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Abstract: The present paper investigates the distribution quantile for integrated

portfolio returns that follow a general class of multivariate stochastic volatility

model. We propose a non-parametric quantile estimate that incorporates the rate

with which the true quantile diverges as the integration horizon expands. The

asymptotic normality established for the estimate enables us to construct the con-

fidence interval for the true quantile. Monte Carlo experiments are conducted to

demonstrate both the consistency and the advantages of our approach. Results

on quantile estimates for the return distribution of the S&P 500 index are also

presented.
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1. Introduction

Representing the quantile of a portfolio’s return distribution, Value at Risk

(VaR) is a quantitative measure developed to deal with market risk that is, like

credit risk and liquidity risk, recognized as an important aspect of financial risk

(Jorion (2007)). Despite the criticism that VaR does not fall into the category of

coherent measures (Artzner et al. (1999)), VaR has been widely used by practi-

tioners in financial industries. This popularity is in part due to the fact that the

methodology for the computation and statistical analysis of VaR are well estab-

lished. In the abundant literature on VaR, a frequently used assumption is that

the return sequence has a stationary distribution. Very few works have looked

into the non-stationary case. Perhaps this is because finding the time-varying

quantile of a non-stationary distribution does not appear to be a well-posed

problem, at least from the estimation point of view, when the source of non-

stationarity is not deterministic. The purpose of this article is to evaluate VaR

under a typical circumstance of non-stationarity that the underlying distribution

is based on an integrated process with incremental returns belonging to a class

of non-linear models.

There are two concerns that motivate the present study. First, large institu-

tional investors such as insurance companies, pension funds, and sovereign funds
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usually set a very long investment horizon for their portfolios, which could last for

several years depending on the nature of the funds. In order to assess the market

risk to which the portfolio’s positions are exposed, VaR is one of the popular

measures that fund managers or financial advisors employ to quantify the risk.

Since the equity’s holding period is of long duration, it is appropriate to work

on the distribution derived from the portfolio’s integrated returns to evaluate

the VaR. Second, these long-term investors often need some financial vehicles to

hedge the risk incurred by the changes of currency rates or interest rates. The

instruments frequently used are either some OTC warrant-type contracts or pub-

licly traded equity options such as the LEAPS (Long-term Equity Anticipation

Securities) issued by CBOE (Chicago Board Options Exchange). The maturity of

the latter is from one to three years and that of the former could be even longer.

Furthermore, because of the increasing demand for longer-term hedging tools for

equities by institutional investors after the global financial crisis in 2008, CBOE

launched in March 2012 the Super LEAPS option (an European-style option on

S&P 500 index) with maturity of five years. For the seller of these contracts, one

of the major concerns is a large swing of the equity price away from the strike

price (or the spot price near at-the-money at the transaction time), which can

be quantitatively measured by the VaR of the equity’s integrated returns.

In view of the nonlinear nature of equity returns (Taylor (1986)), two popular

classes of stationary time series models have been proposed to describe the re-

turn dynamics: the ARCH (or GARCH) family (Engle (1982); Bollerslev (1986))

and the stochastic volatility (SV) model (Taylor (1986)). Both are able to cap-

ture some principal stylized facts exhibited by speculative equity returns such as

volatility clustering (Mandelbrot (1963)) and Taylor’s effect (Taylor (1986)). We

focus on the SV model to cover the popular regime-switching log-normal model

(Hamilton (1994); Hardy (2001); Hardy, Freeland, and Till (2006)).

To evaluate the quantiles of return distribution derived by using the whole

duration, the standard approach in the literature is to use the equity’s past

returns of some fixed frequency (daily or weekly for example) to identify the

parametric model, GARCH or SV, chosen in advance. Then use the model with

estimated parameters to simulate a large number of price paths with the given

duration. The collection of all the simulated prices in turn gives the empirical

distribution of the return and from which the quantile of interest is determined

(Hardy (2001); Hardy, Freeland, and Till (2006)). The main concern here is the

lack of analytical guidance to address the issue of inference.

To fill the gap, we employ a more direct approach that consists of two parts.

The first is to propose an estimate of the quantile for the underlying integrated

process. Second, we derive a closed-form formula for the quantile’s true value, and

show that the central limit theorem for the deviation between the estimate and
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the true value holds. Before we formally present the results, it would be helpful

to explain our method heuristically. To simplify the issue, let {yt = atut, t =

1, . . . , T} be an observed sequence of independent returns with volatility changing

over time, where each yt is normally distributed with mean zero and non-random

variance a2t > 0. Suppose σ2
T ≡ T−1

∑T
t=1 a

2
t converges to σ2

a > 0 as T tends

to infinity. We are concerned with the αth VaR qα of the integrated returns

YT =
∑T

t=1 yt with horizon T , finding qα which satisfies α = P (YT < qα) or,

equivalently,

α = P

(
N(0, 1) <

qα√
TσT

)
,

implying that

qα = Φ−1(α)
√
TσT ≈ Φ−1(α)

