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Abstract: Common factors for seasonal multivariate time series are usually obtained

by first filtering the series to eliminate the seasonal component and then extracting

the nonseasonal common factors. This approach has two drawbacks. First, we

cannot detect common factors with seasonal structure; second, it is well known

that a deseasonalized time series may exhibit spurious cycles that the original data

do not contain, which can make more difficult the detection of the nonseasonal

factors. In this paper we propose a procedure using the original data to estimate

the dynamic common factors when some, or all, of the time series are seasonal.

We assume that the factor may be stationary or nonstationary and seasonal or

not. The procedure is based on the asymptotic behavior of the sequence of the so-

called sample generalized autocovariance matrices and of the sequence of canonical

correlation matrices, and it includes a statistical test for detecting the total number

of common factors. The model is estimated by the Kalman Filter. The procedure is

illustrated with an environmental example where two interesting seasonal common

factors are found.

Key words and phrases: Common seasonality, dynamic common factors, multivari-

ate time series.

1. Introduction

Common factors for time series have received much attention in the last

years. Restricted Dynamic Factor Models (RDEM) assume a contemporaneous

relationship between the series and a small number of factors. Usually these mod-

els assume stationarity (Peña and Box (1987); Stock and Watson (1988, 2002);

Ahn (1997); Bai and Ng (2002); and Lam and Yao (2012), among others) and

use the rank of the lag covariance matrices of the process to identify the num-

ber of factors. The estimation of the factors is closely related to the principal

components (PC) of the time series (see Tipping and Bishop (1999) and Doz, Gi-

annone, and Reichlin (2012)). Some generalizations to the nonstationary case are

Bai (2004), Bai and Ng (2004), Peña and Poncela (2006), and Barigozzi, Lippi,

and Luciani (2014) for integrated processes, Pan and Yao (2008) for general non-

stationary processes, Eichler, Motta, and von Sachs (2011) and Motta, Hafner,

and Von Sachs (2011) for locally stationary and non-stationarity in the variance,
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and Luciani and Veredas (2015) for fractional integrated processes. Generalized

Dynamic Factor Models (GDFM) assume a lag relationship between series and

factors. Forni et al. (2000) proposed a GDFM model allowing for an infinite

number of factor lags and low correlation between any two idiosyncratic com-

ponents. They show that one can consistently estimate the common component

of the time series increasing the number of series to infinity. The relationship

between RDFM and GDFM has been studied in Forni et al. (2009) who proposed

a model that can be seen either as restricted or generalized, and developed esti-

mation methods for the factor structure. Common factors models are used in all

branches of science including Medicine (Mamede and Schmid (2004)), Chemistry

and Envinonmetrics (Yidanaa, Ophoria, and Banoeng-Yakubob (2008)), Engi-

neering (Carpio, Juan, and López (2014)), and Economics and Business (Stock

and Watson (2002)). None of these approaches considers seasonal factors.

It is well known that a deseasonalized time series may have spurious be-

haviors and therefore this adjustment should be avoided, if possible, when this

is not the goal of the analysis. Thus, an important issue is to include directly

the seasonal characteristic in the common-factors modeling procedure, avoiding

deseasonalization a priori of the time series. Melo et al. (2001) analyzed a model

with only a (nonstationary) common factor and nine seasonal variables with

the seasonal characteristic of each variable specified as a deterministic dummy

variable. Busetti (2006) developed a procedure for handling seasonal common

factors under the multivariate structural model of Harvey (1989), but without

including stationary or (nonseasonal) nonstationary factors. Alonso et al. (2011)

and Garćıa-Martos, Rodŕıguez, and Sánchez (2011) proposed a RDFM where

the factors follow a seasonal multiplicative VARIMA model. The model is very

general, but it does not assume orthogonality among the factors and does not

separate the different types of factors. Therefore, it is not easy to identify from

the data which and how many factors determine the common trends and how

many determine the common seasonality.

The paper is organized as follows: in Section 2 we present our common

factors model in which we assume three sets of factors: (i) nonstationary non-

seasonal factors affecting the trend; (ii) nonstationary seasonal factors affecting

the seasonal pattern; and (iii) stationary common factors. In Section 3 we define

the sample generalized autocovariance matrices for seasonal data and find their

asymptotic behavior in terms of weak convergence. We include two theorems

that describe the limit behaviour of the eigenvalues of the sample generalized

autocovariance matrices and canonical correlation matrices, and present a test

for the total number of commom factors. Some simulations to illustrate in finite

samples the performance of the proposed statistical test and the properties of the

sequences of eigenvalues are reported in Section 4. In Section 5 we indicate how
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the factorial model can be estimated in State Space form. Section 6 presents an

application to environmental data. Finally, Section 7 concludes.

2. Factor Model Specification

Let {yt = (y1t, . . . , ymt)
T} be an observable multivariate time series gener-

ated by an r-dimensional latent process {ft}, where r ≤ m, with

yt = Pft + et , t ∈ Z , (2.1)

where Z is the set of integer numbers, P is anm×r factor loading matrix, and the

process {et} is a multivariate Gaussian white noise process with mean 0 and full-

rank diagonal variance matrix Σe. The symbol “T”means matrix transposition.

