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Abstract: This article establishes a functional coefficient moving average model

(FMA) that allows the coefficient of the classical moving average model to adapt

with a covariate. The functional coefficient is identified as a ratio of two condi-

tional moments. A local linear estimation technique is used for estimation and

the asymptotic properties of the resulting estimator are investigated. Its conver-

gence rate depends on whether the underlying function reaches its boundary or not,

and the asymptotic distribution can be nonstandard. A model specification test

in the spirit of Härdle-Mammen (1993) is developed to check the stability of the

functional coefficient. Simulations have been conducted to study the finite sample

performance of our proposed estimator, and the size and the power of the test.

Application is made to CPI data from the China Mainland and to German egg

prices to show the efficacy of FMA.

Key words and phrases: Consumer price index, forecasting, functional coefficient

model, moving average model.

1. Introduction

Autoregressive Integrated Moving Average (ARIMA) models have been pop-

ular in time series analysis due to their simplicity and adaptability. An ARIMA

(p, d, q) model can be expressed as:

(1−B)d(1− ϕ1B − · · · − ϕpB
p)xt = µ+ (1 + θ1B + · · ·+ θqB

q)ϵt

where B is the lagged operator and {ϵt} is a white noise series with zero mean

and finite variance. This describes a special dependence structure of the data

that can be regarded as an approximation to all stationary process according

to the Wold Decomposition Theorem. In the past decades, numerous works in

statistics and econometrics have been devoted to studying and extending the

ARIMA model and its applications (for example, Box and Jenkins (1976); Box

and Tiao (1975); Dahlhaus (1989); Cleveland and Tiao (1976); Granger and

Joyeux (1980); Hannan and Deistler (1988)).

One important application of ARIMA model is to forecast the Consumer

Price Index (CPI). The growth rate of CPI can be regarded as a proxy for the
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Figure 1. Estimates of θ: (a) expanding window; (b) rolling window.

inflation rate, which is a chief target of macro-economic management by various

governments and is an important economic indicator for investors. One popular

model for the CPI is ARIMA(0,1,1) (Nelson and Schwert (1977); Schwert (1987);

Barsky (1987)):

(1−B)xt = µ+ (1− θB)ϵt,

where xt represents logarithm of CPI. Although the model is easy to implement,

it restricts the inflation dynamics to have an autocovariance that is constant over

time. Meanwhile, for the US data, the estimates of θ are not stable over time and

indeed are fairly volatile. Stock and Watson (2006) interpreted this instability

as the variation of variance, which changes inversely with the magnitude of MA

coefficient estimates. Parameter instability is also observed in our analysis when

analyzing monthly CPI data of the China Mainland from January 1990 to March

2014. We build an ARIMA(0,1,1) model on the year-on-year CPI monthly growth

data, and estimate the MA coefficient θ on an expanding window basis and a

rolling window basis with a 60-month window-width. These estimates are plotted

in Figure 1. It can be seen that the estimates of θ are quite variable.

Accordingly, we consider an extension of ARIMA(0,1,1) model in which the

MA coefficient is a smooth function of a state covariate zt such that

(1−B)xt = µ+ (1− θ(zt)B)ϵt. (1.1)

This is called the Functional Moving Average (FMA) model of order 1, or

FMA(1). The state variable zt contains information that affects the dynam-

ics of xt, and does not have to be exogeneous. The dynamics available to zt
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are very general, as indicated by the Assumptions (A3)−(A5) given in Section

2.2. The choice of zt can be made based on, for example, related economic the-

ory, or through a data driven procedure. We provide a testing procedure that

determines whether a given variable is qualified as a state variable that can be

used to improve the inference and prediction of xt, in Section 2.4. We focus on

inference on FMA(1); extension to higher order FMA will be discussed in the

conclusion. Our FMA model is related to the state-dependent models of Priest-

ley (1980) and to the autoregressive functional moving average (ARFMA) model

of Wang (2008), where the latter is a specific form of the former. However, the
ARFMA model has the functional coefficient of the MA parts being functions of

the lagged values of the variable xt itself, while ours need not. The two can be

united under a more general framework with multivariate state variables. In any

case, the asymptotic properties of the estimators for the state-dependent and the

ARFMA models are not known. Here we provide them for the FMA(1) model.

In econometrics and time series literatures (Hamilton (1994)), the MA coef-

ficients are often explained as the Impulse Response (IR). Thus, for any series xt
that can be written in the MA(∞) form

xt = µ+
∑
j≥0

θjϵt−j ,

the jth order IR is ∂xt/∂ϵt−j = θj for any j ≥ 0. This measures the effect of a

shock on the response after j periods. For the FMA(1) model, the 1-st order IR

is θ(zt), a function of the state variable rather than a constant as in the MA(1)

model. This flexibility brings closer linkage to realism, as the effect of a shock is

often affected by the state of the world.

Our work is closely related to a large body of literature on varying coefficient

models. They have been well developed in nonparametric statistics and time

series analysis, including ARCH/GARCH (Engle (1982); Bollerslev (1986)), TAR

(Tong (1983); Chan and Tong (1986); Tong (1990); Tiao and Tsay (1994); Caner

and Hansen (2001), EXPAR (Haggan and Ozaki (1981); Ozaki (1982)) and FAR

(Chen and Tsay (1993); Fan, Yao, and Cai (2003)). This literature focuses mainly

on extending the AR component of the ARIMA model, while the current work

aims to relax the flexibility of the MA component. See also Priestley (1980) and

Wang (2008).