√
Tσa, (1.1)

where the approximation is justified by limT→∞ σ2
T = σ2

a. Because limT→∞ T−1∑T
t y2t = σ2

a with probability one, we can estimate qα by

q̂α = Φ−1(α)
√
T σ̂a (1.2)

with σ̂2
a =

∑T
t y2t /T . Assuming further that

σ2
T = σ2

a + o(T−1/2) as T → ∞, (1.3)

we have, by the Central Limit Theorem,

q̂α − qα = Φ−1(α)
√
T (σ̂a − σa)

d−→ N(0, c21), (1.4)

where c21 = {Φ−1(α)}2a∗/(2σ2
a) with a∗ = limT→∞ T−1

∑T
t=1 a

4
t . Thus, although

the distribution of YT is non-stationary, its αth quantile diverges with an explicit

rate that can be estimated. As a result, one can construct confidence intervals

by using (1.4) to infer the estimation error of (1.2).

Our technical task is then to extend the derivation of (1.1) and (1.4) to the

SV model where {at} is the exponential transformation of a stationary linear

process independent of {ut}. Results of the extension are stated in Theorems 1

and 2 of Section 2 where a multivariate version of the SV process is adopted to

allow modeling flexibility. In Section 3 we examine, through simulation, the finite

sample performance of the VaR estimate we propose, and demonstrate that our

approach is robust against non-normal {ut}, and is superior to the traditional

simulation-based method in terms of coverage ratios for confidence intervals.

Section 4 presents results on quantile estimates for the return distribution of

the S&P 500 index. Some concluding remarks are made in Section 5. Proofs of

theorems are in the online supplementary document.
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2. Multivariate Stochastic Volatility Model for Equity Portfolios

We are concerned with the Value-at-Risk (VaR) of the integrated returns of

a portfolio consisting of m weighted component assets. The return model for the

assets is as follows. Let rt = (r1,t, . . . , rm,t)
′ be the equity return vector at time

t. The multivariate SV (MSV) model is

rt = µ+ VtUt, (2.1)

where µ = (µ1, . . . , µm)′ is the mean of rt, Vt = diag(v1,t, . . . , vm,t), a diagonal

matrix, where vi,t = exp(Zi,t/2), i = 1, . . . ,m, Ut = (u1,t, . . . , um,t)
′ is a sequence

of shocks comprised of independent identically distributed (i.i.d.) random vectors

with mean 0 and a positive-definite covariance matrix ΣU = [σU,ij ], and Zt =

(Z1,t, . . . , Zm,t)
′ is an m-dimensional stationary short-memory process. Here,

{Zt} is an m-dimensional linear process

Zt = µz +

∞∑
s=0

Asηt−s, (2.2)

where µz = (µz,1, . . . , µz,m), As = [A
(s)
ij ], ηt = (η1,t, . . . , ηm,t)

′, {ηt} is a sequence

of i.i.d. random vectors with 0 mean, a positive-definite covariance matrix Ση =

[ση,ij ], and is independent of {Ut}. Short-memory of {Zt} requires
∞∑
s=0

∣∣∣A(s)
ij

∣∣∣ < ∞, for i = 1, . . . ,m, and j = 1, . . . ,m.

See Chapter 10 of Hamilton (1994) for further discussion. The MSV model

we adopt is similar to that of Harvey, Ruiz, and Shephard (1994) where {Zt}
is a vector autoregressive model of order 1 with a diagonal coefficient matrix,

while in our model, {Zt} is the more general linear process at (2.2). The model

of Harvey, Ruiz, and Shephard (1994) is the first MSV model proposed in the

literature. Since then, a wide range of MSV models has been developed. See, for

example, Asai, McAleer, and Yu (2006) and Yu and Meyer (2006), and references

therein.

For a given set of weights {wi : 1 ≤ i ≤ m} satisfying wi > 0 and
∑m

i=1wi =

1, let r̃t be the return of the weighted portfolio,

r̃t =

m∑
i=1

wiri,t = µ̃+

m∑
i=1

wivi,tui,t, (2.3)

with mean µ̃ =
∑m

i=1wiµi and variance σ2 = E(r̃t − µ̃)2. We first establish a

central limit theorem for µ̂T = T−1
∑T

t=1 r̃t and σ̂2
T = T−1

∑T
t=1(r̃t−µ̂T )

2 derived

from the return sequence {r̃t : t = 1, . . . , T} following the SV model defined in

(2.1), (2.2), and (2.3).
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Theorem 1. Assume that the portfolio returns {r̃t} follow the SV model specified

at (2.3) such that, for each i, Ev41,1 < ∞ and {ui,t} is a sequence of i.i.d. mean-

zero-unit-variance random variables independent of {Vt}. Then as T → ∞
√
T (µ̂T − µ̃)

d−→N(0, σ2), (2.4)
√
T
(
σ̂2
T − σ2

) d−→N
(
0, g2

)
. (2.5)