We assume that ft = (fT1t, f
T
2t, f

T
3t)

T , where the process {f1t} is nonstationary

and nonseasonal, with dimension r1 and follows the model

ϕ1(B)∇df1t = θ1(B)a1t, (2.2)

where ∇ = (1−B) and d ≥ 1. The process {f2t} is seasonal (nonstationary) with

period S and dimension r2, such that

ϕ2(B
S)∇D

S f2t = θ2(B
S)a2t, (2.3)

where ∇S = (1−BS) and D ≥ 1. Finally, {f3t} is stationary with dimension r3
and follows the model

ϕ3(B)f3t = θ3(B)a3t. (2.4)

For each i = 1, 2, 3, {ait} is a Gaussian white noise process with mean 0 and full-

rank variance matrix Σi and the determinants of the matrix polynomials ϕi(·)
have their roots outside the unit circle. Here, r1 + r2 + r3 = r and we write

P = [P1, P2, P3], where the submatrix Pi is of dimension m× ri, i = 1, 2, 3. For

future reference, we set fit = (fi1,t, . . . , firi,t)
T for all i = 1, 2, 3 and for all t ∈ Z.

We need the following assumptions in order to establish our main results.

Assumption A1. For all i, j = 1, 2, 3, with i ̸= j, and all t ∈ Z, the random

vectors ait and ajt are orthogonal.

Assumption A2. The processes {at = (aT1t, a
T
2t, a

T
3t)

T} and {et} are orthogonal,

so that ait and es are orthogonal for all i = 1, 2, 3 and all t, s ∈ Z.

It is easy to see that A2 implies that ft and es are orthogonal for each

t, s ∈ Z.

Assumption A3. For model identifiability Σa = Var(at) = Ir, where Ir is the

identity matrix of order r.
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This assumption on Σa and the linear representation of a VARIMA process

(Nieto (2007)) imply that fit and fjt are orthogonal for all i, j = 1, 2, 3 with i ̸= j

and all t ∈ Z. Furthermore, the components of vector fit are pairwise orthogonal

for all t ∈ Z and all i = 1, 2, 3.

Assumption A4. The matrix polynomial operators ϕi(B) and θi(B) are diag-

onal with entries ϕij(B) and θij(B), respectively, for j = 1, . . . , ri and i = 1, 3.

Analogously, the matrix polynomial operators ϕ2(B
S) and θ2(B

S) are diagonal

with entries ϕ2j(B
S) and θ2j(B

S), respectively, for j = 1, . . . , r2.

Assumption A5. With ψij(B) = ϕ−1
ij (B)θij(B) =

∑∞
k=0 ψij,kB

k, i = 1, 2, 3,

and j = 1, . . . , r1,
∑∞

k=0 k|ψij,k| <∞ and ψij(1) ̸= 0.

Under assumption A5, the matrices Ψi(1) = diag{ψi1(1), . . . , ψiri(1)} are of

rank ri, i = 1, 2, 3.

3. Some Properties of the Seasonal Factor Model

We assume for simplicity that d = D. Let N be the sample size. We define

the sample generalized autocovariance (SGCV) matrices C(k,N) as

C(k,N) =
S2d

N2d

N∑
t=k+1

(yt−k − ȳ)(yt − ȳ)T , (3.1)

where k = 0, . . . , N −1 and ȳ = (1/N)
∑N

t=1 yt. The weight of the cross-products

sum in C(k,N) is equal to 1/(N/S)2d, where N/S is the number of seasons in

the sample, whenever N is an integer multiple of S. Our definition of C(k,N)

is different from that of Peña and Poncela (2006) since it takes into account

the presence of seasonality. The canonical correlation matrices M(k,N), k =

1, . . . , N − 1, are defined as

M(k,N) = [

N∑
t=k+1

yty
T
t ]

−1
N∑

t=k+1

yty
T
t−k[

N∑
t=k+1

yt−ky
T
t−k]

−1
N∑

t=k+1

yt−ky
T
t , (3.2)

and it is well known that their eigenvalues are the squared canonical correlations

between yt−k and yt.

Theorem 1. If A1−A5 hold and K is a positive integer such that K/N → 0 as

N → ∞, then, for each k = 0, . . . ,K, we have that

(i) as N −→ ∞, the sequence {C(k,N)}N converges weakly to the random ma-

trix

ΓY,S(k) =
[
P1Ψ1(1)Σ

1/2
1 , P2Ψ2(1)Σ

1/2
2

] [ AY BY,S

BT
Y,S CS(k)

]
(
Σ
1/2
1

)T
Ψ1(1)

TPT
1(

Σ
1/2
2

)T
Ψ2(1)

TPT
2

 ,
(3.3)
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where AY =S2d
∫ 1
0 V0,d−1(t)V0,d−1(t)

Tdt, BY,S =
∑S

s=1

∫ 1
0 V0,d−1(t)Vs,d−1(t)

T

dt, and CS(k) =
∑S

s=1

∫ 1
0 Vs,d−1(t)Vls,d−1(t)

Tdt, with Vi,d(t) = Fi,d(t) −∫ 1
0 Fi,d(t)dt for all i = 0, . . . , S and ls is a natural number that depends

on k and s. Here, the process {Fi,d(t)} is defined recursively by Fi,d(t) =∫ t
0 Fi,d−1(τ)dτ for all d ∈ N, with Fi,0(t) = Wi(t) an r1-dimensional Brow-

nian motion if i = 0 and r2-dimensional if i > 1, and such that {Wi(t)} is

independent of {Wj(t)} for all i, j = 0, . . . , S with i ̸= j.

(ii) The random eigenvalues of ΓY,S(k) are such that for k = jS, and for all

j ∈ N, we have, almost surely, r1+ r2 nonzero eigenvalues which are positive

and m− (r1+ r2) eigenvalues which are equal to zero, and for k ̸= jS, for all

j ∈ N, we have r1 nonzero positive eigenvalues and m− r1 eigenvalues equal

to zero.

Proof. See the Appendix. There ls depends on k and s and, consequently, CS(k)

depends on k.

