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Abstract: The results of applying the default Automatic Model Identification of

program TRAMO to a set of 15,642 socio-economic monthly series are analyzed.

The series cover a wide variety of activities and indicators for a large number of

countries, and the number of observations ranges between 60 and 600. The model

considered by the automatic procedure is an ARIMA model with -when detected-

outliers and calendar effects. For series with no more than 360 observations the

results are found satisfactory for slightly more than 90% of the series, excellent

indeed as far as whitening of the series and the capture of seasonality are concerned.

For longer series the normality assumption is the weak point. Still, in so far as

kurtosis is the main cause, non-normality does not seem to be a dramatic feature.

The relevance of including possible outliers and calendar effects is discussed in an

Appendix.
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1. Introduction

An issue of applied relevance in short-term economic monitoring and policy
making is the error in seasonally adjusted (SA) series. Lacking a precise defi-
nition of the (unobserved) seasonality they are attempting to capture, standard
methods based on (perhaps a limited set) of fixed filters cannot yield any light.
A modeling approach to seasonal adjustment could solve the problem; of course,
the model should be in agreement with the observations. Seasonal adjustment
is routinely performed on very many series and the dynamic structure of these
series, in general, differ. For a model approach to be feasible a reliable and
efficient automatic model identification (AMI) procedure is needed. Based on
prior work of Hillmer and Tiao (1982) and Burman (1980), Gómez and Maravall
developed a pair of programs, TRAMO and SEATS, where TRAMO identifies
the model for the observed series, which is then seasonally adjusted by SEATS.
The paper analyzes the performance of the AMI contained in program TRAMO
when applied to a set of close to 16,000 monthly series. For series comprising at
most 30 years of observations the results are satisfactory, in particular in terms
of the detection of unit roots and presence/absence of seasonality in the series,
whitening of the series, and idempotency properties. The results of a battery of
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tests (that includes tests for normality and short-term out-of-sample forecasting)
show that, for 90.3% of the series, AMI yields an acceptable model.

2. Model-based Seasonal Adjustment: The Need for an Automatic
Model Identification Procedure

Short-term monitoring and economic policy are mostly based on the evolu-
tion of seasonally adjusted (SA) series. Being unobserved, an estimator of the
SA series is used, often obtained with an X11-X12-type filter. The estimator
inevitably contains an estimation error that may well induce under and over-
estimation of the SA series which, in turn, can cause policy errors. To know
the distribution of this error, and in particular its standard error (SE), would
be of help. More than half a century ago, Morgenstern expressed his conviction
that the single step that would most contribute to transform Economics into a
serious discipline would be to always present the data with the associated SE. In
1976 and 1980 the reports -to the US Federal Reserve Board- of the Bach and
Moore Committees stressed the need to know the SE of the SA data (Bach et al.
(1976), Moore et al. (1981)). An example of the practical importance of errors
in SA data is the following. Maravall and Pierce (1986) looked at US monetary
policy in the 70s, based in essence on setting an annual target for the growth
of M1 and monthly ranges for the intrayear annualized monthly growth of the
SA series obtained with X11. If actual growth exceeded the upper limit, Federal
Funds had to go up; if it fell short of the lower limit, the Funds had to go down;
otherwise, they should be left untouched. Because X11 is a two-sided symmetric
filter centered on the present month, control had to use the concurrent estimator
of the SA series, that is, the estimator for the last observed period, and obtained
with a one-sided filter. As new observations became available and the 2-sided
filter approached completion, the estimator of SA M1 was revised until it became
the final or ‘historical’ estimator. The difference between the historical and the
preliminary estimator represents an error in the latter; it is denoted ‘revision
error.’ Maravall and Pierce compared the two estimators and computed the fre-
quency of disagreement in terms of policy action: for close to 40% of the months,
the historical estimator would have implied a different Fed reaction. The width
of the (ad-hoc-set) ranges would seem inadequate, and knowledge of the SE of
the revision error would certainly have been of help. Unfortunately, the lack of
an underlying model for the X11-X12 methods prevented this.

As Hawkins and Mlodinow (2010) state, ‘there can be no model-independent
test of reality’; a way to solve the problem would be to specify a model for the ob-
served data, from which a model for the (unobservable) seasonal component can
be derived. The check for whether the SA series estimator is in agreement with
the theoretical model would provide the basic tools for diagnostics and inference
and, in particular, the SE of the estimation error would be easily obtained.
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Hillmer and Tiao (1982) and Burman (1980) proposed a seasonal adjust-
ment method based on ARIMA models, that came to be known as the ‘Arima-
model-based’ (AMB) approach. The method identifies an ARIMA model for
the observed series, and a partial fractions decomposition of its spectrum yields
the spectra of the unobserved components that aggregate into the series. These
are the trend, seasonal, and transitory/irregular components. (The term spec-
trum also denotes the pseudo-spectrum of a non-stationary series.) Then, the
minimum-mean-square-error (MMSE) estimator of the SA series can be obtained.
From the spectral decomposition, the underlying ARIMA model for each com-
ponent is straightforwardly derived.

