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Abstract: In the analysis of surface meteorological data, observations are usually

recorded regularly and frequently in time at multiple but fixed locations in space.

The data can thus be viewed as multivariate time series in which a small number

of lengthy time series is observed. Motivated by a temperature data, the current

paper considers the problem of testing the additive assumption of location and time

effects via a multivariate time series approach. Test statistics based on both maxi-

mum absolute and integrated squared deviations are proposed and their asymptotic

properties are studied for a general class of multivariate nonstationary processes.

The results are illustrated in a simulation study and applied to temperature data.
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1. Introduction

For meteorological and environmental data, it is common that observations

are recorded at regular and frequent intervals in time on a fixed monitoring

network in space; see for example the daily Irish wind data that is collected at

12 locations, considered by Haslett and Raftery (1989) and Stein (2005), and the

minute-by-minute atmospheric pressure data that is collected at 13 monitoring

sites in north-central Oklahoma, studied by Stein (2009). Let X(u, t) denote the

underlying spatial-temporal process which is observed at (ui, tj) for locations

u1, . . . ,up and times t1, . . . , tn. Based on the available data points, an important

task is to provide predictions of the underlying process at locations and times

for which no observations are available, and to generate meteorological maps at

a broad range of spatial and temporal scales. In general, this goal is achieved by

modeling the underlying data generating mechanism by statistical models that

impose certain structural assumptions on the underlying process. The current

paper aims to provide rigorous statistical tests for an additive assumption that

has been employed in the literature.

http://dx.doi.org/10.5705/ss.2014.175t
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The problem is motivated by temperature data provided by the Atmospheric

Radiation Measurement (ARM) Program established by the U.S. Department of

Energy. It contains minute-by-minute surface measurements of air temperature

at 15 monitoring sites in the Southern Great Plains region of the United States;

see Guinness and Stein (2013) for more details. They analyzed the data from the

first 30 days of October, 2005, and developed methods for interpolating available

data to locations and times for which no observations were available. Despite

the slow-moving cold front on day 5, they proposed to model the underlying

spatial-temporal process as

X(u, t) = s(u) +m(t) + Y (u, t), (1.1)

where s(·) andm(·) are the spatial and temporal mean functions respectively, and

Y (u, t) is the residual term. Model (1.1) assumes that the spatial and temporal

effects are additive, and was used by Guinness and Stein (2013) to model the

temperature data during the period from 10/06/2005 to 10/30/2005. Hence, for

the i-th monitoring site, by (1.1), the mean function is parallel to m(t) with a

constant shift s(ui) caused by the site effect. As commented by Stein (2005)

and Guinness and Stein (2013), regular monitoring data on a fixed monitoring

network can be viewed as multivariate time series, in which a small number of

lengthy time series is observed. This motivates us to consider the problem of

testing for parallelism among mean trends in multiple time series.

There is a huge literature on comparing mean functions in the regression

setting. Härdle and Marron (1990) compared two regression curves by testing

whether they are equal up to a parametric transformation of the axes. Hall

and Hart (1990) proposed a bootstrap method for testing the equality of two or

several mean functions in the nonparametric regression setting. The latter prob-

lem has also been studied by King, Hart, and Wehrly (1991), Delgado (1993),

Kulasekera (1995), Young and Bowman (1995), Munk and Dette (1998), Dette

and Neumeyer (2001), Neumeyer and Dette (2003) and Park and Kang (2008),

among others. Much of this work considers models with independent errors, and

thus is not suitable for analyzing time series data where dependence is the rule

rather than the exception. Fan and Lin (1998) considered the problem of test-

ing the equality of mean functions for stationary linear error processes; see also

Li (2006). However, the assumption of stationarity can also be quite strong in

practice and, as argued by Guinness and Stein (2013), a flexible nonstationary

time series model is needed for the aforementioned temperature data to accu-

rately capture its statistical properties. Zhou and Wu (2010) demonstrated that

the existence of nonstationarity can have a large effect on the distribution of the

test statistic, and should be taken into account to avoid erroneous conclusions.

They considered the problem of constructing simultaneous confidence tubes for
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coefficient function estimators of linear models. We focus here on the problem of

testing for mean trend parallelism among multiple nonstationary time series.