Remarks. (1) Putting S = 1, Peña and Poncela’s (2006) Theorem 1 is a partic-

ular case of our Theorem 1. (2) Comparing our limit random matrix with that of

Peña and Poncela (2006), we see that ours deviates from theirs at lags of the form

k = jS, j ∈ N, the seasonal lags. (3) Let (Ω,F, P ) be the probability space on

which all the random elements are defined. Let ω ∈ Ω and Λ1(k, ω),. . . ,Λm(k, ω)

be the eigenvalues of the numerical matrix ΓY,S(k, ω), for some lag k. Then, if

k = jS, j ∈ N, the eigenvectors corresponding to the r1 + r2 positive eigenvalues

of ΓY,S(k, ω) form a basis of the column space of the submatrix [P1, P2] and, if

k ̸= jS for all j ∈ N, the eigenvectors corresponding to the r1 positive eigenvalues

are a basis of the column space of the submatrix P1. This happens almost surely.

Part (ii) of Theorem 1 has empirical implications: the set of eigenvalues of

the random matrix ΓY,S(k), {Λ1(k),. . . ,Λm(k)} say, has two disjoint subsets: one

contains the, almost surely, positive ones, and the other the, almost surely, zero

values. Suppose we list the zero eigenvalues as either Λr1+1(k) = · · · = Λm(k) = 0

if k is not a seasonal lag, or Λr1+r2+1(k) = · · · = Λm(k) = 0 if k is a seasonal

lag. Let λ1(k,N),. . . ,λm(k,N) be the random eigenvalues of the random matrix

C(k,N). Then, for each k and for all i = 1, . . . ,m, the sequence {λi(k,N)}
converges weakly to a random eigenvalue of the matrix ΓY,S(k) as N −→ ∞.

Let Λi(k) be the limit of such sequence. Then, {λi(k,N)} converges weakly to

0 as N −→ ∞ when k ̸= jS, j ∈ N, and i > r1, or when k = jS, j ∈ N, and
i > r1 + r2. Hence, {λi(k,N)} converges in probability to 0 as N −→ ∞ at the

nonseasonal lags when i > r1, and at the seasonal lags when i > r1 + r2. In this

way, for N large enough and for any ϵ > 0, P (|λi(k,N)| ≤ ϵ) is close to 1 for

i > r1 when k ̸= jS, and also for i > r1 + r2 if k = jS.
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Now, if Ĉ(k,N) is the sample SGCV matrix, the corresponding eigenvalues

λ̂i(k,N) must be numerically very small for i = r1, . . . ,m when k ̸= jS and for

i = r1 + r2 + 1, . . . ,m when k = jS. This suggests plotting the m eigenvalues

sequences {λ̂i(k,N)} indexed by k in order to check for this numerical character-

istic. In Section 4.2 we illustrate with simulated examples the practical utility of

these plots to specify the number r1 of nonstationary and nonseasonal common

factors and the number r2 of seasonally integrated factors. Obviously, finding the

rate of convergence to zero of the eigenvalue sequences is an important problem

and will be investigated in the future.

Theorem 2. If A1−A5 hold, PTP = I, and K is a positive integer such that

K/N → 0 as N → ∞, then, for each k = 1, . . . ,K, the sequence {M(k,N)}
converges weakly to a random matrix that has m− r eigenvalues equal to zero.

Proof. See the Appendix. In this result, the limit matrix does not depend on k.

Remark. Peña and Poncela’s (2006) Theorem 3 remains valid for this more

general model with seasonal common factors.

Using similar arguments to those used for characterizing the numerical eigen-

value sequences of the SGCV matrices, we find that the last m − r numerical

eigenvalues sequences, indexed by k, of the sample matrices M̂(k,N) are ex-

pected to have very small values when N is large enough. Thus, plots of the m

numerical sequences of eigenvalues of matrices M̂(k,N) might help to specify, in

practice, the total number r of common factors.

A test statistic for the null hypothesis that the model has r factors, then can

be given by

Sm−r,k(N) = −(N − k)

m−r∑
j=1

ln(1− λj) , (3.4)

where λ1 ≤ · · · ≤ λm are the ordered (random) eigenvalues of matrix M(k,N),

in the sense that P ({ω ∈ Ω : λ1(ω) ≤ · · · ≤ λm(ω)}) = 1. Under the assumptions

in Theorem 2 and that m− r > 0, we get that, for all k = 1, . . . ,K, {Sm−r,k(N)}
converges weakly to a χ2

(m−r)2-distributed random variable as N −→ ∞. The

proof of this claim follows the lines of that in Peña and Poncela’s (2006) paper.

The test is applied starting with r = 0 , if the test rejects the null hypothesis

of no common factors, we check r = 1, and we continue increasing r until the

hypothesis of r factors is not rejected.

4. A Simulation Study

4.1. The performance of the test in finite samples

To check the performance in finite samples of the test at (8), we used six

factorial models with seasonal variables and S = 12. In all the models the
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Table 1. The models in the simulation study.

Model m r P Factor models

M1 2 1 PT
1 =

[
1/3

√
8/3

]
∇12ft = (1− 0.2B12)at

M2 3 2 PT
2 =

[
1 1 0.8
1 −1 0.2

]
(1− 0.8B)∇f1t = (1− 0.2B)a1t
(1− 0.4B12)∇12f2t = (1− 0.2B12)a2t

M3 4 2 PT
3 =

[
0.5 0.2 0.25 −0.81
0 0.33 0.94 −0.02

]
∇f1t = a1t, ∇12f2t = a2t

M4 10 2 PT
4 =

[
PT
3 PT

3 0.5I2
]

∇f1t = a1t, ∇12f2t = a2t

M5 20 2 PT
5 =

[
PT
4 PT

4

]
∇f1t = a1t, ∇12f2t = a2t

M6 50 2 PT
6 =

[
PT
5 PT

5 0T
10×2

]
∇f1t = a1t, ∇12f2t = a2t

variance of the univariate white noise processes was equal to one and we drew

1,000 simulations (sample paths or time series). The six models are given in

Table 1, where 010×2 denotes the zero matrix of dimension 10× 2.