The unique feature in the inference for the FMA(1) model is the estimation

technique. Unlike the FAR(1) model which has a regression form, local polyno-
mial regression cannot be directly applied to FMA (1). Nevertheless, we find that

the functional coefficient is identified via the conditional autocovariance function.

As a result, the functional coefficient can be consistently estimated by first esti-

mating the autocovariance function. To this end, local linear least square is used

to obtain estimates of conditional moments.
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This paper can be extended in several directions. An AR component can be

incorporated to allow for more general dependence structure, and the FMA(1)

model can be generalized to allow for multiple state variables Zt. To avoid the

curse of dimensionality, a single index structure for θ(·), such as θ(Z⊤
t γ), could be

imposed and the estimation procedure adapted from Ichimura (1993) used. The

resulting identification and estimation problem is more involved and deserves a

separate treatment. We leave these extensions for future research.

The rest of paper is structured as follows. The next section introduces the

details for identification and estimation of the FMA model. The asymptotic dis-

tribution of the proposed estimator is established, and a model specification test

is developed. Section 3 presents simulation results that evaluate the finite sample

performance of our estimator, and the size and power of the model specification

test. Section 4 shows the efficacy of FMA model by forecasting Chinese CPI

data and comparing this to MA(1) models. Section 5 concludes with remarks on

future work. Technical lemmas and all proofs are in the online supplementary

materials.

2. Theoretical Property

2.1. Identification and estimation

For the MA(1) model

xt = µ+ ϵt + θϵt−1,

where {ϵt} is a white noise process with variance σ2, the variance and the first

autocovariance of xt are

E((xt − µ)2) = (1 + θ2)σ2,

E((xt − µ)(xt−1 − µ)) = θσ2.

Higher order autocovariances are all 0’s. Then θ can be estimated via the ratio

of two moments after certain transformation.

Suppose xt follows an FMA model with the state variable zt,

xt = µ+ ϵt + θ(zt)ϵt−1,

where {ϵt} is a white noise with variance σ2, θ(zt) is a smooth function with

|θ(zt)| ≤ 1. Here,

E((xt−µ)2|zt = z) = E(ϵ2t |zt = z) + 2θ(z)E(ϵtϵt−1|zt = z) + θ2(z)E(ϵ2t−1|zt = z),

E((xt−µ)(xt−1−µ)|zt=z) = E(ϵtϵt−1|zt = z) + E(θ(zt−1)ϵtϵt−2|zt = z)

+θ(z){E(ϵ2t−1|zt = z) + E(θ(zt−1)ϵt−1ϵt−2|zt = z)}.
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If for j, k = 0, 1,

E(ϵt−kϵt−j |zt) = E(ϵt−kϵt−j) = σ2I(j = k) and (2.1)

E(ϵt−jϵt−2|zt, zt−1) = E(ϵt−jϵt−2) = 0, (2.2)

then
E((xt − µ)2|zt = z) = (1 + θ2(z))σ2 and (2.3)

E((xt − µ)(xt−1 − µ)|zt = z) = θ(z)σ2. (2.4)

The two conditional moments have the same form as those of the MA(1)
model. The condition (2.1) and (2.2) are satisfied if (zt, zt−1) is independent of
(ϵt, ϵt−1, ϵt−2) for all t. In practice, zt is often taken as lagged variables that
contain the state information, as in FAR (Cai, Fan, and Yao (2000)). This
requirement is not as stringent as it appears, since it is often reasonable to assume
the independence between the future innovations and the past observations. This
condition is precisely described in Assumption (A5) below.

Nonparametric method of moments can be used to estimate θ(z). To do so,
we need to estimate the conditional moments in (2.3) and (2.4). Nonparametric
estimators such as the Nadaraya-Watson estimator (Nadaraya (1964); Watson
(1964)) and the local polynomial estimator (Fan and Gijbels (1996)) could be
used. We prefer the local linear estimators due to such properties as minimax
efficiency, automatic boundary correction and a simpler form of the asymptotic
bias. Denote the local linear estimator of the variance and the autocovariance
by â0(z) and â1(z), and solve

(âj(z), b̂j(z)) = argmin
(a,b)

T∑
t=1

{(xt − x̄)(xt−j − x̄)− a− b(zt − z)}2K(
zt − z

h
),

for j = 0, 1, where x̄ = T−1
∑T

t=1 xt is a consistent estimator for µ, k(·) is a
kernel function, and h is the smoothing parameter.

Let g(w) = w/(1 + w2), monotone in w ∈ [−1, 1]. A natural estimator for
g{θ(z)} is

ĝ{θ(z)} =
â1(z)

â0(z)
. (2.5)

Here |g(w)| ≤ 1/2 for all w ∈ [−1, 1]. To incorporate this restriction, we
consider the constrained estimator

g̃{θ(z)} = ĝ{θ(z)}I(|ĝ{θ(z)}| ≤ 1
2) +

1
2I(ĝ{θ(z)} > 1

2)−
1
2I(ĝ{θ(z)} < −1

2).
(2.6)

Then, θ(z) can be estimated by θ̂(z) = h(g̃{θ(z)}), where h : [−1/2, 1/2] →
[−1, 1], and

h(x) = g−1(x) =

{
1−

√
1−4x2

2x ( if x ̸= 0);

0 ( if x = 0).
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2.2. Large sample theory

To ease the presentation, we only consider the case where zt is a scalar. The

extension to multi-dimensional state variables follows in a similar fashion. We

need some regularity conditions.

(A1) h = O(T ϵ0−1) as T → ∞ for some ϵ0 ∈ (0, 1).

(A2) The kernel function K(·) is symmetric, has support SK = [−1, 1], and there

exists a M > 0 such that |K(x)−K(y)| ≤ M |x− y| for all x, y ∈ SK .

