)

(
Im ⊗ IN +

T

m
Im ⊗A−1/2BA−1/2

)
(Im ⊗A1/2)

∣∣∣∣
= |A|T−m

(
Im ⊗A + Im ⊗

T

m
B

)
(by Theorems 7.7 and 7.11 of Schott, 1997)

= |A|T−m|Im ⊗Q| (by the definition of Q and Theorem 7.6 (e) of Schott, 1997)

= |Q|m|A|T−m (by Theorem 7.11 of Schott, 1997).

This proves part (a).

Now, we prove part (b). We will prove part (b) by showing that Σ̃Σ̃
−1

= Σ̃
−1

Σ̃ = INT .

First note that, by the definitions of U and Q, we have QUA = −B, and so QU = −BA−1.

Therefore,

Σ̃Σ̃
−1

= (IT ⊗A + GG′ ⊗B)(IT ⊗A−1 + GG′ ⊗U)

= (IT ⊗ IN ) + (GG′ ⊗AU) + (GG′ ⊗BA−1) +

(
T

m
GG′ ⊗BU

)
= INT + (GG′ ⊗QU) + (GG′ ⊗BA−1)

= INT .

Similarly, it can be shown that Σ̃
−1

Σ̃ = INT . This proves (b).

Part (c) follows from part (b) and Theorem 7.17 of Schott (1997).
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