Recently, Degras et al. (2012) considered phone download data and pro-

posed a test for determining whether the mean download trends after a logarith-

mic transformation in different area codes are identical up to vertical shifts. A

crucial assumption underlying their test is that the error processes for different

area codes are independent and identically distributed (i.i.d.): the time series

{X(u1, t)}t and {X(u2, t)}t observed at different locations u1 ̸= u2 are com-

pletely independent and have the same joint distribution. Hence, their method

is not able to capture the spatial dependence of the observed data that is a key

feature of the aforementioned temperature data; see for example Guinness and

Stein (2013). As seen in the simulation results of Section 4.1, ignoring the spa-

tial dependence among observations collected at different monitoring sites and

applying the test of Degras et al. (2012) can yield misleading p-values leading

to erroneous conclusions. This motivates us to consider statistically valid tests

that can survive under the temporal and spatial dependence contemplated here.

Another limitation caused by the i.i.d. assumption of Degras et al. (2012) is that

their error processes are spatially homogeneous: [X(u1, t) − E{X(u1, t)}]t and
[X(u2, t)−E{X(u2, t)}]t have the same (joint) distribution for any u1 ̸= u2. This

can also limit the applicability of their test, as different measurement devices can

be used at different monitoring sites leading to different types of measurement

errors. We seek statistically valid tests that allow inhomogeneous error processes

across different monitoring sites with an unknown and possibly time-varying spa-

tial dependence structure, so that our results can be widely applicable.

The rest of the paper is organized as follows. Section 2 introduces the frame-

work and basic assumptions. Section 3 contains our proposed test statistics and

their asymptotic properties. Section 4 provides applications of the proposed

methods to simulated and data examples. Proofs are deferred to the Supplemen-

tary Material.

2. Multivariate Nonstationary Processes

Given observations

Xi,j = X(ui, tj), i = 1, . . . , p, j = 1, . . . , n,

we seek a rigorous statistical test for the additive assumption in (1.1), under

which the mean functions for different monitoring sites are parallel to each other

with the vertical shifts caused by the site effect. In order to capture the non-

stationary feature, in addition to the spatial and temporal dependence, of the

temperature data as described in Guinness and Stein (2013), we consider mod-

eling the joint process Xj = (X1,j , . . . , Xp,j)
⊤, j = 1, . . . , n, as a multivariate
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nonstationary process. The problem of modeling nonstationary processes has

been studied in the literature by means of spectral representations (Priestley

(1965), Dahlhaus (1996, 1997)), pseudo-differential operators (Mallat, Papani-

colaou, and Zhang (1998)), discrete non-decimated wavelets (Nason, von Sachs,

and Kroisandt (2000)) and smooth localized complex exponentials (Ombao, von

Sachs, and Guo (2005)). Other contributions can be found in Cheng and Tong

(1998), Giurcanu and Spokoiny (2004), and Draghicescu, Guillas, and Wu (2009),

among others. We follow the framework of Zhou and Wu (2010) and assume that

Xj = G(
j

n
;F j), F j = (. . . , ϵj−1, ϵj), (2.1)

where ϵk, k ∈ Z, are i.i.d. random vectors, and G is a measurable function. If

the function G does not depend on time, then (2.1) reduces to a multivariate

stationary process with causal representation

Xj = G(F j), F j = (. . . , ϵj−1, ϵj);

this includes linear processes, bilinear processes, Volterra processes and many

other time series models as special cases; see for example Wiener (1958), Tong

(1990) and Wu (2005). Hence, (2.1) provides a natural generalization of a wide

range of existing time series models to their nonstationary counterparts. In

addition, by allowing the joint process as a time-varying nonlinear transformation

of past innovations as in (2.1), components of the vector Xj can be correlated in

a time-varying and complicated fashion.