(A3) (i) {ϵt} is a white noise sequence with Eϵ2t = σ2 < ∞, E|ϵt|2δ < ∞ for

some δ > 2; (ii) {ϵt, zt} is a strictly stationary α-mixing process with

the mixing coefficients satisfying the condition α(k) < ck−β for some β >

max{(2δ − 2)/(δ − 2), (2− ϵ0)/ϵ0} and constant c > 0.

(A4) (i) The density function p(z) of zt has a bounded second derivative; (ii) the

conditional density function of (z1, zm) given (x1, . . . , xm) is bounded by a

constant C0 uniformly with m ≥ 0; (iii) the conditional density of xt given

zt is continuous.

(A5) (i) For each t and j, k = 0, 1, E(ϵt−kϵt−j |zt) = σ2I(j = k) and E(ϵt−jϵt−2|
zt, zt−1) = 0; (ii) E(|ϵt−j |2δ|zt = z) ≤ M < ∞ for some M and j = 0, 1, 2,

with δ as in (A2).

(A6) The coefficient function θ(z) has a continuous second derivative and |θ(z)|
≤ 1 for any z ∈ R.

Conditions (A1) and (A2) are standard and we use the second-order Epanech-

nikov kernel throughout. Conditions (A3) and (A4) have been used by Masry

and Fan (1997) for α-mixing processes. The condition imposed on β in (A3) is a

technical requirement. If Eeλ|ϵt|
α
< ∞ for some λ, α > 0, then δ can be arbitrar-

ily large and hence (A3) can be reduced to β > 2 if ϵ0 > 2/3. Condition (A5.i)

is needed for identification of the model, and (A5.ii) is a technical condition in

order to apply the result of Masry and Fan (1997); it holds under (A3) if zt is in-

dependent of (ϵt, ϵt−1, ϵt−2). (A6) places smoothness condition on the functional

coefficient. In particular, zt does not have to be exogeneous. The dynamics avail-

able to zt are very general as indicated by (A3)−(A5), which are largely for the

mixing condition, the conditional moment conditions and conditions regarding

the conditional densities.

We begin with the asymptotic normality of ĝ{θ(z)}. Let

G(z) =
u(z)⊤Au′′(z)

2[1 + θ2(z)]2
σ2
K , ν(z) =

u(z)⊤Γ(z)u(z)

[1 + θ2(z)]4p(z)
R(K), A =

(
0 −1

1 0

)
, and
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Γ(z) =
Cov

[
(xt − µ)(xt−1 − µ), (xt − µ)2|zt = z

]
σ4

,

where σ2
K =

∫
u2K(u)du, R(K) =

∫
K2(u)du, u(z) = (1 + θ2(z),−θ(z))⊤, and

θ′(z) and θ′′(z) are the first and second derivatives of θ(z). Let S = {z|p(z) > 0}.

Theorem 1. Under (A1)∼(A6), for z ∈ S, as T → ∞,
√
Th(ĝ{θ(z)} − g{θ(z)} −G(z)h2)

d−→ N(0, ν(z)).

Remark 1. Let M = {z : θ(z) = ±1}. Since |θ(z)| ≤ 1 for all z ∈ R, the points

in M are local extrema of θ(z). Thus, θ′(z) = 0 for all z ∈ M. It is easily shown

that G(z) = 0, for z ∈ M.

Theorem 2. Under (A1)∼(A6), for z ∈ S,

(i) If |g{θ(z)}| < 1/2,
√
Th/ν(z)(g̃{θ(z)} − g{θ(z)} −G(z)h2)

d−→ Φ;

(ii) If g{θ(z)} = 1/2,
√
Th/ν(z)(g̃{θ(z)} − g{θ(z)}) d−→ Φ−;

(iii) If g{θ(z)} = −1/2,
√

Th/ν(z)(g̃{θ(z)} − g{θ(z)}) d−→ Φ+,

where Φ is the standard normal distribution function, and

Φ−(x) = Φ(x)I(x < 0) + I(x ≥ 0),Φ+(x) = Φ(x)I(x ≥ 0).

This result reveals the distribution discontinuity at the boundaries of g{θ(z)}.
Intuitively, when |g{θ(z)}| < 1/2, the unconstrained estimator ĝ{θ(z)} is the

same as g̃{θ(z)} for sample size large enough, hence asymptotically equivalent.

However, when |g{θ(z)}| = 1/2, ĝ{θ(z)} ̸= g̃{θ(z)}, with positive probability,

and the asymptotic distributions differ.

We are in a position to state the asymptotic property of θ̂(z) = h(g̃{θ(z)}),
noting that h(x) is differentiable when |x| < 1/2. The delta-method can be

applied to Theorem 2 to obtain the asymptotic distribution of θ̂(z). At |x| = 1/2,

the asymptotic distribution can be derived directly. See the appendix for details.

Theorem 3. Under (A1)∼(A6), for z ∈ S,

(i) If |θ(z)| < 1,
√

Th/ν(z)g′{θ(z)}(θ̂(z)− θ(z)− g′{θ(z)}−1G(z)h2)
d−→ Φ;

(ii) If θ(z) = 1, 4
√

Th/ν(z)(θ̂(z)− θ(z))
d−→ H−

Φ ;

(iii) If θ(z) = −1, 4
√

Th/ν(z)(θ̂(z)− θ(z))
d−→ H+

Φ ,

where H−
Φ (x) = Φ(−x2/4)I(x < 0) + I(x ≥ 0) and H+

Φ (x) = Φ(x2/4)I(x ≥ 0).