In the cells of Tables 2 and 3 we present the number of times in which the

null hypothesis of r factors was rejected. The test was carried out at the 5%

significance level. As all models have a seasonal factor, checking the seasonal

lags 12 or 24 is more powerful for detecting the true number of factors than

checking just lag one. In Table 2 the sample size, N , is 120, 480, and 1,000. The

power of the test depends on the lag and the ratio N/m, which measures the

effective number of observations for each series and the accuracy of the canonical

correlation matrices. For instance, in model M1 the hypothesis of zero factors

is rejected with a relative frequency that goes from 0.413 to 1 depending on the

lag and the sample size. The test is more powerful at the seasonal lags and

when we increase the sample size. A similar situation happens for models M2

to M4, where the hypothesis of one factor is rejected with less power when we

decrease the ratio N/m. However, the performance of the test is very good when

we include 12 or 24 lags and N/m ≥ 30 (note the decrease in power in M4 with

m = 10 and N = 120 because then N/m is only 12).

Table 3 presents the results for a moderate number of time series (m =

20, 50), and sample sizes 30m and 60m. We have found a clear decrease in the

power of the test when N/m < 20. In these cases the test may suggest more

factors than the true value, although with a small probability unless this ratio is

very small (say smaller than 10).



1396 FABIO H. NIETO, DANIEL PEÑA AND DAGOBERTO SABOYÁ

Table 2. Frequencies of rejecting the null hypothesis in Models 1 to 4.

Model m r Sample size

120 480 1,000

Lag k Lag k Lag k

1 12 24 1 12 24 1 12 24

M1 2 0 413 1,000 1,000 659 1,000 1,000 706 1,000 1,000
1 18 51 43 27 64 41 40 55 61

M2 3 0 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
1 448 999 986 642 1,000 999 702 1,000 1,000
2 23 52 57 31 47 46 36 49 52

M3 4 0 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
1 362 986 960 605 1,000 1,000 694 1,000 1,000
2 23 58 43 28 50 55 38 48 49
3 1 1 3 2 2 4 0 4 2

M4 10 0 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
1 314 992 961 442 1,000 997 527 1,000 1,000
2 31 150 175 17 65 61 25 62 52
3 3 6 16 0 3 1 2 2 1

Table 3. Frequencies of rejecting the null hypothesis in Models 5 to 6.

Model m r Sample size

30m 60m

Lag k Lag k

1 12 24 1 12 24

M5 20 0 1,000 1,000 1,000 1,000 1,000 1,000
1 394 1,000 997 452 1,000 1,000
2 43 155 122 35 80 67
3 4 8 8 0 4 2
4 0 0 1 0 0 0

M6 50 0 1,000 1,000 1,000 1,000 1,000 1,000
1 630 1,000 1,000 539 1,000 1,000
2 137 333 321 51 140 149
3 11 43 35 4 2 18
4 1 1 2 0 1 0
5 0 0 0 0 0 0
6 0 1 0 0 0 0

4.2. Numerical behavior of eigenvalues in finite samples

We analyzed the finite-sample behavior of the eigenvalues of the generalized



COMMON SEASONALITY IN MULTIVARIATE TIME SERIES 1397

Figure 1. Sequences of the first (top) and the second (bottom) mean eigen-
values for matrices Ĉ(k, T ) in M1, with bands of ± 2 standard deviations.

autocovariance matrices, Ĉ(k,N), and canonical-correlation matrices, M̂(k,N),

by using models M1 and M2 of the previous subsection. Since S = 12 we cov-

ered three seasons for the eigenvalues analysis and compute the matrices for lags

k = 0, . . . , 35, then obtained their m eigenvalues, put them in descendent order

according to their absolute values, and conformed m eigenvalues sequences in-

dexed by k. We set N = 984 as the sample size (82 complete seasons) for each

model. This experiment was repeated in 1,000 time series generated by each

model. Then, we computed the average value of each eigenvalue at each lag and

its standard deviation.

Figure 1 shows the two mean-values sequences of these eigenvalues and the

bands of ±2 standard deviations around the average values for matrices Ĉ(k,N)

computed by data generated from M1. We find that the first eigenvalue has

significant values at the seasonal lags, whereas the second eigenvalue is practically

zero at all lags. This fact coincides with the implication of Theorem 1 for this

example, for which r1 = 0 and r2 = 1. The same conclusion is obtained from

the two eigenvalues sequences of matrices M̂(k,N). They showed the numerical

implication of Theorem 2, for which r = 1 (we omit this figure because of space

restrictions).

We now consider M2. In Figure 2 we plot the eigenvalues sequences, with

bands of ±2 standard deviations, for matrices M̂(k,N) and note that the third

eigenvalue is practically zero. This fact coincides with the thesis of Theorem 2, for

which r = 2. The first eigenvalue sequence here has many significant values that
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Figure 2. Sequences of the three mean eigenvalues (from top to bottom) for
matrices M̂(k, T ) in M2, with bands of ± 2 standard deviations.

decrease with the lag, as expected in an integrated process. The second eigenvalue

has large values at the seasonal lags, showing a cyclical seasonal behavior. The

eigenvalues sequences of matrices Ĉ(k,N) show the same numerical implications

(the plot is omitted) implied by Theorem 1.