If {ηt} ∼ N(0,Ση), then

g2=

m∑
i,j,k,l=1

wiwjwkwl (σU,ikσU,jl + σU,ilσU,jk) e
J ′
4µz(i,j,k,l)+

1
2
J ′
4ΣZ(i,j,k,l)J4

+

m∑
i,j,k,l=1

wiwjwkwle
J ′
4µz(i,j,k,l)+

1
2
J ′
2{ΣZ(i,j)+ΣZ(k,l)}J2

×σU,ijσU,kl
(
eσZ,ik+σZ,il+σZ,jk+σZ,jl − 1

)
×

{
1+

2

eσZ,ik+σZ,il+σZ,jk+σZ,jl − 1

∞∑
u=1

(
eJ

′
2{ΣZ,{(i,j),(k,l)}(−u)}J2 − 1

)}
, (2.6)

where J2 = (1, 1)′, J4 = (1, 1, 1, 1)′, µz(i, j, k, l) = (µz,i, µz,j , µz,k, µz,l)
′,

ΣZ(i, j) =

(
σZ,ii σZ,ij
σZ,ji σZ,jj

)
,

ΣZ(i, j, k, l) =


σZ,ii σZ,ij σZ,ik σZ,il
σZ,ji σZ,jj σZ,jk σZ,jl
σZ,ki σZ,kj σZ,kk σZ,kl
σZ,li σZ,lj σZ,lk σZ,ll

 ,

ΣZ = [σZ,ij ] = E
[
(Zt − µz)(Zt − µz)

′] ,
ΣZ(r) = [σZ,ij(r)] = E

[
(Zt − µz)(Zt−r − µz)

′] ,
and

ΣZ,{(i,j),(k,l)}(−u) =

(
σZ,ik(−u) σZ,il(−u)

σZ,jk(−u) σZ,jl(−u)

)
.

Let {St, t = 0, 1, . . . , T} be the price process formed by the portfolio returns

{r̃t}, ln(ST /S0) =
∑T

t=1 r̃t. Denote by Qα(T ) the αth quantile of ST and set

AT = (ln(Qα(T )/S0)− T µ̃)/
√
T . Thus,

α = P

(∑T
t=1 r̃t − T µ̃√

Tσ
<

AT

σ

)
, (2.7)

with σ2 = E(r̃t − µ̃)2. For (2.7) to hold, one needs the distribution of r̃t to

be continuous. This follows from the normality assumtion of Ut imposed later



1636 HWAI-CHUNG HO, HUNG-YIN CHEN AND HENGHSIU TSAI

in Theorem 2. From the central limit theorem established in (2.4), we have

AT /σ ≈ Φ−1(α), which suggests an estimate for Qα(T ),

Q̂α(T ) = S0 exp
{
Φ−1(α)

√
T σ̂T + Tµ∗

}
, (2.8)

where σ̂T = (T−1
∑T

t=1(r̃t − µ∗)2)1/2 with µ∗ = µ̃ if µ̃ is known or µ∗ = µ̂T =

T−1
∑T

t=1 r̃t otherwise.

The next result gives the asymptotical normality of the sequence of estima-

tion errors ln(Q̂α(T )/Qα(T )).

Theorem 2. Under the assumptions of Theorem 1 and the normality of Ut, if

µ̃ is known,

ln

(
Q̂α(T )

Qα(T )

)
d−→ N

(
0,
(gΦ−1(α)

2σ

)2)
(2.9)

with same g2 in (2.6); if µ̃ is unknown,

T−1/2 ln

(
Q̂α(T )

Qα(T )

)
d−→ N(0, σ2). (2.10)

Theorems 1 and 2 still hold if the weights {ωi} are allowed to be negative,

mainly because the central limit theorem developed in Theorem 1 is not affected

by this. Theorem 2 has the implication that, although the quantile Qα(T ) di-

verges as T → ∞, one can still assess its asymptotical location by using the

confidence intervals derived from (2.9) or (2.10). In contrast to the usual cases,

the width of confidence interval formed by (2.9) or (2.10) does not shrink as

T → ∞. This is expected since the parameter (quantile or VaR) of interest be-

longs to the distribution of a sum of stationary variables instead of the common

distribution of the variables themselves.