When θ(z) = ±1, convergence is at a slower rate and the asymptotic distri-

bution is nonstandard. The proposed ratio estimator of θ(·) function may not be

efficient; more efficient estimation is to investigated in a separate endeavour.
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The asymptotic variance of the estimators depend on the unknown param-

eter σ2. It can be consistently estimated by the sample average of the squared

innovation residuals ϵ̂2t , for t = 1, . . . , T under (A3), where the ϵ̂t can be obtained

in a similar iterative procedure as in moving average models, with θ̂ replaced by

the estimated function θ̂(zt).

2.3. Bandwidth selection

The theoretical optimal bandwidth for estimating θ(z) that minimizes the

asymptotic mean squared error of θ̂(z) can be written as

ĥopt = (
ν(z)g′(θ(z))2

4G(z)2T
)1/5 =

(
cK

u(z)⊤Γ(z)u(z)g′(θ(z))2

u(z)⊤Λ(z)u(z)p(z)

)1/5

T−1/5, (2.7)

where cK = R(K)/σ4
K and Λ(z) =

(
0 −1

1 0

)
u′′(z)u′′⊤(z)

(
0 −1

1 0

)
. This theo-

retically optimal bandwidth depends on the unknown elements θ(z), Γ(z), Λ(z),

and p(z). In practice, these terms can be consistently estimated with a prior

bandwidth.

A practical way to bandwidth selection adopts the Residual Squares Criterion

(RSC) proposed by Fan and Gijbels (1995), which avoids these complications.

Let

Γ̂(z, h) =
1

∆

T∑
t=2

(Yt − Ŷt)(Yt − Ŷt)
⊤K(

zt − z

h
)

where ∆ = tr(W − WZ(Z ′WZ)−1Z ′W ), Z = [(1, z2 − z)⊤, . . . , (1, zT − z)⊤]⊤,

W = diag{K((z2 − z)/h), . . . ,K((zT − z)/h)}, and Yt = ((xt−µ)2, (xt−µ)(xt−1−
µ))⊤; here Ŷt = (â∗0(zt), â

∗
1(zt))

⊤, where

(â∗j (z), b̂
∗
j (z)) = argmin

a,b

T∑
t=1

{(xt − µ)(xt−j − µ)− a− b(zt − z)}2K(
zt − z

h
).

With similar arguments as in Fan and Gijbels (1995), it can be shown that

E(Γ̂(z, h)|z2, . . . , zT ) = Γ(z) + dKΛ(z)h4 + op(h
4), (2.8)

where dK =
∫
u4K(u)du−σ4

K . As a result, our criterion for bandwidth choice is

R(z, h) = u(z)⊤Γ̂(z, h)u(z)(1 + g′(θ(z))2V ), (2.9)

where V is the first diagonal element of (Z ′WZ)−1(Z ′W 2Z)(Z ′WZ)−1, and

u(z) = (1 + θ2(z),−θ(z))⊤. Denote the minimizer of R(z, h) as h̄. Following
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Fan and Gijbels (1995), one can show that adjK h̄ offers a reasonable approxima-

tion for ĥopt in practice, where

adjK =

(
4cKdK
R(K)

)1/5

= 41/5

( ∫
u4K(u)du(∫
u2K(u)du

)2 − 1

)1/5

.

To see this, using Fan and Gijbels (1995), we have

V =
R(K)

Thp(z)
(1 + op(1)). (2.10)

It then follows from (2.9) and (2.10) that

E(R(z, h)|z2, . . . , zT ) = u(z)⊤Γ(z)u(z) + dKu(z)⊤Λ(z)u(z)h4

+R(K)
u(z)TΓ(z)u(z)g′(θ(z))2

Thp(z)
+ op(h

4 +
1

Th
).

It can be shown that the minimizer of the leading term of the above expression

is ĥo = ĥopt/adjK .

As R(z, h) depends on the unknown θ(z), one can use θ̂(z) with a prior

bandwidth h to replace θ(z). The constant adjK is determined by the chosen

kernel function, for example, adjK = (92/7)1/5 for the Epanechnikov kernel.

Our practical choice of bandwidth is then

h̃opt(z) = adjK × argminh∈HR̂(z, h)

= adjK × argminh∈Hû(z)
⊤Γ̂(z, h)û(z)(1 + g′(θ̂(z))2V ), (2.11)

where û(z) = (1 + θ̂2(z),−θ̂(z))⊤. To obtain a globally optimal bandwidth,

one can minimize IR(h) =
∫
R̂(z, h)dz and use adjK · argminhIR(h) as the

bandwidth. For implementation, the integral can be approximated by a discrete

summation over the observed data. Undersmoothing is often desired as one would

like to avoid biased estimation.

2.4. Model specification test

When the coefficient function θ(z) is a constant, using an FMA model can

result in a loss in estimation efficiency; when it is not, using a misspecified MA(1)

model can produce erroneous inference. A model specification test is needed to

check if the specification of the FMA model is adequate.

We adopt the L2 norm-based test for regression functions (degenerated to a

parameter in our case) proposed by Härdle and Mammen (1993) for testing the

constancy of θ(z), due to its simple implementation. Thus one test H0 against

H1, where

H0 : P (θ(z) ≡ θ for some θ ∈ R) = 1,
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H1 : P (θ(z) ≡ θ for some θ ∈ R) < 1.

Similar to Härdle and Mammen’s approach, we consider

DT = Th1/2
∫
R
(θ̂(z)− θ̂)2π(z)dz,

where θ̂ is either the maximum likelihood estimator (MLE) if we assume Gaussian

innovations, or the pseudo MLE if we do not assume Gaussian innovations, under

H0. Our test statistic does not have a smoothing operator on the parametric part,

as advocated in Härdle and Mammen’s (1993) test.