The numerical implications of Theorems 1 and 2 have been tested in many

simulated models, with different numbers of variables and common factors and

the empirical results are analogous to those of M1 and M2 (they can be provided

by the authors upon request).

5. Fitting the Factor Model via a State Space Form

To estimate the model fixed parameters and the common factors we use max-

imum likelihood and linear prediction theory (Catlin (1989); Brockwell and Davis

(1991)), respectively. The prediction optimality criterion is the Minimum Mean

Square Error (MMSE). It is well known that if the common-factors predictors

are unbiased their MMSEs are equal to their prediction-error variances. Also, if

the prediction errors distributions are known we can find prediction intervals for

the unobservable factors. This estimation problem can be accomplished using a

state space form (SSF). Then, taking into account the Gaussianity assumption,

the maximum likelihood estimators of the fixed parameters are consistent and
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asymptotically Normal, and the common factors predictors are unbiased with

Gaussian prediction errors (see Harvey (1989)).

In order to obtain the SSF for the factorial model, we need to identify the

number r1 of nonseasonal and nonstationary factors, the number r2 of seasonally

integrated factors, the number r3 of stationary factors, and the models for the

factors. To do this, we propose the following methodology:

Step 1. Finding the number and type of factors. We decide the total number r

of common factors by using the statistical test in Section 3. This decision can be

confirmed by the eigenvalues sequences of matrices M̂(k,N), as was described in

Sections 3 and 4.2. Then, we obtain r1 and r2 by using the eigenvalues sequences

of the sample SGCV matrices and looking for the number of large eigenvalues

at the nonseasonal lags (r1) as well as at the seasonal lags (r2), as was noted in

Sections 3 and 4.2. Finally, we obtain r3 = r − r1 − r2.

Step 2. Finding a model for the factors. These models can be obtained by one

of the following procedures. The first computes a preliminary estimation of the

submatrix P1 by using the eigenvectors associated to the first r1 eigenvalues of

Ĉ(k,N), for some k ≥ 0, and obtains the transformed time series zt = P̂T
1 yt

to identify ARIMA models for each of the components of zt. In the same way,

obtain the r2 transformed time series wt = P̂T
2 yt and identify pure seasonal

ARIMA models for the components of wt, as specified in Section 2. The second

procedure is to use Harvey’s (1989) unobserved components models for extracting

the trend-cycle and seasonal components from each variable via, for example, the

statistical package STAMP of Koopman et al. (2011). Then, ARIMA models for

the trend-cycle components and seasonally integrated models for the seasonal

components can be found. We take the r1 most frequent models for the trend-

cycle component and the r2 most frequent for the seasonal component, as the

candidate models for the nonstationary and nonseasonal common factors and the

seasonal common factors, respectively.

Step 3. Estimating the model. From the above, a state space model for the

multivariate time series can be built, as outlined below, which can be estimated

by maximum likelihood (for the so-called hyperparameters) and by the fixed-

point smoother algorithm (for the common factors predictions).

The state space model.

In order to implement Step 3 we set φ1j(B) = ϕ1j(B)(1 − B)d, for each

j = 1, . . . , r1, φ2j(B
S) = ϕ2j(B

S)(1 − BS)D, for all j = 1, . . . , r2, and φ3j(B) =

ϕ3j(B) for j = 1, . . . , r3. Let pij be the degree of polynomial φij(·) and qij
the degree of polynomial θij(·) so we can write φij(B) = 1 +

∑pij
l=1 φij,lB

l and

θij(B) = 1 +
∑qij

l=1 θij,lB
l. Let rij = max{pij , qij + 1}, j = 1, . . . , ri, i = 1, 2, 3.



1400 FABIO H. NIETO, DANIEL PEÑA AND DAGOBERTO SABOYÁ

Following Gómez and Maravall (1994), we have the state vector αt = (αT
1,t,

αT
2,t, α

T
3,t)

T, where αT
i,t = (αT

i1,t, . . . , α
T
iri,t

)T, i = 1, 2, 3, with αij,t = (fij,t, fij,t+1|t,

. . . , fij,t+rij−1|t)
T, j = 1, . . . , ri, i = 1, 2, 3. Here fij,t+h|t, h ≥ 1, is the orthogonal

projection of fij,t+h onto the closed span of {fij,1, . . . , fij,t}. Since the dimension

of vector αij,t is rij , the dimension of vector αi,t is
∑ri

j=1 rij = r∗i , i = 1, 2, 3, and,

consequently, the dimension of αt is
∑3

i=1 r
∗
i = r∗.

For each j = 1, . . . , ri and i = 1, 2, 3, let

Aij =

[
0 Irij−1

−φij,rij −φij,rij−1 · · · −φij,1

]
,

where Irij−1 is the identity matrix of order rij−1 and φij,l = 0 if l > pij . We put

Ai = diag{Ai1, . . . , Airi}, for each i = 1, 2, 3 and then set A = diag{A1, A2, A3}
as the system matrix.

The observation matrix we propose is the matrix C = PH, where H =

[H(l, k)] is of dimension r × r∗ and its entries are given in the following way.

For the ith row we have three cases: (i) if 1 ≤ i ≤ r1, we set H(i, r11 + · · · +
r1,i−1 + 1) = 1 with the convention r1,0 = 0. (ii) if r1 + 1 ≤ i ≤ r1 + r2, we

put H(i, r∗1 + r21 + · · · + r2,i−r1−1 + 1) = 1 with r2,0 = 0. (iii) if r1 + r2 + 1 ≤
i ≤ r, we set H(i, r∗1 + r∗2 + r31 + · · · + r3,i−r1−r2−1 + 1) = 1, defining r3,0 = 0.