We introduce the functional dependence measure that enables us to develop

an asymptotic theory for complicated statistics of time series. For a random

vector X, write X ∈ Lq, q > 0, if ∥X∥q = {E(|X|q)}1/q < ∞ where | · | denotes
the Euclidean norm, and let ∥ ·∥ = ∥ ·∥2. Let (ϵ⋆k)k∈Z be an i.i.d. copy of (ϵk)k∈Z,

and F⋆
k = (F−1, ϵ

⋆
0, ϵ1, . . . , ϵk) be the coupled shift process, the functional de-

pendence measure is defined as

θk,q = sup
t∈[0,1]

∥G(t;Fk)−G(t;F⋆
k)∥q. (2.2)

According to the idea of coupling, the quantity θk,q measures the k-th step ahead

impact of the current innovation. Let Θm,q =
∑∞

k=m θk,q, then Θ0,q measures

the cumulative impact of the current innovation. We need some assumptions in

establishing the main results.

(A1) Θ0,2 < ∞ and supt∈[0,1] ∥G(t;Fk)∥q < ∞ for some q > 2.

(A2) There exists a constant c0 < ∞ such that ∥G(t1;Fk)−G(t2;Fk)∥ ≤ c0|t1−
t2| uniformly for all t1, t2 ∈ [0, 1].
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(A3) The smallest eigenvalue of Λ(t) =
∑

l∈Z cov{G(t;F0),G(t;F l)} is bounded

away from zero on [0, 1].

Condition (A1) is the short range dependence condition, under which the long-

run covariance Λ(t) is uniformly bounded over t ∈ [0, 1]. Condition (A2) can

be interpreted as the stochastically Lipschitz continuous condition, under which

the underlying data generating mechanism evolve smoothly over time; see Zhang

and Wu (2011) for more discussion.

3. Main Results

3.1. Nonparametric estimation

For the observed multivariate time series Xj = G(j/n;F j), j = 1, . . . , n, we

write

Xj = µ(
j

n
) + ej ,

where µ(t) = {µ1(t), . . . , µp(t)}⊤, t ∈ [0, 1], is the unknown mean function,

and (ej)
n
j=1 is the corresponding zero-mean error process. If the parallelism

assumption holds, then µi(·) − µ1(·) ≡ ci for some constant ci ∈ R for all i =

2, . . . , p, and vice versa. Let A ∈ Rr×p be a prespecified matrix with rank r ≤ p

whose nonzero entries are bounded away from zero. We consider testing the more

general null hypothesis

H0 : Aµ(t) = a, t ∈ [0, 1], (3.1)

for some vector a ∈ Rr. For example, if

A =

−1 1 · · · 0
...

...
. . .

...

−1 0 · · · 1

 ∈ R(p−1)×p, (3.2)

then (3.1) is equivalent to testing the parallelism assumption. In this case, a ∈
Rp−1 is unknown and needs to be estimated, while the case with a a vector of

zeros corresponds to testing for the equality of mean functions.

A natural strategy for testing the null hypothesis (3.1) is to compare the

estimator obtained under the null with a nonparametric estimator which is con-

sistent under both the null and the alternative, and reject the null hypothesis

if their difference is statistically significant. Li, Genton, and Sherman (2007)

considered a similar form to (3.1) on spatial covariances by comparing paramet-

ric covariance estimators with a vector of zeros; see Bliznyuk et al. (2012) for

recent developments on parameterizing spatial covariance functions. We focus

on the mean trend function and use nonparametric methods without specifying
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any parametric covariance structure. There are a number of ways of performing

nonparametric estimation of µ(·) including kernel, spline, and wavelet methods.

We use the local linear estimator (Fan and Gijbels (1996))

µ̂n(t) =
n∑

j=1

wj,n(t)Xj , (3.3)

where wj,n(t) = K{(j/n− t)/bn}{S2(t)−(t−j/n)S1(t)}/{S2(t)S0(t)−S2
1(t)} are

the local linear weights, bn is the bandwidth, K(·) is a kernel function and Sl(t) =∑n
j=1(t−j/n)lK{(j/n−t)/bn}. Throughout, we assume that the kernel function

K(·) is a symmetric and bounded function in C1[−1, 1] with
∫ 1
−1K(v)dv = 1. For

example, it can be the Epanechnikov kernel K(v) = 3max(0, 1 − v2)/4, or the

Bartlett kernel K(v) = max(0, 1− |v|). If the vector a in (3.1) is unknown, one

can estimate it by

ân =

∫ 1

0
Aµ̂n(t)dt. (3.4)

A similar averaging estimator as in (3.4) was used by Zhang, Lee, and Song (2002)

for estimating semivarying coefficient models with i.i.d. observations. Take κ2 =∫ 1
−1 v

2K(v)dv, K2 =
∫ 1
−1K(v)2dv and Σ(t) = AΛ(t)A⊤, t ∈ [0, 1]. Theorem 1

provides central limit theorems for estimators (3.3) and (3.4). It is remarkable

that the estimator (3.4) can achieve the parametric convergence rate.