Let m0,0(z) = E{(xt − µ)4|zt = z), m1,0(z) = m0,1(z) = E{(xt − µ)3(xt−1 −
µ)}|zt = z) and m11(z) = E{(xt−µ)2(xt−1−µ)2}|zt = z). We need the following

assumption in additional to (A1)-(A6) for the specification test considered in this
section.

(A7) The conditional moment functions mi,j(z), for i, j = 0 and 1, have contin-

uous first derivatives at z for any z ∈ R.

Let â(z)=(â1(z), â0(z)), a(z)=(a1(z), a0(z)), and write θ̂(z)=h[g{â1(z)/â0(z)}]
=: q{â1(z), â0(z)}, and ∂q(z)/a⃗ = (∂q(z)/a1, ∂q(z)/a0)

T . Let

µT = h−1/2

∫
{g′{θ(z)}2ν(z)

]
π(z)dz,

σ2
T = 2K(4)(0)

∫
f−2(z)

[ 1∑
i,j=0

∂q(z)

∂ai

∂q(z)

∂aj
mi,j(z)

]2
π2(z)dz.

Theorem 4. Under (A1)∼(A7), then under H0

σ−1
T (DT − µT )

d→ N(0, 1);

under H1, DT
p→ ∞ at the rate of Th1/2.

Let µ̂T0 and σ̂T0 be consistent estimators of µT and σT under H0; these
can be obtained by substituting estimates for the unknown quantities. As we

advocate for a bootstrap implementation of the test, the detailed forms of µ̂T0

and σ̂T0 are not important.

A test with nominal α level of significance for H0 versus H1 rejects H0 if

DT ≥ µ̂T + σ̂T z1−α,

where z1−α is the 1− α quantile of N(0, 1). Theorem 4 shows that the test has

asymptotic size α, while power converges to 1 as T → ∞. Hence the test is

consistent.

To approximate the finite sample distribution of DT under H0, we use para-

metric bootstrap method in the spirit of Chen and Gao (2007):
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Step 1. Apply the MA(1) model to xt and obtain the estimator of the mean, µ̂,

the coefficient, θ̂ and the variance, σ̂2.

Step 2. Generate a bootstrap re-sample according to x∗t = µ̂ + ϵ∗t + θ̂ϵ∗t−1 for

t = 1, 2, . . . , T , where {ϵ∗t }1≤t≤T are independent N(0, σ̂2) variables and

obtain an estimate θ̂(z) based on the resample.

Step 3. Repeat Step 2 B times for a large integer B and obtain {θ̂(i)(z)}Bi=1.

Step 4. Calculate

D
(i)
T = Th1/2

∫
R
(θ̂(i)(z)− θ̂)2π(z)dz, i = 1, 2, . . . , B,

and take the (1 − α)th quantile of {D(i)
T }1≤i≤B as the critical value for

the test.

For simplicity, one can set π(z) = 1 and use the discrete sum to approximate

DT . In the next section, we use numerical simulations to study the size and the

power of the proposed test.

Although we have demonstrated the use of the Härdle-Mammen test formu-

lation, alternative test procedures may be considered; for instance the ones based

on Fan and Li (1996), or the empirical likelihood as advocated in Chen and Gao

(2007, 2011) and Chen and van Keilegom (2009).

3. Finite Sample Investigation

We generated the state variable zt from the ARIMA(1,0,1) process:

(1− 0.5B)zt = (1 + 0.5B)ut,

where {ut} is i.i.d. standard normal. The response xt was generated according

to

xt = ϵt + sθ(zt)ϵt−1

for some s ∈ [0, 1], with {ϵt} i.i.d. standard normal and independent of {ut}.
Three functions chosen for θ(·) were (1) θ1(z) = 2e−z2 − 1; (2) θ2(z) = sin(3z);

(3) θ3(z) = (e2z − 1)/(e2z + 1). These functions were selected to describe the

common features of humped, oscillating and monotone functional forms.

3.1. Performance of estimation

Our estimator has a slower convergence rate when θ(z) = ±1, so we only

consider the case θ(z) < 1 for the finite sample study. To do so, we shrank

the chosen functions by setting s = 0.8. For each choice of θ(z) and each T ∈
{100, 200}, we generated {xt, zt}Tt=1 for 500 samples and obtained estimates of

θ(z) for each generated sample, the mean value of which is plotted in solid line in
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Table 1. Average RMSE comparison.

FMA ARFMA
T = 100 T = 200 T = 100 T = 200

θ1(z) 0.22 0.12 0.37 0.15
θ2(z) 0.34 0.20 0.51 0.27
θ3(z) 0.31 0.12 0.36 0.16

Figures 2 to Figure 4, corresponding to θ1(z), θ2(z), and θ3(z), respectively. The

dashed line in each figure represents the true function 0.8 · θi(z)(i = 1, 2, 3) and

the dotted lines are the (point-wise) mean value plus and minus the standard

deviation. The top two figures plot our estimation results and the bottom two

figures plot those of Wang (2008). The bandwidth choice for Wang’s estimator

follows his GCV criterion. Both methods perform well in small samples. To

compare them quantitatively, we calculated the average root of mean square

error (RMSE), i.e.