3. Simulation Studies

3.1. Empirical coverage probabilities of the confidence intervals

From Section 2, for µ̃ known, the 100(1− β)% confidence interval for Qα(T )

or the 100α% quantile of ST is

Q̂α(T ) exp (−hU) ≤ Qα(T ) ≤ Q̂α(T ) exp (−hL) , (3.1)

where L and U are the 100 (β/2)% and the 100 (1− β/2)% standard normal

quantiles, respectively, and h =
{(

gΦ−1(α)/(2σ)
)2}1/2

, where g2 is at (2.6),

and Φ−1(·) is the inverse distribution function of the standard normal. For µ̃

unknown, the 100(1− β)% confidence interval for Qα(T ) is

Q̂α(T ) exp
(
−
√
T σ̂TU

)
≤ Qα(T ) ≤ Q̂α(T ) exp

(
−
√
T σ̂TL

)
. (3.2)
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Here (2.8), (3.1), and (3.2) give illustrations of how Theorems 1 and 2 are used to

obtain point and interval estimators for Qα(T ) when the objective function is a

monotone function of ST . The results are not applicable if the objective function

is not a monotone (or piecewise monotone) function of ST . For more general

payoff functions, it is a challenging problem if the function form is unknown. In

the context of regression estimation, Park and Phillips (1999, 2001) are among

the few works published on nonlinear transformations of integrated returns.

To form the confidence interval specified in (3.1), one needs a good estimate

for g2. Following (2.6) to directly estimate g2 may not be feasible, since the

autocorrelation functions of Vt and Ut, are difficult to separate in the multivariate

case. Instead, we employ a resampling scheme, the sampling window method,

that has been established for dependent data; see Politis, Romano, and Wolf

(1999) for a comprehensive survey on the topic and references therein. Because

g2 is the long-run variance of
√
T (σ̂2

T − σ2), it suffices to focus on the variance

derived from subsamples. Specifically, let Bi =
(
ri, . . . , ri+b−1

)
denote the ith

subsample of block size b, 1 ≤ i ≤ T − b + 1, and µ̂i = b−1
∑i+b−1

t=i rt. By using

the sample variance of Bi, σ̂
2
T,b,i =

∑i+b−1
t=i (rt − µ̂i)

2 /(b − 1), we consider as an

estimator for g2,

1

T − b+ 1

T−b+1∑
i=1

{√
b(σ̂2

T,b,i − σ̂2
T )
}2

, (3.3)

where b = c2T
1/3 for some c ≥ 1.

We conducted numerical studies to investigate the empirical coverage rates

of the confidence intervals (3.1) and (3.2). We considered m = 1, m = 2 and

m = 10. For m = 1, we simulated {rt = r1,t}t=1,...,T from

rt = µ+ VtUt, Vt = σ̄ exp(
Zt

2
), (3.4)

where {Zt = Z1,t} is the Gaussian AR(1) process determined by Zt = ϕZt−1+ ϵt,

and εt
i.i.d.∼ N

(
0, β̄2

(
1− ϕ2

))
. We took S0 = 1, µ = 0.0003, σ̄ = 0.0099, β̄ = 0.4,

α = 0.95 and 0.99, ϕ = 0.1, 0.3, 0.5, 0.7, and 0.9, and T = 2,500 and 5,000.

For {Ut = u1,t}, we took the distributions for Ut as standard normal; generalized

error distribution (GED) with mean=0, sd=1, ν = 1, 1.5, and 2 (for ν = 2, it

is just standard normal); skew-normal (SN) with (ξ, ω, α, τ) = (1.22, 1.58,−4, 0),

(0.68, 1.21,−1, 0), (0, 1, 0, 0), (−0.68, 1.21, 1, 0), and (−1.22, 1.58, 4, 0). (The val-

ues of ξ and ω ensure that the mean and variance of Ut are 0 and 1, respectively).

The purpose of considering non-normal distributions is to highlight the robust-

ness of our approach against departures from normality.

For m = 2 and m = 10, we considered rt = µ+ σ̄VtUt, Zt = ΦZt−1 + ϵt, and
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Ut

ϵt

)
i.i.d.∼ MVNm

((
0m
0m

)
,

(
ΣU 0m,m

0m,m Σϵ

))
,

where MVNm stands for m-dimensional multivariate normal, µ = (0.0003, . . .,

0.0003), Φ = ϕIm, Im is the m × m identity matrix, Vt = diag(v1,t, . . . , vm,t),

vi,t = exp(Zi,t/2), i = 1, . . . ,m, 0m is the m × 1 zero vector, and 0m,m is the

m×m zero matrix. We took wi = 1/m, for all i, and the values of σ̄, ϕ, α, and

T to be the same as those of the univariate case.

For m = 2,

ΣU =

[
1 ρu
ρu 1

]
, Σϵ = c̄

[
1 ρϵ
ρϵ 1

]
,

where c̄ = β̄2(1 − ϕ2), and again β̄ = 0.4. For (ρu, ρϵ), we considered (ρu, ρϵ) =

(0, 0), (ρu, ρϵ) = (−0.5, 0.5), (ρu, ρϵ) = (0.5, 0.5), and (ρu, ρϵ) = (−0.5,−0.5).