The AMB approach was attractive. Consistency between the unobserved
component models and the model for the observed series implied that, if the
latter is well specified - a testable assumption- spurious results (such as remov-
ing seasonality from a non-seasonal series), or cases of over/under-estimation of
seasonality, would be avoided. Further, the model-based structure could be ex-
ploited to build diagnostics and inference so that, for example, the SE of the SA
series and of the forecasts thereof, as well as the SE and speed of convergence
of the future revision in preliminary estimators, could be obtained. However,
the approach faced drawbacks. First, it seemed to require heavy use of time
series analysts and computational resources. Second, many time series need pre-
adjustment before ARIMA models can be assumed. For example, the series may
contain outliers, calendar effects, missing observations, and be affected by inter-
vention/regression effects. As a consequence the AMB method was not consid-
ered viable for routine and large-scale use, and hence for official data production.
(This was in fact the conclusion of the Moore Committee.) Most notably, viable
large-scale application requires a reliable and efficient automatic model identifi-
cation (AMI) procedure.

In the mid 90s, Gómez and Maravall (1996) produced the first version of
two linked programs: TRAMO (‘Time series Regression with ARIMA noise,
Missing values and Outliers’) and SEATS (‘Signal Extraction in ARIMA Time
Series’). The programs contained a complete model-based application that in-
cluded an AMI procedure. The model is an ARIMA model extended to include
pre-adjustment through regression. This extended model is referred to as a reg-
ARIMA model. In what follows, the Windows version of the two linked programs
- program TSW- will be used; it can be freely downloaded from the Bank of Spain
website (www.bde.es → Services → Statistical and Econometrics software).

Automatic default application of TSW performs outlier detection and cor-
rection, identification and ML estimation of the reg-ARIMA model, interpolation
of missing values, whitening of the series, MMSE forecasting, calendar adjust-
ment, and MMSE estimation and forecasting of the seasonal, trend, cycle, and
transitory/irregular components (the SE of all estimators and forecasts are also
provided).

www.bde.es
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The programs are presently used throughout the world by many agencies,
institutions, firms, and universities. Possibly, the most frequent application is
seasonal adjustment, where many thousands of series may have to be routinely
adjusted. The programs have been widely recommended (see, for example, EU-
ROSTAT (2009), and United Nations (2011) and, together with X12ARIMA
(Findley et al. (1998)), they are part of the new X13-ARIMA-SEATS program
of the U.S. Bureau of the Census and of the program JDEMETRA+ of the
European Statistical System (see the two reference manuals in Wikipedia).

The present paper discusses the performance of the TRAMO-SEATS AMI
procedure on a set of close to 16,000 real-world-socio-economic time series. To
assess the reliability of the procedure when all parameters are set at their default
values, two types of failure need to be addressed. First, for a series that follows
a reg-ARIMA model, is the proper model obtained? Second, is the reg-ARIMA
specification appropriate for modeling real series? The first question was ad-
dressed in Maravall, López, and Pérez (2015) and the AMI procedure was found
highly reliable when a reg-ARIMA specification is appropriate.

In this paper the second question is addressed: are real series properly mod-
eled with the reg-ARIMA specification of the default AMI procedure?

3. Summary of the Automatic Model Identification Procedure

3.1. The regression-ARIMA model

Let the observed time series be z = (zt1, zt2, . . . , ztN ) where 1 = t1 < t2 <
· · · < tN = T . (There may be missing observations and the series may have been
log transformed.) The Reg-ARIMA model can be expressed as

zt = y
′
tβ + xt, (3.1)

where yt is a matrix with n regression variables, β is the vector of the regression
coefficients and the variable xt follows a (possibly nonstationary) ARIMA model.
Hence y′tβ represents the deterministic component, and xt the stochastic one. If
B denotes the backward shift operator, such that Bjzt = zt−j , the ARIMA
model for xt is of the type

vt = δ(B)xt, (3.2)