ARMSE =
1

n

n∑
i=1

RMSE(θ̂(z(i))),

where z(1), . . . , z(n) is a pre-specified sequence equally spaced in [−2.5, 2.5] with

step size 0.25. It is seen from Table 1 that our estimator has lower ARMSE than

that of Wang (2008). We note, in addition, that Wang’s method is computational

demanding due to its iterative nature. To be precise, if we estimate θ(z) at n

points, z(1), . . . , z(n), and the sample size is T , then Wang’s method requires

O(mT + n) weighted regressions where m is the number of iteration steps (in

each step, it requires to re-estimation of θ(zt) for each t = 1, . . . , T , and, in the

last step, it requires estimation of θ(z(i)) for each i = 1, . . . , n), while our method

only requires O(n) weighted regressions.

3.2. Finite sample distribution

We approximated the distribution of θ̂(z) by simulations. Theorem 3 indi-

cates that the asymptotic distribution of θ̂(z) is determined by whether the true

value lies on the boundary or not. We treat these two cases separately. For each

T = 100, 200, we generated a sample {xt, zt}t≤T for 500 times, and obtained 500

estimates of θ(z), denoted by θ̂(1)(z), θ̂(2)(z), . . . , θ̂(500)(z). Their kernel density

was calculated and compared to the asymptotic distribution of θ̂(z).

When θ(z) = ±1, the asymptotic distribution function of θ̂(z) is discrete at

±1, with the size of the atom being 1/2 at the origin. Even if |θ(z)| < 1, there are

still some estimates concentrating on±1 when the sample size is not large enough.

Thus, if we use kernel density as the empirical density, there might be two peaks

at −1 and 1, which is not desirable for comparison. To circumvent this, we turned
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Figure 2. Plot of the true function 0.8 · θ1(z) (dashed lines), averaged es-
timates (solid lines) and the associated one standard deviation confidence
bands (dotted lines).

to the asymptotic conditional distribution of
√

Th/ν(z)(θ̂(z) − θ(z) − G(z)h2)

given |θ̂(z)| < 1. When |θ(z)| < 1, this distribution function is Φ(z) since

P (|θ̂(z)| < 1) → 1; when θ(z) = 1, the conditional distribution is 2Φ(−z2/4)

for z ∈ (−∞, 0); when θ(z) = −1, the conditional distribution is 2Φ(−z2/4)

for z ∈ (0,∞). We compared the kernel density of {θ̂(i)(z) : |θ̂(i)(z)| < 1}, to
the corresponding asymptotic distribution. In addition, we also computed the

fraction of times that |θ̂(i)(z)| = 1 , denoted by P (A). This should be close to 0

when |θ(z)| < 1 and 0.5 when θ(z) = ±1 for large enough T .

We set s = 1 and θ(z) = θ1(z) to illustrate the findings. First, consider

the estimation of θ(z) at z0 =
√
log 2. Here θ(z0) = 0 ∈ (−1, 1). The empirical

conditional densities of the standardized data are plotted in Figure 5 and the

probability P (A) is reported at the bottom of each subfigure. The bandwidth of

kernel density was selected by cross validation. The dashed line is the standard

normal density and the solid line is the kernel density. The lines are close to each

other even for moderate T and P (A) decreases to 0 as the sample size grows.

To study the boundary issue, we estimate θ(z) at z0 = 0 (θ(z0) = 1). The

conditional kernel densities of the standardized data are plotted in Figure 6. The
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Figure 3. Plot of the true function 0.8 · θ2(z) (dashed lines), averaged es-
timates (solid lines) and the associated one standard deviation confidence
bands (dotted lines).

Table 2. Bias and variance of θ̂(z) at z0: θ(z) = 2e−z2 − 1.

T 100 200 500 1,000

z0 =
√
log 2 Bias -0.29 -0.24 -0.18 -0.17

Var 0.30 0.25 0.21 0.19
z0 = 0 Bias 0.01 0.02 0.01 0.01

Var 0.35 0.23 0.15 0.10

lines are close to each other even for moderate T , and P (A) increases to 0.5 as

the sample size increases.

The bias and variance of the estimator θ̂(z), for z0 =
√
log 2 and z0 = 0, are

reported in Table 2. It can be seen that the variance decreases as the sample size

T increases. The bias is decreasing in the first case, while remaining close to 0 in

the second case. This is because that the asymptotic bias, G(z)h2, is diminishing

in the first case, while it is always 0 in the second case.

3.3. Size and power of the test

In this subsection, we consider the size and the power of the model specifi-
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Figure 4. Plot of the true function 0.8 · θ3(z) (dashed lines), averaged es-
timates (solid lines) and the associated one standard deviation confidence
bands (dotted lines).

Figure 5. The finite sample distribution of θ̂1(z) at z0 =
√
log 2 (solid lines)

and the theoretical asymptotic distribution (dashed lines) together with the

probability of A = {θ̂1(z0) = ±1}.

cation test via simulation. The size was estimated by the proportion of rejection

under the null hypothesis while the power was estimated by that under the al-

ternative. As for the size, we consider the DGP xt = ϵt + θϵt−1, where ϵt’s were
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Figure 6. The finite sample conditional distribution of θ̂1(z) at z0 = 0 given

|θ̂1(z0)| < 1 (solid lines) and the theoretical asymptotic distribution (dashed

lines) together with the probability of A = {θ̂1(z0) = ±1}.

Table 3. Rejection rate (%) Under H0 (α = 5%).

T θ = 0.2 0.4 0.6 0.8 1.0
100 3.0 4.4 3.4 4.2 5.0
200 5.0 4.2 4.2 5.0 4.6

i.i.d. standard normal, with θ set to be 0.2, 0.4, 0.6, 0.8, and 1.0, respectively.

For each θ and each sample size T ∈ {100, 200}, we generated 500 sets of data

and calculated the proportion of rejection when the significance level α is 5%,

with bootstrap resamples B = 100. The bandwidth was selected based on the

RSC criterion. The results are reported in Table 3. It can be seen that our test

has proper size.