For m = 10, ΣU = [ΣU (i, j)], where

ΣU (i, j) =



1 if i = j,

ρU,1 if i ̸= j, i ∧ j = 1, (i− j) is odd,

ρU,2 if i ̸= j, i ∧ j = 1, (i− j) is even,

ρU,3 if i ̸= j, i ∧ j ≥ 2, (i− j) is odd,

ρU,4 if i ̸= j, i ∧ j ≥ 2, (i− j) is even,

i ∧ j = min(i, j), and Σϵ is defined similarly. For ρU = (ρU,1, . . . , ρU,4) and ρϵ =

(ρϵ,1, . . . , ρϵ,4), we considered (ρU , ρϵ) = (ã, ã), (ρU , ρϵ) = (b̃, b̃), (ρU , ρϵ) = (c̃, c̃),

(ρU , ρϵ) = (c̃, b̃), and (ρU , ρϵ) = (b̃, c̃), where ã = (0, . . . , 0), b̃ = (0.5, 0.5, 0.25,

0.25), and c̃ = (−0.5, 0.5,−0.25, 0.25).

The coverage probabilities of 95% confidence intervals for Qα(T ) based on

stochastic volatility sequences for (T, α) = (2,500, 0.95), (5,000, 0.95), (2,500, 0.99),

and (5,000, 0.99) are summarized in Tables 1, 2, 3, and 4, respectively. The true

Qα(T ) for each of the cases was computed based on 106 price paths with the

given (T, α), modeling distribution and parameters, 10,000 replicates were used

to calculate the probabilities. For the case of known mean, c was set to be 3

for the block size when the sampling window method was applied to estimate

g2. In Tables 1, 2, 3, and 4, the smallest and largest coverage probabilities are

0.9053, and 0.9587, respectively. The results in the tables show that the empiri-

cal coverage probabilities are all close to their nominal counterparts. In general,

the empirical coverage probabilities when µ unknown are closer to the nominal

counterparts than those when µ is known.
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,ã

);
(1
5
)
M
V
N

1
0
(b̃
,b̃
);

(1
6
)
M
V
N

1
0
(c̃
,c̃
);

(1
7
)
M
V
N

1
0
(c̃
,b̃
);

(1
8
)
M
V
N

1
0
(b̃
,c̃
),

w
h
er
e
ã
=

(0
,.
..
,0

),
b̃
=

(0
.5
,.
..
,0

.5
),

a
n
d

c̃
=

(−
0
.5
,0

.5
,−

0
.5
,0

.5
).



VALUE AT RISK FOR INTEGRATED RETURNS 1641
T
ab

le
3.

C
ov
er
ag

e
p
ro
b
ab

il
it
ie
s
of

95
%

co
n
fi
d
en

ce
in
te
rv
al

fo
r
Q

α
(T

)
b
as
ed

on
st
o
ch
as
ti
c
v
ol
at
il
it
y
se
q
u
en

ce
s.

T
h
e
re
su
lt
s
ar
e
b
as
ed

on
10

,0
00

re
p
li
ca
te
s,
an

d
th
e
tr
u
e
Q

α
(T

)
co
m
p
u
te
d
b
y
si
m
u
la
ti
n
g
10

6
p
ri
ce

p
at
h
s
fr
om

th
e

tr
u
e
m
o
d
el
,
T

=
2,
50
0,

an
d
α
=

0
.9
9.

µ
k
n
ow

n
u
n
k
n
ow

n

U
t
\
ϕ

0.
1

0.
3

0.
5

0.
7

0.
9

0.
1

0.
3

0.
5

0.
7

0.
9

(1
)

0.
9
42
8

0.
94

42
0.
94

50
0.
94

56
0.
92

28
0.
95

04
0.
94

79
0.
95

00
0.
94

95
0.
94

92

(2
)

0.
9
47
1

0.
94

46
0.
93

93
0.
94

11
0.
93

44
0.
94

70
0.
94

99
0.
95

08
0.
95

23
0.
94

89

(3
)

0.
9
51
2

0.
94

50
0.
94

04
0.
94

60
0.
92

97
0.
95

09
0.
95

19
0.
94

96
0.
94

63
0.
95

35

(4
)

0.
9
47
3

0.
94

83
0.
94

81
0.
94

15
0.
92

01
0.
94

92
0.
95

49
0.
94

44
0.
94

70
0.
94

80

(5
)

0.
9
43
3

0.
94

43
0.
94

35
0.
94

14
0.
92

73
0.
94

72
0.
94

85
0.
95

04
0.
94

83
0.
94

65

(6
)

0.
9
19
1

0.
92

07
0.
93

61
0.
92

18
0.
90

53
0.
94

71
0.
94

34
0.
94

43
0.
94

60
0.
94

49

(7
)

0.
9
44
8

0.
94

09
0.
93

81
0.
94

59
0.
92

94
0.
95

54
0.
95

33
0.
95

87
0.
95

73
0.
95

52

(8
)