ϕ(B)[vt − µv] = θ(B)at, at ∼ niid(0, Va), (3.3)

where vt is the stationary transformation of xt, µv the mean of vt, and δ(B) con-
tains regular and seasonal differences; ϕ(B) is a stationary autoregressive (AR)
polynomial in B and θ(B) is an invertible moving average (MA) polynomial in
B. For seasonal series, the polynomials typically have a ‘multiplicative’ struc-
ture. Letting s denote the number of observations per year, in TRAMO, the
polynomials in B factorize as

δ(B) = (1−B)d(1−Bs)ds = ∇d∇ds
s ,
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where ∇and ∇sare the regular and seasonal differences, and

ϕ(B) = ϕp(B)Φps(B
s) = (1 + ϕ1B + · · ·+ ϕpB

p)(1 + ϕSB
s), (3.4)

θ(B) = θq(B)Θqs(B
s) = (1 + θ1B + · · ·+ θqB

q)(1 + θsB
s). (3.5)

In what follows, the variable vt will be assumed centred around its mean
and the general expression for the model will be the ARIMA (p, d, q)(ps, ds, qs)s
model:

ϕp(B)Φps(B
s)∇d∇ds

s xt = θq(B)Θqs(B
s)at, (3.6)

where the orders considered by AMI are restricted to p, q = 0, 1, 2, 3; d = 0, 1, 2;
ds, ps, qs = 0, 1.

In what follows, the only regression variables are the outliers and Calendar
effects automatically identified by the default run of the program. Three types
of possible outliers are considered: additive outlier (AO), a single spike; transi-
tory change (TC), a spike that takes several periods to return to the previous
level; and level shift (LS), a step function. Calendar effects are Trading Day
(with a day-of-week or a working/non-working day specification), Easter, and
Leap Year. TRAMO pre-tests for the log/level transformation, and performs au-
tomatic ARIMA model identification joint with automatic outlier and calendar
effect detection, estimates the model by exact maximum likelihood, interpolates
missing values, and forecasts the series.

3.2. Automatic model identification in the presence of outliers

The algorithm iterates between two stages.

1. Automatic outlier detection and correction. The procedure is based on Tsay
(1986) and Chen and Liu (1993) with some modifications (Gómez and Mar-
avall, 2001a). At each stage, given the ARIMA model, outliers are detected
one by one, and eventually jointly estimated, together with calendar effects
(if present) by GLS.

2. Automatic model identification. TRAMO proceeds by iterating two steps:
First, it identifies the differencing polynomial δ(B) that contains the unit
roots. Second, it identifies the ARMA model, ϕp(B),Φps(B

s), θq(B), and
Θqs(B

s). A pre-test for possible presence of seasonality determines the default
model, used at the beginning of AMI and at some intermediate stages (as a
benchmark comparison). For seasonal series the default model is the so-called
Airline model (Box and Jenkins (1970)), given by

∇∇sxt = (1 + θ1B)(1 + θSB
s)at, (3.7)

the IMA (0, 1, 1)(0, 1, 1)s model. For nonseasonal series the default model is

∇xt = (1 + θB)at + µ, (3.8)
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the IMA (1,1) plus mean model. Identification of the ARIMA model is per-
formed with the series corrected for Calendar effects and for the outliers de-
tected at that stage. If the model changes, the automatic detection and cor-
rection of outliers is performed again from the beginning. Intermediate stages
employ the Hannan and Rissanen (1982)method. Final estimation always uses
the exact maximum likelihood method of Gómez and Maravall (1994).

3.3. Identification of the nonstationary polynomial δ(B)

To determine the appropriate differencing of the series standard unit root
tests are discarded. First, when MA roots are not negligeable, the standard tests
have low power. Second, a run of AMI for a single series may try thousands of
models, where the next try depends on previous results. There is, thus, a serious
data mining problem: the size of the test is a function of prior rejections and
acceptances, and its correct value is not known.

We follow an alternative approach that relies on the superconsistency results
of Tiao and Tsay (1983), and Tsay (1984). Sequences of multiplicative AR(1) and
ARMA(1,1) are estimated, and instead of a fictitious size, the following value is
fixed a priori: how large should the modulus of an AR root be in order to accept
it as 1? By default, in the sequence of AR(1) and ARMA(1,1) estimations, when
the modulus of the AR parameter is above 0.91 (seasonal polynomial) or 0.96
(regular polynomial), it is made 1. Unit AR roots are identified one by one; for
MA roots invertibility is strictly imposed and the maximum allowed modulus is
0.95.