Theorem 1. Assume (A1), (A2) and µ ∈ C3[0, 1]. If nbn → ∞ and nb7n → 0,

then for any t ∈ (0, 1) as n → ∞,

(nbn)
1/2{µ̂n(t)− µ(t)− b2nκ2

µ′′(t)

2
} ⇒N{0,K2Λ(t)},

and

n1/2{ân − E(ân)} ⇒N

{
0,

∫ 1

0
Σ(t)dt

}
,

where E(ân) = a under (3.1).

Under the null hypothesis (3.1), Aµ(·) ≡ a and Aµ′′(t) = 0, t ∈ [0, 1]. By

Theorem 1,

(nbn)
1/2{Aµ̂n(t)− ân} ⇒ N{0,K2Σ(t)}.

Let Dn(t)=Σ(t)−1/2{Aµ̂n(t)−ân} be the normalized difference between Aµ̂n(t)

and ân, we reject the null hypothesis (3.1) at level α ∈ (0, 1) if

|Dn(t)| > (nbn)
−1/2K

1/2
2 z1−α,r, (3.5)

where z1−α,r is the (1 − α)-th quantile of the Euclidean norm of a standard

r-dimensional multivariate normal distribution. The test (3.5) depends on the
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choice of t ∈ (0, 1), while the time point at which the null hypothesis (3.1) is the

least likely to hold is often unknown in practice. We consider the L∞- and L2-

norms of the discrepancy function (3.5), and study their asymptotic properties

in Sections 3.2 and 3.3, respectively.

3.2. The maximum absolute deviation

With A ∈ Rr×p a prespecified matrix with rank r ≤ p, and Dn(t) the nor-

malized difference between Aµ̂n(t) and ân. Theorem 2 states that, after proper

centering and scaling, the maximum absolute deviation has the asymptotic ex-

treme value distribution. The maximum absolute deviation was used by Fan and

Zhang (2000) to construct simultaneous confidence bands for state-domain vary-

ing coefficient models with i.i.d. observations, and we here consider nonstationary

and dependent observations.

Theorem 2. Assume (A1)−(A3) and θn,4 = O(n−ι) for some ι ≥ 2. If bn(log n)
2

→ 0 and nb
5/2
n /(log n)15/2 → ∞, then under (3.1) as n → ∞,

pr

{(
2nbn logmn

K2

)1/2

sup
t∈[bn,1−bn]

|Dn(t)| −BK(mn) ≤ u

}
→ exp{−2 exp(−u)},

where mn = 1/bn and

BK(mn) = 2 logmn + logCK +
{(r − 1)

2

}
log logmn − log 2

with CK = Γ(r/2)−1{(K2π)
−1
∫ 1
−1 |K

′(v)|2dv}1/2.

By Theorem 2, we reject the null hypothesis (3.1) at level α ∈ (0, 1) if the

maximum absolute deviation from the null satisfies

sup
t∈[bn,1−bn]

|Dn(t)| >
K

1/2
2

(2nbn logmn)1/2

[
BK(mn)− log log{(1− α)−1/2}

]
. (3.6)

To investigate the power of this testing procedure, we consider the local alterna-

tive

H1 : Aµ(t) = a+ dnf(t), t ∈ [0, 1], (3.7)

where f ∈ C2[0, 1] is a known nonconstant function, and dn → 0 is a sequence

of positive real numbers indicating the magnitude of the deviation from (3.1).

For two positive real sequences sn and tn, we say that sn ≫ tn if sn/tn → ∞
as n → ∞. Proposition 1 states that the test (3.6) can detect alternatives with

dn ≫ (nbn)
−1/2(logmn)

1/2.
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Proposition 1. Assume conditions of Theorem 2. If (nbn/ logmn)
1/2dn → ∞,

then under the alternative hypothesis (3.7) as n → ∞,

pr

(
sup

t∈[bn,1−bn]
|Dn(t)|>

K
1/2
2

(2nbn logmn)1/2

[
BK(mn)−log log{(1− α)−1/2}

])
→1.