0.
9
44
9

0.
94

47
0.
94

49
0.
93

91
0.
92

68
0.
94

96
0.
94

87
0.
94

81
0.
95

05
0.
94

70

(9
)

0.
9
41
4

0.
94

49
0.
94

75
0.
94

24
0.
92

48
0.
95

25
0.
94

97
0.
95

19
0.
95

02
0.
94

67

(1
0)

0.
94

78
0.
94

05
0.
94

73
0.
94

22
0.
93

64
0.
94

91
0.
95

03
0.
94

77
0.
95

02
0.
94

82

(1
1)

0.
94

67
0.
94

48
0.
94

43
0.
94

12
0.
92

47
0.
94

57
0.
94

77
0.
95

34
0.
94

91
0.
94

98

(1
2)

0.
94

53
0.
94

61
0.
93

50
0.
93

92
0.
92

66
0.
95

16
0.
95

05
0.
94

90
0.
95

15
0.
94

81

(1
3)

0.
94

94
0.
94

65
0.
94

68
0.
94

25
0.
93

66
0.
95

09
0.
95

01
0.
94

64
0.
94

96
0.
95

17

(1
4)

0.
94

87
0.
94

72
0.
94

82
0.
94

69
0.
94

36
0.
95

12
0.
95

14
0.
95

16
0.
95

11
0.
94

90

(1
5)

0.
94

68
0.
94

68
0.
94

62
0.
94

43
0.
93

83
0.
95

08
0.
95

23
0.
95

11
0.
95

31
0.
95

16

(1
6)

0.
95

02
0.
95

20
0.
95

01
0.
95

05
0.
93

82
0.
94

75
0.
94

98
0.
94

90
0.
95

03
0.
95

05

(1
7)

0.
94

54
0.
94

49
0.
94

68
0.
94

94
0.
94

43
0.
95

34
0.
95

32
0.
95

24
0.
95

29
0.
95

22

(1
8)

0.
94

82
0.
94

66
0.
95

02
0.
94

81
0.
93

38
0.
95

20
0.
95

24
0.
95

21
0.
95

13
0.
94

93

(1
)
st
a
n
d
a
rd

n
o
rm

a
l;
(2
)
G
E
D
(0
,1
,1
);

(3
)
G
E
D
(0
,1
,1
.5
);

(4
)
G
E
D
(0
,1
,2
);

(5
)
S
N
(-
0
.6
8
,1
.2
1
,1
);

(6
)
S
N
(-
1
.2
2
,1
.5
8
,4
);

(7
)
S
N
(1
.2
2
,1
.5
8
,-

4
);

(8
)
S
N
(0
.6
8
,1
.2
1
,-
1
);

(9
)
S
N
(0
,1
,0
,0
);

(1
0
)
M
V
N

2
(0
,0
);

(1
1
)
M
V
N

2
(-
0
.5
,0
.5
);

(1
2
)
M
V
N

2
(0
.5
,0
.5
);

(1
3
)
M
V
N

2
(-
0
.5
,-
0
.5
);

(1
4
)

M
V
N

1
0
(ã
,ã
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,ã

);
(1
5
)
M
V
N

1
0
(b̃
,b̃
);

(1
6
)
M
V
N

1
0
(c̃
,c̃
);

(1
7
)
M
V
N

1
0
(c̃
,b̃
);

(1
8
)
M
V
N

1
0
(b̃
,c̃
),

w
h
er
e
ã
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3.2. Comparison with the simulation-based method

We conducted numerical experiments to compare the empirical coverage

probabilities of our non-parametric method with the traditional simulation-based

method. For the ease of simulation, we focused on the univariate case. For the

traditional simulation-based method, we used the following steps to get the cov-

erage probabilities of 95% confidence intervals for Qα(T ).

Step 1. Simulate {rt = r1,t}t=1,...,T from the true data generating process.

Step 2. Estimate the parameters. In estimating the SV models, three meth-

ods are available: the method of moment, the quasi-maximum likeli-

hood (QML) approach of Harvey, Ruiz, and Shephard (1994) and the

Bayesian approach of Jacquier, Polson, and Rossi (1994). As docu-

mented in Table 4 of Jacquier, Polson, and Rossi (1994), the Bayesian

approach is superior to the other two methods in terms of bias and

standard error. For the computations in this paper, we use the refined

Bayesian MCMC sampler from Kastner and Frühwirth-Schnatter (2014)

which is implemented in the R package ‘stochvol’ (Kastner (forthcom-

ing)) and available at http://cran.r-project.org/web/packages/

stochvol.

Step 3. Simulate {rt} from the data generating process with the parameter

values estimated from Step 2.

Step 4. Compute H = S0 exp(
∑T

t=1 rt) based on the {rt} generated from Step

3.

Step 5. Repeate Steps 3 - 4 1,000 times to get H1, ..., H1,000.

Step 6. Compute Q̂α(T ) based on H1, ..., H1,000 from Step 5.