3.4. Identification of the stationary ARMA model: ϕ(B) and θ(B)

Identification of the stationary part of the model attempts to minimize the
Bayesian information criterion

BICP,Q = ln(σ̂2
P,Q) + (P +Q)

ln(N −D)

N −D
,

where P = p+ps, Q = q+qs, and D = d+ds. The search is done sequentially: for
fixed regular polynomials, the seasonal ones are obtained, and viceversa. A more
complete description of the AMI procedure and of the estimation algorithms can
be found in Gómez and Maravall (1994, 2001a); Gómez, Maravall, and Peña
(1999); and Maravall and Pérez (2012). Program SEATS is described in Gómez
and Maravall (2001b).

4. Application to a Large Set of Series: Empirical Results

The default automatic option of program TSWwas applied to 15,642 monthly
series obtained from a variety of sources over a period of 30 years. The geograph-
ical distribution is the following: 14% are Spanish series, 42% are from other Eu-
ropean countries, 24% are US series, 20% cover the rest of the world. All sorts of
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Table 1. General.

Group
(by NZ)

# series
in group

Average
length

% logs Average
# param-
eters/ser

Average
# out-
liers/ser

% with
calendar
effect

% with
outliers

60-110 3972 89 83.4 2 0.8 28.5 43.2
111-160 4652 130 91.9 2.1 1.5 62.1 63.7
161-210 3065 173 91.4 2.3 1.7 67.6 67.8
211-260 2101 229 82.1 2.2 2.5 28.2 82
261-360 1009 290 84.4 2.5 2.9 57.4 86.5

TOTAL 14799 153 87.6 2.2 1.6 49.2 63.2

361-600 843 456 77.1 2.9 4 36.3 74

economic activities and indicators are represented. The number of observations

(NZ) ranges between 60 and 600 observations (this is the range covered by the

standard TSW AMI). The series have been grouped according to length, and the

number of series in each group intends to roughly reflect the relative frequency

of the lengths encountered in practice. The content of the groups is fairly het-

erogeneous. Table 1 presents some general results (NZ denotes the length of the

series.)

For reasons given later, when computing total averages only the interval

(60−360 observations) is considered. The longer-series group was relatively small

and, for short-term forecasting and seasonal adjustment, the adequacy of the

reg-ARIMA specification to series exceeding 360 monthly observations is more

questionable. (Long series were split into two and added to the shorter sample

size groups.)

Table 1 shows that for most of the series logs are chosen, that the average

number of parameters lies in the range 2 - 2.9 parameters per series and in-

creases moderately with length, that for all groups outliers are found at a rate

of approximately 1 outlier per 100 observations, that slightly less than half of

the series require calendar adjustment, and that about two thirds require outlier

adjustment. (Many series, of course, share outliers.) Table 2 shows that most of

the outliers are additive outliers, followed by level shifts. Table 3 indicates that

the preferred Trading Day specification is the parsimonious working/non-working

days. The Easter effect is detected in less than 16% of the series.

5. Presence of Seasonality

The model that starts AMI depends on whether seasonality has been detected

or not in the series. The detection is based on four separate checks: a χ2
11 non-

parametric rank test similar to the one in Kendall and Ord (1990); a check of

the autocorrelations for seasonal lags (12 and 24) in the line of Pierce (1978),
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Table 2. Outliers.

Group (by NZ) Average # per series
AO TC LS Tot.

60-110 0.4 0.2 0.3 0.8
111-160 0.7 0.3 0.5 1.5
161-210 0.8 0.4 0.5 1.6
211-260 1.1 0.5 0.9 2.5
261-360 1.6 0.6 0.7 2.9

TOTAL AVERAGE 0.8 0.3 0.5 1.6
361-600 1.8 1.0 1.3 4.0

Table 3. Calendar effects.

Group (by NZ) % of series with

TD EE STOCH. TD Total calendar effect

1 var 6 var
60-110 18.4 7.3 6.7 0.3 28.5
111-160 55.2 3.7 17.2 1.9 62.2
161-210 59.9 6.2 24.7 2.6 67.8
211-260 19.7 6.6 11.9 1.4 28.2
261-360 48 5.5 28.4 2 57.4

TOTAL AVERAGE 40.8 5.7 15.9 1.6 49.2

361-600 25.4 8.4 12.5 3.7 36.3

using a χ2
2; an F-test for the significance of seasonal dummy variables similar

to the one in Lytras, Feldpausch, and Bell (2007); a test for the presence of

peaks at seasonal frequencies in the spectrum of the first differenced series. The

first three tests are applied at the 99% critical value. The fourth test combines

the results of two spectrum estimates: one obtained with an AR(30) fit in the

spirit of X12-ARIMA Findley and Martin (2006); the second is a non-parametric

Tukey-type estimator, as in Jenkins and Watts (1968), that we approximate by

an F distribution. The results of the four tests are combined into an ‘overall’ test

that answers the question: can seasonality be assumed to be present? The tests

are first applied to the original series and determine the starting model in AMI.