The remaining entries are set equal to zero. Now, the variance of the system-

equation error process is W = GGT, where G is a matrix of dimension r∗ ×
r given by G =diag{G11, . . . , G1r1 , G21, . . . , G2r2 , G31, . . . , G3r3} ,where Gij =

(1, ψij,1, . . . , ψij,rij−1)
T, for j = 1, . . . , ri, and i = 1, 2, 3, with the numbers ψij,k;

k = 1, . . . , rij − 1, obtained from the recursive relations (Brockwell and Davis

(1991)),

ψij,0 = 1, ψij,k =

min(pij ,k)∑
l=1

(−φij,l)ψij,k−l, k ≥ 1 .

The state space model is given by yt = Cαt+et as the observation equation,

and αt = Aαt−1 + wt as the system equation, where V ar(et) = Σe, wt = Gat,

and V ar(wt) = W . As initial conditions we put α0 = 0 and V ar(α0) = 10pIr∗ ,

for some positive integer number p (relatively large in order to compensate for

large uncertainty).

A simulated example. In order to illustrate the estimation of the factorial

model we simulated model M3 of Section 4. We simulated 100 multiple time series

of the model, each with sample size 480, and estimated the model parameters

using the proposed state space form and the Kalman filter. Then we obtained the

sample mean of the 100 estimates of each parameter and its standard deviation.
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Figure 3. Colombian rainfalls.

These results are in the matrices P̄ and Σ̄e below, with standard deviations in

parentheses. Figures are rounded to 2 decimal digits.

P̄T =

[
0.49(0.04) 0.20(0.02) 0.25(0.03) − 0.80(0.06)

0 0.30(0.09) 0.88(0.07) −0.01(0.01)

]
,

and Σ̄e = diag{0.99(0.07), 1.01(0.07), 1.05(0.12), 1.01(0.09)}. Comparing to the

true values in Table 1, we conclude that the estimated parameters are close and

the intervals of ±2 standard deviations contain the true values.

6. An Empirical Application

We present a data application of our proposed methodology. The variables

to be considered are monthly measures of rainfall (in mm) from the meteorolog-

ical stations located at the airports of six cities in Colombia: Bucaramanga (y1),

Cúcuta (y2), Ibagué (y3), Medelĺın (y4), Manizales (y5), and Bogotá(y6). The

sample period is January, 1975-June, 2013. In Figure 3 we plot the time series

provided by IDEAM, the Colombian official agency for climatic and environmen-

tal studies. Colombia is located close to the equator in the Torrid Zone and,

in a typical year, two rain epochs occur in the periods April-June and October-

December, approximately.
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Table 4. Results for the statistical tests in the data example.

r Lag k
1 12 24

0 0.0000 0.0000 0.0000
1 0.0000 0.0041 0.0035
2 0.0473 0.9759 0.6805
3 0.4305 0.9461 0.6686
4 0.3571 0.9617 0.6457
5 0.8472 0.8741 0.3112

Figure 4. Eigenvalues sequences for the canonical correlation matrices in the
rainfall data example.

Step 1. We present in Table 4 the p-values for the test for the number of factors.

The test is expected to be more powerful for identifying seasonal factors at lags

12 or 24. This is seen in Table 4 where the hypothesis of two factors is clear

at seasonal lags. The plot of the eigenvalues of matrices M̂(k,N), shown in

Figure 4, strongly suggests two seasonal factors. In order to confirm the number

of nonstationary common factors and their type, nonseasonal (r1) and seasonal

(r2), we computed the eigenvalues sequences of matrices Ĉ(k,N). In Figure

5(a) we plot the first sequence that shows a cyclical pattern and large values (in

absolute value) at seasonal lags. In Figure 5(b) we plot the next five eigenvalues

and it can be seen that the second eigenvalue has also relatively large values at

the seasonal lags. Thus, we conclude that r1 = 0 and r2 = 2.

Step 2. To identify the stochastic models for the common factors we used the first

procedure that was proposed in Section 5, and we specified a SARIMA(0, 1, 1)12
model for the first factor f1,t and a SARIMA(1, 1, 0)12 model for the second, f2,t.
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Figure 5. Eigenvalues sequences for the SGCV matrices in the data example:
(a) the first eigenvalue; (b) the last five eigenvalues.

Step 3. Using the DLM instruction of the RATS package (Doan (2011)),

we obtained the estimation results (1 − B12)f1,t = (1 − 0.91B12)a1,t and (1 +

0.58B12)(1 − B12)f2,t = a2,t as the factors models, Σ̂e = diag{2712.39, 3070.49,
3794.05, 1709.43, 1463.79, 869.58}, and the loading matrix:

P̂ T =

[
30.74 25.58 44.62 43.94 40.83 23.38

0.00 −0.62 −0.43 0.71 −0.56 −0.18

]
.

In the estimation of matrix P = (pij) we set p12 = 0 as an additional

condition for model identifiability. All the estimated parameters are significant

at the 5% level.

The structure of the factors can be seen in the columns of the P matrix. The

first is a weighted average of all the time series and it follows an IMA12 model with

a moving average parameter close to one; it represents a stable seasonal pattern

in all the series. The second is more complex, separating Medelĺın rainfall (y4)

from the other cities precipitations, and mostly from the series (y2, y3, y5). The

model for this factor indicates that the seasonal pattern is changing over time.