As for the power, we considered the DGPs xt = ϵt + s · θj(zt)ϵt−1, where

ϵt’s were i.i.d. standard normal, j ∈ {1, 2, 3} and s ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. For

each design and sample size T ∈ {100, 200}, we generated 500 sets of data and

calculated the proportion of rejection when the significance level α is 5%, with

bootstrap resamples B = 100. The bandwidth was selected based on the RSC

criterion. The results are reported in Table 4 and it is seen that the rejection

rate gets larger as s increases. For moderate value of s, the power is decent.

4. Data Analysis

4.1. Application to the Chinese CPI

We applied an FMA model to Chinese CPI data and compared its forecast

performance to that of MA model. The year-on-year CPI monthly growth data

ranging from January 1990 to March 2014 was downloaded from Wind database

(www.wind.com.cn). The raw data is plotted in panel (a) of Figure 7. It is clear

www.wind.com.cn
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Table 4. Rejection rate (%) Under H1 (α = 5%).

θ(z) T s = 0.2 0.4 0.6 0.8 1.0
θ1(z) 100 6.0 20.0 36.2 54.2 68.0

200 13.4 56.2 85.4 96.0 97.6
θ2(z) 100 6.2 14.6 30.8 57.0 64.2

200 10.0 34.4 71.6 89.4 95.6
θ3(z) 100 11.2 38.4 70.8 79.0 91.2

200 27.4 75.6 97.8 100.0 100.0

(a) Year-on-Year CPI Monthly Growth Rate (Jan. 1990 ∼ Mar. 2014)

(b) First Difference of The Series

Figure 7. (a) The Chinese CPI monthly growth rate and (b) its first order
difference, Jan. 1990 to Mar. 2014.

that the data is nonstationary, as also supported by the ADF test. The first

order difference of the data is plotted Figure 7(b), which is found stationary.

Our target is to forecast the data ranging from January 2011 to March 2014.

When the MA(1) model was used for the first-order differenced log of CPI (or

equivalently, ARIMA(0,1,1) for logCPI), the root mean squared forecast error

(RMSE) was computed as 0.589.

For forecasts using FMA(1), the first set of state variables considered were

various measures of money supply, including M0, M1, and M2, as the neutrality

of money implies that an increase in money supply will eventually convert to

an increase in price level. Other economic variables that can affect the level of

price, including export (Ex), import (Im), retail sales (RS) and PPI were also

considered. Since PPI is often presumed to be the leading index of CPI, we also

considered 4 sub-categories of PPI: capital goods (ca), consumer goods (co), light

manufacturing (lm) and heavy manufacturing (hm). Year-on-year growth rate

data for these 11 state variables were obtained from Wind Database. Since all

variables are I(1), first-order differenced series were used.

First, we conducted the model specification test to detect the state variables

whose corresponding coefficient functions differ significantly from a constant.
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Table 5. Significant state variables.

zt−d d zt−d d
M0 12 PPI 4, 11
M1 9 ca 11
M2 8, 9 co 12
Ex 2, 11, 12 lm 7, 8, 9, 12
Im 2, 12 hm 11
RS 11, 12

Table 6. Forecasting RMSE of FMA(1) with various variables.

zt M0t−12 M1t−9 M2t−8 M2t−9

0.524 0.572 0.638 0.525
zt Ext−2 Ext−11 Ext−12 Imt−2

0.532 0.505 0.563 0.549
zt Imt−12 RSt−11 RSt−12 PPIt−4

0.463 0.521 0.575 0.607
zt PPIt−11 cat−11 cot−12 lmt−7

0.519 0.528 0.494 0.577
zt lmt−8 lmt−9 lmt−12 hmt−11

0.513 0.502 0.508 0.543

For each variable, we included lagged variables starting from the 2nd order to

the 12th order. The 1st order lagged variables were excluded for identification

requirements. Among all of 121 state variables (11 variables with 11 lags for

each), we found 20 of them significant at level α = 5%. These findings are

summarized in Table 5.

We plot the estimates of θ(·) for the choice of 6 significant variables, M0t−12,

M2t−8, Ext−11, Imt−12, cot−12, and lmt−12, as illustrated in Figure 8; they

display strong departure from constancy.

The forecast RMSEs using different state covariates are summarized in Table

6. Among these 20 state variables, over 85% of them outperformed the MA(1)

model in terms of the forecast RMSE. Specifically, we found that the 12th lag of

import led to the best forecasts. The forecast RMSE was 0.463, which is a 21.4%

improvement over that of the MA(1) model.

4.2. Application to german egg price

We also analyzed the German egg data (Finkenstadt (1995); Fan and Yao

(2003); Wang (2008)) using our FMA model. To compare it with the ARFMA

model of Wang (2008), we similarly fit the first 290 data points, leaving out the

next 10 points for assessing the prediction accuracy. Figure 9 displays the series

as well as its autocorrelation function (ACF) and partial autocorrelation function
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Figure 8. Estimates of θ(zt) where (a) zt=∆M0t−12; (b) zt=∆M2t−8; (c)
zt=Ext−11; (d) zt=Imt−12; (e) zt=cot−12; (f) zt=lmt−12.

(PACF). It can be observed that the ACF varies slowly while PACF decreases

quickly. After fitting an AR model to the first 290 data points, we found that

the original series is stationary but the AR(1) coefficient was 0.95. Thus, we

transformed the original series Pt by Xt = Pt − 0.95Pt−1 to eliminate the strong

dependency. Figure 10 displays the transformed series, its ACF and PACF. The
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Figure 9. Egg Price: Series (upper), ACF
(middle) and PACF (lower).