Once the series has been corrected for regression effects (outliers and calendar

effect), the tests are applied again to the ‘linearized’ series; these are the results

reported in Table 4.

We consider that only for series with 80 or more observations are the spectra

worth estimating. Thus the 45.3% in Table 4 is a strongly downward-biased

estimator.
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Table 4. Detection of seasonality.

Group
Pre-tests: % of series with seasonality Seasonal

component
in AMI
model

Warning-
free SA
series

NP QS Spectrum F Overall test

60-110 81.1 82.8 45.3 83.9 85.6 85.5 81.9
111-160 77.8 75.6 76.0 79.7 80.6 79.8 76.6
161-210 85.7 84.3 82.6 88.5 89.7 88.8 85.3
211-260 83.2 81.6 82.8 85.9 86.8 85.5 82.7
261-360 82.7 80.7 81.2 86.3 88.2 85.8 84.4

TOTAL AVERAGE 81.4 81.0 70.4 84.0 85.2 84.4 81.7

361-600 75.9 75.0 75.1 74.9 77.9 76.8 75.3

Presence/absence of seasonality may again be tested at intermediate steps of

AMI. Seasonality is assumed even when the evidence is weak, so that the overall

test favors overdetection. The AMI procedure itself corrects cases of seasonality

overdetection, and this occurs in 1% of the series for which seasonality had been

detected. Further, SEATS may detect cases in which seasonality is not well-

behaved (e.g., excessively erratic) and its MMSE estimator of little use (e.g.,

when the revision error is excessively high). SEATS produces then a warning

questioning the quality of the adjustment; this affects 3.2% of the 13,525 series

for which AMI produced a model with seasonality.

The presence-of-seasonality test is again employed at the diagnostic stage,

to check model residuals, SA series, Trend-cycle, and irregular components.

6. ARIMA Model

Table 5 presents the differencing needed in order to achieve stationarity of

the series, and shows that the proportion of stationary series decreases monoton-

ically as NZ increases. For the group with the shortest series 28% of them are

stationary; for the group with the longest series, the proportion is 0.5%. Within

the series in the range (60 ≤ NZ ≤ 360), about 10% of them are stationary, 82%

of them requireD = 1, 72% requireDS = 1, and only 2% requireD = 2 (11% for

the series with NZ > 360). Most of the series (65%) require the (D = 1, DS = 1)

transformation.

Concerning the parameters of the stationary ARMA part of the model, Ta-

ble 6 presents their average number for the regular and seasonal AR and MA

polynomials. It is seen that moving average parameters are more frequent than

autoregressive ones. This is due to the predominance of the Airline Model spec-

ification, which -as seen in Table 7- applies to 40% of the series. The remaining
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Table 5. Differences.

Group Stationary (no diff.)
% of series with

▽ ▽2 ▽12 ▽▽12 ▽2▽12

60-110 28.1 16.8 0.2 7.9 45.1 1.9
111-160 5 19.2 1.9 6.5 66.9 0.4
161-210 3.4 13.5 0.2 4.3 78 0.5
211-260 2.2 17.5 1 3.7 73.4 2
261-360 1.8 15 0.7 2.8 78.3 1.5

TOTAL AVERAGE 10.3 16.8 0.9 5.8 65 1.1

361-600 0.5 20.4 6.2 4.7 63.5 4.7

Table 6. ARMA parameters.

Group
Average # per series

P Q BP BQ Total

60-110 0.6 0.6 0.3 0.5 2
111-160 0.5 0.8 0.1 0.8 2.1
161-210 0.5 0.9 0.1 0.9 2.3
211-260 0.5 0.7 0.1 0.8 2.2
261-360 0.5 1 0.1 0.9 2.5

TOTAL AVERAGE 0.5 0.8 0.2 0.7 2.2

361-600 1 0.9 0.1 0.8 2.9

60% comprise 246 different ARIMA specifications (out of a total of 384 possible

ones); 24 of these specifications account for 40% of series and the remaining 222

specifications account for 20% of them. Table 7 displays the 30 specifications

most frequently encountered.