After this result we computed a simple estimation of the seasonal coefficients for

each time series by the difference between the monthly mean in different years

and the global mean of the time series; they are plotted in Figure 6. It can

be seen that the seasonal coefficients of Medelĺın rainfall are different from the

other cities and mainly from those of Cúcuta, Ibagué and Manizales (y2, y3, y5).

The precipitation in the period June-September in Medelĺın, although below the

mean of the year, is larger than in the other cities and mainly with respect to
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Figure 6. Seasonal effects for the rainfall variables. Medelĺın (continuous
line), Cúcuta, Ibagué and Manizales (points), Bucaramanga and Bogotá
(discontinuous).

(y2, y3, y5). Also, in this period Medelĺın has a larger precipitation than in the

period November-March, whereas Cúcuta, Ibagué and Manizales (y2, y3, y5) have

few precipitations in June-September, and of a similar magnitude to the period

November-March.

From a meteorological point of view this is a reasonable finding for the rain-

falls studied here because, geographically, Medelĺın is very close to the Pacific

Ocean coast and is influenced by the so-called Low Anchored of Panamá (or of

the Pacific Ocean), a phenomenon that causes both high levels and annual large

periods of precipitation in the Colombian Pacific-Ocean coast close to Panamá

(Zea (2003), Fujita (1962)). In fact Medelĺın is the city with the largest average

precipitation and also with the larger span of rainfall, in agreement with this

theory. This explains the need of at least two factors to describe the seasonal-

ity on the data. There is a general seasonal behaviour and a specific seasonal

pattern due to this geographical effect. The models for the two common factors

imply that their seasonal differences have a cycle of period 12 months (besides

other cycles); but the autocorrelation function of the first factor is similar to the

one usually found in this type of seasonal effect whereas the second factor ex-

plains a complex seasonal behavior with dying annual correlation structure that

alternates its values.

7. Conclusions

We have presented an extension of the dynamic common factor model with

common seasonal stochastic factors. We have shown that the eigenvalues of the
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random limit matrix (in weak convergence) of the sample generalized autocovari-
ance matrix sequence, are useful for identifying the presence of both nonstation-
ary and nonseasonal common factors and seasonally integrated common factors.
Also, we have shown that the sequence of the canonical correlation matrices con-
verges weakly to a random matrix that hasm−r eigenvalues equal to zero almost
surely, where m is the number of variables and r is the total number of common
factors. These results allow a procedure for fitting common factors to seasonal
time series that has shown to be useful with data.
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Appendix

In the following proofs we shall use results of Tanaka (1996, pp. 51 and 99)
and the symbol “⇒” will mean weak convergence. The proofs are independent
of the identifiability condition Σi = Iri , i = 1, 2, 3.

Proof of Theorem 1. Since (1/N
∑N

t=1 et converges to 0 in probability, then,
without loss of generality, we can write that Y = P ((1/N)

∑N
t=1 ft) = Pf . Now,

recalling that fTt = (fT1t, f
T
2t, f

T
3t) and setting P = [P1, P2, P3], where Pi is a

matrix of dimension m × ri, i = 1, 2, 3, we obtain that the matrix C(k,N) is
equal to

S2d

N2d

[ 3∑
h=1

Ph

{ N∑
t=k+1

(
fh,t−k − fh

) 3∑
j=1

(
fj,t − fj

)T
PT
j

}

+

3∑
h=1

Ph

N∑
t=k+1

(
fh,t−k − fh

)
eTt

]

+
S2d

N2d

[ 3∑
h=1

N∑
t=k+1

et−k

(
fh,t − fh

)T
PT
h +

N∑
t=k+1

et−ke
T
t

]
.

Let G(h, j) = (S2d/N2dPh
∑N

t=k+1

(
fh,t−k − fh

) (
fj,t − fj

)T
PT
j for h, j =

1, 2, 3. Then, proceeding as in Peña and Poncela’s (2006) paper, we have that,
as N → ∞,

G(1, 1) =⇒ S2dΨ(1)Σ
1/2
1

∫ 1

0
V0,d−1(t)V0,d−1(t)

Tdt
(
Σ
1/2
1

)T
Ψ(1)T,

G(1, 2) =⇒ Ψ(1)Σ
1/2
1

[ S∑
s=1

(∫ 1

0
V0,d−1(t)Vs,d−1(t)

Tdt

)](
Σ
1/2
2

)T
Ψ2(1)

T,
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G(2, 1) =⇒ Ψ2(1)Σ
1/2
2

[ S∑
s=1

(∫ 1

0
Vs,0(t)V0,d−1(t)

Tdt

)](
Σ
1/2
1

)T
Ψ(1)T .

Using the remainder theorem of the number theory, given k and s there exists

a natural number q(k, s) such that k + s = q(k, s)S + b(k, s), where b(k, s) =

0, . . . , S − 1. Then, either let ls = b(k, s) if b(k, s) = 1, . . . , S − 1 or ls = S if

b(k, s) = 0. Thus,

G(2, 2) =⇒
S∑

s=1

[
Ψ2(1)Σ

1/2
2

(∫ 1

0
Vs,d−1(t)Vls,d−1(t)

Tdt

)(
Σ
1/2
2

)T
Ψ2(1)

T

]
.

It is worth noting here that, contrary to G(1, 2), this limit depends on k through

ls. We analyze two cases: (a) k+ s is a multiple of S and (b) k+ s is not. In the

first case, ls = S and the limit becomes
S∑

s=1

[
Ψ2(1)Σ

1/2
2

(∫ 1

0
Vs,d−1(t)VS,d−1(t)

Tdt

)(
Σ
1/2
2

)T
Ψ2(1)

T

]
.