Figure 10. Transformed Egg Price: Se-
ries (upper), ACF (middle) and PACF

(lower).

ACF plot suggests that an FMA(7) may be used.
First, we fit an FMA(1) model on Xt with state covariate Xt−d,

Xt = ϵt + θ(Xt−d)ϵt−1.

Similar to Wang (2008), only 1 ≤ d ≤ 5 was considered. The bandwidth was
selected based on the procedure mentioned in Section 2.3. We found that d = 3
resulted in the best prediction performance as measured in average absolute
prediction error (AAPE), following Wang (2008). The AAPE for the FMA(1)
model with d = 3 was 0.477, 7.7% better than Wang’s (2008) best prediction.
The estimation of θ(Xt−3) is displayed in Figure 11, apparently non-constant.

We consider higher order FMA models as well. As with Wang (2008), we
considered the class of models

Xt = ϵt + θ1(Xt−d)ϵt−1 + θk(Xt−d)ϵt−k.

When k ≥ 3, the conditional autocorrelation can be written as

E(X2
t |Xt−d = z) = (1 + θ1(z)

2 + θk(z)
2)σ2;

E(XtXt−1|Xt−d = z) = θ1(z)σ
2;

E(XtXt−k|Xt−d = z) = θk(z)σ
2.

Therefore, one can use similar methods to estimate θ1(z) and θk(z) as in the
FMA(1) model. The bandwidth was also selected based on RSC criterion de-
scribed in Section 2.3. Among all models, we found that d = 4, k = 7 led to the
best prediction. The corresponding AAPE was computed as 0.439, which further
improves that of FMA(1) by 7.5%. The estimates of θ1(Xt−4) and θ7(Xt−4) are
plotted in Figure 12. We conclude that our proposed method does better than
that of Wang (2008).
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Figure 11. Estimates of θ1(z) in FMA(1). Figure 12. Estimates of θ1(z) (solid line)
and θ7(z) (dashed line) in FMA(7).

5. Conclusion

This paper extends moving averaging models by allowing the MA coefficients

to adapt with a covariate. Under parameter identification, we proposed to esti-

mate the functional coefficient by a ratio of two conditional moment estimators

derived from local linear least squares. The consistency and asymptotic distri-

bution of the proposed estimators are established. A Härdle and Mammen type

adequacy test of the constancy of the functional coefficient is also proposed. Both

simulation and empirical exercises show that our proposed method perform well

in finite samples.

The FMA(1) framework can be extended to the general ARFMA(p,q). We

outline how the extension can be made via the ARFMA(1,2)

xt − αxt−1 = ϵt + θ1(zt, zt−1)ϵt−1 + θ2(zt, zt−1)ϵt−2, (5.1)

where α is the AR coefficient, and θ1(·) and θ2(·) are two MA nonparametric

coefficient functions that depend on (zt, zt−1), as suggested by a referee. We

take the mean of xt to be zero in (5.1) to simplify the notation. After algebraic

manipulation, similar to those exhibated in (3)−(4), it can be shown that

V ar(xt|zt, zt−1)− 2αCov(xt, xt−1|zt, zt−1) + α2V ar(xt−1|zt, zt−1)

= σ2{1 + θ21(zt, zt−1) + θ22(zt, zt−1)}, (5.2)

Cov(xt, xt−1|zt, zt−1, zt−2)− αV ar(xt−1|zt, zt−1, zt−2)

= σ2{θ(1zt, zt−1) + θ1(zt−1, zt−2)θ2(zt, zt−1)}, (5.3)
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Cov(xt, xt−2|zt, zt−1)− αCov(xt−1, xt−2|zt, zt−1) = σ2θ2(zt, zt−1), (5.4)

Cov(xt, xt−3|zt, zt−1)− αCov(xt−1, xt−3|zt, zt−1) = 0. (5.5)

Let gj(z1, z2) = Cov(xt, xt−j |zt = z1, zt−1 = z2) for j = 0, 1, 2, 3, g3+j(z1, z2)

= Cov(xt−1, xt−j |zt = z1, zt−1 = z2) for j = 1, 2, 3, and g7+j(z1, z2, z3) =

Cov(xt−j , xt−1|zt = z1, zt−1 = z2, zt−2 = z3). Carry out the local linear estima-

tion for these functions, and denote the estimator as ĝk(z1, z2) for k = 0, 1, · · ·
and 8. Then, an estimator for α is

α̂ =
n−1

∑n
t=1 ĝ3(zt, zt−1)

ĝ6(zt, zt−1)
,

which should be more efficient than having the estimation based on a single or

a few (zt, zt−1). The estimators for θ1(z1, z2) and θ2(z1, z2) can be obtained by

solving the estimating equations based on (5.2) to (5.5). The conditions assumed

for FMA(1) given in Assumptions (A2)-(A5) in Section 2.2 need to be updated

by replacing zt by the pair (zt, zt−1, zt−2).

We can see that as the order of the ARFMA increases, the estimation pro-

cedure involves more functions. Hence, ARFMA(p, q) models with lower order

are more practically useful. Indeed, a criterion one should adopt in choosing the

state covariate zt is that it allows shorter orders in the ARFMA(p, q). Station-

arity conditions for ARFMA would follow as in the discussion of Wang (2008).

Alternatively, a semiparametric single index structure may be imposed for the

smooth coefficient function to allow for multiple state variables. There is more

to investigate on these topics.

Supplementary Materials

The online supplementary materials contain some useful lemmas and the

proofs of the main theorems.
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