7. Residual Diagnostics and Out-of-sample Performance

TSW+ offers two basic types of diagnostics. One is aimed at testing the
normally, identically, and independently distributed assumption on the residu-
als; the other performs out-of-sample forecast tests. The normality assumption
is checked with the Bera-Jarque normality test, plus the skewness and kurtosis
t-tests; the autocorrelation test is the standard Ljung-Box test (with 24 auto-
correlations); independence is further checked with a non-parametric t-test on
randomness of the residual sign runs; and the identical distribution assumption
is checked with the constant zero mean and constant variance tests that compare
the first and second half of the series residuals. The results of these tests are
given in Table 8. The overall test for seasonality is applied to the residuals, as
well as a spectral test to check for a residual Trading Day effect (Table 9). The
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Table 7. Original series.
Total number of identified model orders: 246
Most frequent ones: (p, d, q)(bp, bd, bq)12

P D Q BP BD BQ %

0 1 1 0 1 1 40
0 1 1 0 0 0 4
1 1 0 0 1 1 4
0 1 0 0 1 1 3
1 0 0 1 0 0 3
2 1 0 0 1 1 2
0 1 2 0 1 1 2
1 0 0 0 1 1 2
1 1 1 0 1 1 2
0 1 1 1 0 0 2
1 1 0 0 0 0 2
3 1 1 0 1 1 1
1 0 0 0 0 0 1
1 0 1 1 0 0 1
3 1 0 0 1 1 1
0 1 1 0 1 0 1
2 0 0 0 1 1 1
0 1 1 1 1 1 1
2 1 1 0 1 1 1
0 1 3 0 1 1 1
0 1 0 1 0 0 1
0 1 2 0 0 0 1
0 1 0 0 0 0 1
1 0 1 0 1 1 1
0 2 1 0 1 1 1
3 0 0 0 1 1 1
0 0 0 0 1 1 1
2 1 0 0 0 0 1
2 0 0 1 0 0 1
0 1 1 0 0 1 1

out-of-sample checks are, first, a test whereby one-period-ahead forecast errors

are sequentially computed for the model estimated for the series with the last

18 observations removed (the model remains fixed), and an F-test that compares

the variance of these errors with the variance of the in-sample residuals.

The second test computes the standardized out-of-sample one-period-ahead

forecast error for each of the series in the group, and computes the proportion

that lie beyond the 1% critical value of a t distribution. (The option TER-

ROR,‘TRAMO for errors,’ applied to the full group, directly provides the an-
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Table 8. Residual diagnostics.

Group mean
=0

Mean
stability

Variance
stability

Autocorr. Random
signs

Skewness Kurtosis

60-110 1.1 2.7 2.7 0.4 0.5 2.5 2
111-160 0.7 2.3 5.7 1.5 0.5 3.1 5.2
161-210 0.3 0.1 3.1 1.3 0.6 3.9 6.1
211-260 0.4 0.7 2.9 2 0.7 4.5 14.4
261-360 0.4 0.4 4 2.7 1.1 4.8 16.9
TOTAL AVERAGE 0.7 1.6 3.8 1.3 0.6 3.4 6.6

361-600 0.9 1.3 11.9 14.1 3.1 12.1 49.5

Table 9. Seasonality and calendar residual effects.
(% of residual series in group that show evidence; 1% size test)

Group Evidence of seasonality
Overall test

Spectral evidence of TD ef-
fect in residuals

60-110 0.2 0.0
111-160 0.1 0.4
161-210 0.1 1.2
211-260 0.1 0.9
261-360 0.3 0.7

TOTAL AVERAGE 0.1 0.5

361-600 0.6 3.0

Table 10. Real series: Model diagnostics; % of series in group that fail the
test; Out-of-sample forecast.

Group F-test t-test
(18 final periods) (1 period ahead)

60-110 7.7 8.7
111-160 5.2 8.2
161-210 7.0 11.9
211-260 11.3 7.7
261-360 5.2 2.8

TOTAL AVERAGE 7.1 8.4

361-600 9.5 4.1

swer.) The results of these two tests appear in Table 10.

These last three tables present the results of 12 tests performed for 6 groups,

each test carried at the 1% size. Centering on the 5 groups in the range NZ =

60 − 360, in practically all cases the residual mean can be accepted as 0 and

stable. Likewise, the residuals can be assumed free of seasonality and of Trading

Day effects, and their signs can be assumed random. Further, the residuals can
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be accepted as uncorrelated: the percent of failures increases with NZ from 0.4%

to a maximum of 2.7%. The variance is reasonably stable: the percent of failures

is always ≤ 4%, except for the second group for which it is 5.7%.

The worst performing residual diagnostics is the kurtosis assumption. Al-

though the average percent of failures is < 6.6%, for series longer than 20 years

the deterioration is remarkable. The damage however is relatively limited as far

as point estimation is concerned; it mainly affects inference. More relevant is

skewness; its failures are relatively moderate (3.5%).