Step 7. Repeat Steps 3 - 6 500 times to get Q̂α(T )
1, ..., Q̂α(T )

500.

Step 8. We compute the 95% confidence interval of Qα(T ) based on Q̂α(T )
1,

..., Q̂α(T )
500 from Step 7.

Step 9. Check if the confidence interval computed from Step 8 covers the true

Qα(T ).

Step 10. Repeat Steps 1 - 9 500 times to get 500 confidence intervals, and see

how many confidence intervals cover the true Qα(T ).

For the true data generating processes, we considered the univariate case with Ut

being standard normal, GED(0,1,1), and SN(-0.68,1.21,1,0), T = 500, 1,000, 1,500,

2,000, 2,500, and 5,000, µ is known and µ is unknown, ϕ = 0.5 and 0.9. Again,

http://cran.r-project.org/web/packages/stochvol
http://cran.r-project.org/web/packages/stochvol
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α = 0.95 and 0.99. The other settings are those of Subsection 3.1. The re-

sults are summarized in Table 5. In general, the empirical coverage proba-

bilities using (3.1) and (3.2) are closer to the nominal coverage probabilities

than their simulation-based counterparts. The superiority of using (3.1) and

(3.2) is pronounced when µ is unknown. Indeed, for the case that µ is un-

known, all the empirical coverage probabilities of the simulation-based method

are lower than 25%. For the case of unknown mean, we attribute the poor per-

formance of the simulation-based method as follows. A close look at the proof

of Theorem 2 reveals that the estimation error of µ̂T − µ̃ dominates the limit

of T−1/2 ln(Q̂α(T )/Qα(T )). This error was accumulated to exp{T (µ̂T − µ̃)} in

simulating the integrated returns H = S0 exp{T (µ̂T − µ̃)} exp{
∑T

t=1(r
′
t + µ)}

performed in Step 4, where the r′t are generated by the zero-mean SV model

with parameters obtained in Step 2. According to the law of the iterated loga-

rithm, the term exp{T (µ̂T − µ̃)} = exp{
∑T

t=1 vtut} fluctuates with probability

one between (log T )−c3
√
T and (log T )c3

√
T for some positive c3. Large biases are

therefore created in Step 8 by the multiplicative factor exp{T (µ̂T−µ̃)} when com-

puting the lower and upper limits of the confidence interval, and consequently

result in low coverage rates of the true quantile.

4. Application

We applied our proposed method to estimate the integrated return of S&P

500 index and S&P 500 portfolio from CRSP(Center for Research in Security

Prices) (available at http://wrds-web.wharton.upenn.edu/wrds/). The data

period is from the year of 1963 to the year of 2013, so that we have 12,838 daily

data. With the returns {rt}t=1,...,12,838, we used the following steps to get the

coverage probabilities of 95% confidence intervals for Qα(T ).

Step 1. From r1, r2, . . . , r1,260, we get the first ST .

Step 2. From r21, r22, . . . , r1,280, we get the second ST .

Step 3. And so on ...

Step 4. Finally, from r11,561, r11,562, . . . , r12,820, we get the final ST .

Step 5. From Steps 1 to 4, there are 579 ST ’s in total.

Step 6. We rank 579 ST ’s to get the αth quantile, and treat this quantile com-

puted as the true Qα(T ).

We thus divided the sample into 579 overlapping subsamples with each sub-

sample consisting of 1,260 observations, and every two consecutive subsamples

being 20 trading days apart. The 1,260 returns for each subsample is chosen to

match the 5-year maturity of the Super LEAPS S&P 500 index option contract

http://wrds-web.wharton.upenn.edu/wrds/
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Table 5. Comparison of the coverage probabilities of 95% confidence in-

tervals for Qα(T ) based on equations (3.1) and (3.2) and the traditional

sampling-based method, with the parameters estimated by the Bayesian ap-

praoch of Jacquier, Polson, and Rossi (1994). The results are based on 500

replicates, and the true Qα(T ) computed by simulating 106 price paths from

the true model, T = 500, 1,000, 1,500, 2,000, 2,500, and 5,000, and α = 0.95

and 0.99.