In the second, ls ̸= S, thus the limit is
S∑

s=1

[
Ψ2(1)Σ

1/2
2

(∫ 1

0
Vs,d−1(t)Vls,d−1(t)

Tdt

)(
Σ
1/2
2

)T
Ψ2(1)

T

]
.

The remaining sums involved in the expression for C(k,N) converge in

probability to zero matrices (with appropriate dimensions). Consequently, as

N −→ ∞, we have that, for each k = 0, . . . ,K,

C(k,N) =⇒
[
P1Ψ(1)Σ

1/2
1 , P2Ψ2(1)Σ

1/2
2

] [ AY BY,S

BT
Y,S CS(k)

]
(
Σ
1/2
1

)T
Ψ(1)TPT

1(
Σ
1/2
2

)T
Ψ2(1)

TPT
2

 ,
where

AY = S2d

∫ 1

0
V0,d−1(t)V0,d−1(t)

tdt, Bt
Y,S =

S∑
s=1

∫ 1

0
Vs,d−1(t)V0,d−1(t)

tdt

BY,S=

S∑
s=1

∫ 1

0
V0,d−1(t)Vs,d−1(t)

tdt, and CS(k)=

S∑
s=1

∫ 1

0
Vs,d−1(t)Vls,d−1(t)

tdt.

Peña and Poncela (2006) showed that the matrix S−2dAY is positive definite.

Now, if k is an integer multiple of S, CS(k) becomes positive definite. Indeed,

in this case, ls = s for all s = 1, . . . , S. And if k is not an integer multiple of S,

CS(k) is of rank 0. In this way, for all k = 0, . . . ,K, the matrix

DY,S(k) =

(
AY BY,S

BT
Y,S CS(k)

)
,
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which is symmetric, has rank r1+ r2 if k is a seasonal lag and rank r1 if it is not.

Noting that P1Ψ(1)Σ
1/2
1 is a matrix of rank r1 and P2Ψ2(1)Σ

1/2
2 is of rank

r2, ΓY,S(k) is of rank r1 + r2 when k is an integer multiple of S and it is of

rank r1 otherwise. Hence, in the first case, ΓY,S(k) has m − r1 − r2 eigenvalues

equal to zero almost surely and, in the second, this matrix has m−r1 eigenvalues
equal to zero almost surely. Moreover, if k is multiple of S, the r1 + r2 nonzero

eigenvalues of ΓY,S(k) are positive and the first large r1 eigenvalues are associated

with the common factor f1 (matrix AY ) and the remaining r2 with the seasonal

common factor f2 (matrix CS(k)). If k is not multiple of S, ΓY,S(k) has only

r1 positive eigenvalues that are associated to the nonseasonal and nonstationary

factor f1. Following the arguments in Peña and Poncela’s (2006, p.1253) Theorem

1 proof and considering the cases for seasonal/nonseasonal lags, we obtain the

characterization of the column-space basis of [P1, P2].

Proof of Theorem 2. We follow Peña and Poncela’s (2006) Theorem 3 proof

assuming that di = 0, i = 1, 2, 3. Let Zt = DQTYt, where Q = [P P⊥] with P⊥
such that PTP⊥ = 0 and PT

⊥P⊥ = Im−r, the identity matrix of order m− r, and

D is given by

D = diag{ 1

Nd
Ir1 ,

Sd

Nd
Ir2 ,

1

N1/2
Ir3 ,

1

N1/2
Im−r} . (A.1)

Then, M(k,N) is equal to

QD
[ N∑
t=k+1

ZtZ
T
t

]−1[ N∑
t=k+1

ZtZ
T
t−k

][ N∑
t=k+1

Zt−kZ
T
t−k

]−1[ N∑
t=k+1

Zt−kZ
T
t

]
D−1QT.

Now, we study the weak convergence of the matrix sequence ZN =
∑N

t=1(ZtZ
T
t ),

N ∈ Z+. Using that P = [P1, P2, P3] and P
TP = I, we obtain that the (1, 1)th

matrix block of ZN converges to

Ψ(1)Σ
1/2
1

∫ 1

0
F0,d−1(t) (F0,d−1(t))

T dt
(
Σ
1/2
1

)T
Ψ(1)T ,

the (2, 2)th block to
S∑

s=1

[
Ψ2(1)Σ

1/2
2

∫ 1

0
Fs,d−1(t) (Fs,d−1(t))

T dt
(
Σ
1/2
2

)T
Ψ2(1)

T

]
,

the (3, 3)th to E
(
f3,tf

t
3,t

)
+PT

3 ΣeP3, the (3, 4)th converges to PT
3 ΣeP⊥, and the

(4, 4)th to PT
⊥ΣeP⊥. The remaining block components converge to zero matrices

with appropriate orders.

In analogous way and using the fact that (1/N)
∑N

t=k+1 ete
T
t−k

p−→ 0m×m,

we have that
∑N

t=k+1(ZtZ
T
t−k) converges in distribution to a 4× 4 block matrix,
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where their blocks in locations (1, 1) and (2, 2) are equal to those of the limit

matrix of ZN , respectively, the block (3, 3) is E
(
f3,tf

T
3,t−k

)
, and the remaining

ones are zero matrices. Obviously,
∑N

t=k+1(Zt−kZ
T
t ) converges weakly to the

transpose of the previous limit matrix. Thus, M(k,N) converges in distribution

to a random matrix with m− r eigenvalues that are equal to zero, almost surely.

This ends the proof.

Remark. More specific details of the above proofs can be provided by the

authors upon request.

References

Ahn, S. K. (1997). Inference of vector autoregressive models with cointegration and scalar

components. J. Amer. Statist. Assoc. 437, 350-356.
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