Both out-of-sample forecast tests behave reasonably well. On average, the

percent of failures of the F-test is 7%, while for the t-test it is 8%. The range of

failures for the tests in Table 10 is (3−11)%. For the group with more than 360

observations the percent of failures in the in-sample tests increases notably: for

variance stability it goes from around 4 to 12%; for autocorrelation, from around

1 to 14%; for skewness, from around 3 to 12%, and the increase is spectacular for

normality and kurtosis, for which the percent of failures jumps from 8 and 7%

to 50% in both cases. This deterioration of the in-sample diagnostics does not

affect out-of-sample forecasting. The relatively good forecasting performance is

partly due to the small effect non-normality is likely to have on point estimation

when the distribution is symmetric.

More detailed information on the performance of the tests is given in Ap-

pendix 1, where the histograms of the tests for the 6 group of series considered

are displayed and compared to the (asymptotic) distribution used in each test.

Concerning the in-sample residual tests, they broadly deteriorate as the series

length increases. For the zero-mean randomness in signs and mean-stability

tests, this deterioration is minor, and the same is true for the three residual

seasonality tests (seasonal autocorrelation, non-parametric, and F-tests). For

the overall residual autocorrelation and the skewness tests the deterioration is

minor when NZ ≤ 360; for normality, when NZ ≤ 260, and for kurtosis when

NZ ≤ 210. (Kurtosis is the worst behaved test.) As for the two out-of-sample

tests, for the one based on the 1-period-ahead error, the deterioration occurs as

one moves from the longer to the shorter series. Finally, the test based on the 1

to 18-periods-ahead errors shows no clear deterioration in either direction.

8. Idempotency

Given that no seasonality should be present in a SA series, an important

property of a seasonal adjustment method should be idempotency, which implies

that seasonal adjustment of the SA series leaves the series unchanged. While

fixed filters such as X11 cannot exhibit this property, it should characterize a

model-based approach, where the adjustment depends on the dynamic structure

of the series (see Gómez and Maravall (2001b), and Bell and Martin (2004)).
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Table 11. Idempotency( % of failures).

Group Seasonality in SA series Warning-free SA series

60-110 0.37 0.22
111-160 0.23 0.19
161-210 0.29 0.25
211-260 0.38 0.19
261-360 1.10 0.90

TOTAL 0.35 0.25

361-600 1.18 0.59

To check whether the default automatic procedure of TRAMO-SEATS satisfies

the idempotency property, the procedure was applied to the set of 15,624 series;

seasonal adjustment was performed for the 13,138 of them for which seasonality

had been detected. Then, the default automatic procedure was again applied

to the set of SA series. Table 11 displays the % of SA series for which there is

evidence of seasonality. Some evidence is found in about 1 out of 300 SA series;

this seasonality is ‘not questionable’ (warning-free in SEATS) in 1 out of 435 SA

series.

9. Conclusion: Validity of the Arima Model

When the number of observations is no more than 360, the results from the
default automatic run are good, excellent indeed as far as whitening of the series
and capture of seasonality are concerned. For longer series excess kurtosis is the
weak point. Of course, for groups of problematic series, non-default parameter
values can be entered in the automatic procedure. For example, if no outlier has
been detected and the series residuals are non-normal, lowering the critical value
in the outlier detection test may improve results. Alternatively, for very long
series, removing observations at the beginning of the series is likely to help.

The tests in Tables 8, 9, and 10 address the performance of the model identi-
fied by AMI by looking at 12 tests. Final assessment of the quality of the model
requires their combination. In TRAMO, the fit is ‘good’ when all tests are passed
at the 1% size and the proportion of outliers is below 5%; it is ‘acceptable’ if
it is not ‘good’, yet six of them (lack of autocorrelation, randomness in sign,
mean stability, skewness, lack of residual seasonality, and out-of-sample F-test)
are passed at the 1% level and all others at the 0.5% or 0.1% level; it is ‘mildly
poor’ if it is neither good nor acceptable, yet all tests are passed at the 0.1%
size. Otherwise the fit is judged ‘poor’. Table 12 shows the quality of the fit in
% of the series in the group. On average, when the sample size is no more than
360, more than 90% of the fits are good (77%) or acceptable (13.3%); when it
exceeds 360 observations the percent goes down to slightly less than 50%. This
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Table 12. Validity of ARIMA Model (in % of series in group).