µ known unknown

α 0.95 0.99 0.95 0.99

T ϕ Ut Eqn. (3.1) MCMC Eqn. (3.1) MCMC Eqn. (3.2) MCMC Eqn. (3.2) MCMC

500 0.5 (1) 0.935 0.940 0.935 0.988 0.946 0.094 0.946 0.180

(2) 0.916 0.842 0.916 0.902 0.946 0.098 0.944 0.174

(3) 0.935 0.958 0.933 0.974 0.945 0.116 0.944 0.172

0.9 (1) 0.891 0.880 0.889 0.940 0.946 0.108 0.945 0.190

(2) 0.901 0.734 0.896 0.838 0.949 0.092 0.949 0.170

(3) 0.896 0.858 0.892 0.924 0.949 0.110 0.947 0.186

1000 0.5 (1) 0.939 0.996 0.939 0.998 0.950 0.110 0.950 0.198

(2) 0.936 0.952 0.937 0.980 0.949 0.086 0.949 0.164

(3) 0.940 0.992 0.940 0.996 0.948 0.102 0.947 0.154

0.9 (1) 0.908 0.960 0.907 0.986 0.949 0.116 0.948 0.200

(2) 0.912 0.898 0.905 0.942 0.947 0.108 0.947 0.192

(3) 0.913 0.962 0.912 0.994 0.948 0.094 0.948 0.182

1500 0.5 (1) 0.942 0.998 0.941 1.000 0.952 0.094 0.951 0.190

(2) 0.937 0.962 0.937 0.994 0.949 0.106 0.950 0.152

(3) 0.945 1.000 0.943 1.000 0.950 0.092 0.950 0.158

0.9 (1) 0.913 0.990 0.912 0.998 0.951 0.098 0.950 0.170

(2) 0.917 0.942 0.918 0.984 0.951 0.112 0.950 0.182

(3) 0.917 0.992 0.916 0.998 0.946 0.128 0.946 0.198

2000 0.5 (1) 0.946 1.000 0.946 1.000 0.948 0.100 0.948 0.186

(2) 0.939 0.976 0.935 0.996 0.950 0.134 0.950 0.212

(3) 0.943 1.000 0.942 1.000 0.948 0.100 0.948 0.162

0.9 (1) 0.927 0.994 0.926 1.000 0.949 0.122 0.948 0.202

(2) 0.921 0.960 0.921 0.986 0.952 0.102 0.953 0.178

(3) 0.921 0.998 0.919 1.000 0.948 0.126 0.948 0.176

2500 0.5 (1) 0.945 1.000 0.945 1.000 0.950 0.094 0.950 0.168

(2) 0.939 0.988 0.939 0.998 0.951 0.118 0.951 0.192

(3) 0.948 1.000 0.944 1.000 0.951 0.098 0.950 0.174

0.9 (1) 0.925 1.000 0.923 1.000 0.949 0.104 0.949 0.168

(2) 0.934 0.966 0.934 0.992 0.949 0.088 0.949 0.134

(3) 0.926 1.000 0.927 1.000 0.947 0.122 0.947 0.194

5000 0.5 (1) 0.951 1.000 0.950 1.000 0.948 0.082 0.948 0.146

(2) 0.946 0.998 0.946 1.000 0.950 0.078 0.950 0.162

(3) 0.944 1.000 0.946 1.000 0.950 0.096 0.950 0.186

0.9 (1) 0.932 1.000 0.929 1.000 0.950 0.086 0.950 0.176

(2) 0.938 1.000 0.932 1.000 0.952 0.106 0.952 0.178

(3) 0.933 1.000 0.933 1.000 0.948 0.098 0.948 0.168
(1) standard normal; (2) GED(0,1,1); (3) SN(-0.68,1.2,1,0).
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Table 6. The true values of Qα(T ) and the empirical coverage rates of the
95% confidence intervals of Qα(T ) for the equal-weighted returns (excluding
dividends) and the value-weighted returns (excluding dividends) of the S&P
500 index.

EWR VWR
α 0.95 0.99 0.95 0.99

true values of Qα(T ) 2.5036 3.1579 2.6936 3.1828
empirical coverage rates 0.9551 0.9413 0.9119 0.9033

EWR (equal-weighted returns); VWR (value-weighted returns).

mentioned in Section 1. The distance of 20 trading days, about one trading

month, that separates neighboring subsamples is only a rough choice intended

to strike a balance between generating sufficiently many subsamples and keeping

them from too hevily overlapping with each other.

We also used these data to compute the confidence intervals by (3.2) to see

if the confidence intervals cover the true value obtained in Step 6. Finally, we

computed the empirical coverage rates. The results are summarized in Table 6.

From the table, the empirical coverage rates of the 95% confidence intervals of

Qα(T ) are close to the nominal rates. Those for the equal-weighted returns are

closer to the nominal rates than those for the value-weighted returns.

5. Discussion

Two issues are worthy of further investigation. First, since VaR is not co-

herent, it would be interesting from both the theoretical and practical view

points to see whether asymptotic properties similar to Theorem 2 can be es-

tablished for a coherent risk measure such as the conditional tail expectation

E (ST | ST > Qα(T )). Second, it is a challenging problem to extend the duration

time T from deterministic to random. The extension is motivated by the prac-

tice in fund management where fund managers are forced to close parts or all

of a fund’s positions due to a massive redemption by clients. Since the time at

which the redemption occurs is random, the quantile that needs to be evaluated

is based on the price process indexed by a random time. The methods developed

here may form a good basis to further address the two issues.

Supplementary

The online Supplement file contains the proofs of Theorem 1 and Theorem 2.
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