Group GOOD ACCEPTABLE MILDLY POOR POOR G + A

60-110 84.2 9.1 5.2 1.5 93.3
111-160 79.5 10.9 6.4 3.2 90.4
161-210 77.7 14.1 5.0 3.2 91.8
211-260 65.6 20.1 5.6 8.7 85.7
261-360 59.3 23.3 9.7 7.7 82.7

TOTAL 77.0 13.3 5.9 3.8 90.3

361-600 20.2 28.5 6.7 44.6 48.7

result justifies the earlier statement that for series with more than 30 years of
monthly data, the performance of reg-ARIMA deteriorates significantly.

Appendix 1. Histograms of Tests and Asymptotic Distributions Used

Figure 1. Zero mean of residuals test.
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Figure 2. Residual autocorrelation test.

Figure 3. Normality of residuals test.
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Figure 4. Skewness of residuals test.

Figure 5. Kurtosis of residuals test.
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Figure 6. Mean stability test.

Figure 7. Variance stability test.
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Figure 8. Randomness in signs of residuals test.

Figure 9. Seasonality: autocorrelation test.
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Figure 10. Seasonality: non-parametric test.

Figure 11. Seasonality: dummy variables F-test.
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Figure 12. Out-of-sample forecast errors: 1 period-ahead test.

Figure 13. Out-of-sample forecast errors: 1 to 18 periods-ahead test.
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Table A.1. Effect of outlier and calendar adjustment: Percent of model-fit
tests failures.

Group No autocorrelation in residuals Normality of residuals
With outlier
and calendar
adjustment

No outlier
adjustment

No outlier,
no calendar
adjustment

With outlier
and calendar
adjustment

No outlier ad-
justment

No outlier,
no calendar
adjustment

60-110 0.4 0.8 0.7 3.5 18.2 18.1
111-160 1.5 2.0 4.1 6.2 36.3 35.0
161-210 1.3 2.3 10.1 8.0 42.0 39.2
211-260 2.0 4.8 8.3 15.2 63.4 63.4
261-360 2.7 5.8 11.3 17.2 68.4 66.1

TOTAL 1.3 2.4 5.5 7.9 38.7 37.5

361-600 14.1 20.4 26.6 49.3 70.8 70.1

Note: Percents of total number of series in group.

Appendix 2. The Need for Preadjustment: Outliers and Calendar

Effects

Although applied statisticians are generally aware of the need to deal with

outliers and calendar effects, these effects are seldom considered in econometric

applications. It is of interest to see what is their relevance in the set of series we

consider.

Table A.1 shows the effect on the Ljung-Box autocorrelation and Jarque-

Bera normality tests of not considering outliers, and of not considering outliers

nor calendar adjustment. The effect on the autocorrelation test is relatively

moderate, although ignoring outliers and calendar effects more than quadruples

the % of test failures.

The effect of outliers on normality is spectacular. The 8% of failures when

the two effects are considered increases to close to 40% when outliers are ig-

nored. Calendar effects, however, do not affect normality. The two effects seem

to complement each other: outliers are needed for residual normality; calendar

effects help to clean residual autocorrelation. While calendar adjustment may be

a convenience, outlier adjustment is a necessity.

Table A.2 presents the percent increase in the SE of the residuals when out-

liers and calendar effects are ignored, and both effects are seen to be significant.

The improvement due to outlier removal is greater than that due to calendar ad-

justment, although the latter is certainly not trivial. Both effects are particularly

important when the series is modelled in the levels.

The percentages in Table A.1 and A.2 have been computed for the full set of

series when, in fact, only 63% of the series in the set require outlier correction, and

only 50% require calendar adjustment. Thus the effect of the two corrections on a

series that requires them is, on average, about 60% (outliers) and 100% (calendar

effect) greater than the ones displayed in both tables. Altogether, considering
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Table A.2. Effect of ignoring outlier and calendar adjustment: Percent
increase in residual standard error.

Group Series in logs Series in levels
No outlier No outlier, No outlier No outlier,
adjustment no calendar adjustment no calendar

adjustment adjustment
60-110 12.9 17.9 11.7 14.7
111-160 10.5 21.8 32.6 40.4
161-210 9.2 18.3 30.4 35.4
211-260 14.8 17.1 17.6 19.0
261-360 12.3 16.1 17.6 20.7
TOTAL 11.6 19.0 23.4 28.1
361-600 19.0 21.0 34.5 35.6

Note: First two columns: Percents of the total number of series modeled
in logs in the group.

Last two columns: Id. of the series modeled in levels.

that the price paid for outlier correction is 1 outlier/100 observations, and the

price paid for Calendar adjustment for the vast majority of series is the addition of

1 - perhaps 2- parameters to the model, both corrections seem worth considering.
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