3.3. The integrated squared deviation

Recall that the kernel function K(·) is a symmetric and bounded function in

C1[−1, 1] with
∫ 1
−1K(v)dv = 1. Let

K∗(x) =

∫ 1−2|x|

−1
K(v)K(v + 2|x|)dv,

then K∗ ∈ C1[−1, 1] and is also symmetric. Let K∗
2 =

∫ 1
−1K

∗(v)2dv.

Theorem 3. Assume (A1)−(A3) and θn,4 = O(n−ι) for some ι > 2. If bn → 0

and nb
3/2
n → ∞, then under the null hypothesis (3.1) as n → ∞,

pr

{
nb

1/2
n

(4rK∗
2 )

1/2

∫ 1

0
|Dn(t)|2dt−

r1/2K∗(0)

(4bnK∗
2 )

1/2
≤ u

}
→ Φ(u),

where Φ(·) is the distribution function of the standard normal.

Accordingly, we reject the null hypothesis (3.1) at level α ∈ (0, 1) if∫ 1

0
|Dn(t)|2dt > (nbn)

−1rK∗(0) + n−1b−1/2
n (4rK∗

2 )
1/2q1−α, (3.8)

where q1−α is the (1−α)-th quantile of the standard normal. This is an alternative

to the test at (3.6). We here investigate the asymptotic power of the test (3.8)

under the local alternative (3.7).

Proposition 2. Assume the conditions of Theorem 3. If nb
1/2
n d2n → ∞, then

under the alternative hypothesis (3.7) as n → ∞,

pr

{∫ 1

0
|Dn(t)|2dt > (nbn)

−1rK∗(0) + n−1b−1/2
n (4rK∗

2 )
1/2q1−α

}
→ 1.

With this, the test at (3.8) has unit asymptotic power if dn ≫ (nb
1/2
n )−1/2.

As a comparison, the test at (3.6) based on the maximum absolute deviation can

detect alternatives with departure rate satisfying dn ≫ (nbn)
−1/2(logmn)

1/2,

where mn = 1/bn. As n → ∞,

(nb
1/2
n )−1/2

(nbn)−1/2(logmn)1/2
= b1/4n (− log bn)

−1/2 → 0, (3.9)
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which suggests that the L2-based test (3.8) is asymptotically more powerful than

its L∞-based counterpart. Nevertheless, the convergence speed in (3.9) can be

quite slow. For example, if one uses the popular bandwidth bn = cn−1/5 for some

0 < c < ∞ that has the asymptotic mean integrated squared error (AMISE) op-

timal rate, then the rate in (3.9) is n−1/20(log n)−1/2 which approaches zero quite

slowly as n → ∞. Therefore, the superiority of the L2-based test is ambiguous

for finite sample problems, and we carried out simulation studies (see Section

4.1) to examine the finite sample power performance of the two tests.

3.4. Bandwidth selection

The problem of selecting an optimal bandwidth for nonparametric estima-

tion and testing problems has been extensively studied in the literature; see for

example Härdle and Marron (1985), Härdle, Hall, and Marron (1988), Ruppert,

Sheather, and Wand (1995), Xia (1998), and Gao and Gijbels (2008), among

many others. Most of the existing results are developed for independent obser-

vations, while Opsomer, Wang, and Yang (2001) demonstrated that bandwidth

selectors developed under independence can often break down for dependent

data. The problem is even more complicated in the current setting because of

the underlying nonstationarity and spatial dependence. As commented by Wang

(2008), there exists no uniform guidance for an optimal choice of bandwidth. On

the positive side, the simulation results in Section 4.1 suggest that the empiri-

cal acceptance probabilities are not so sensitive to the choice of the bandwidth.

Hence, one can simply choose bn = n−1/5 which has the AMISE optimal rate.

Unlike data-driven bandwidth selectors, this does not introduce an extra amount

of randomness into the testing procedure; the asymptotic results developed in

Sections 3.1−3.3 remain unharmed and theoretically rigorous tests are feasible.

In addition, it produces practically reasonable bandwidths for nonparametric

hypothesis testing problems, as suggested by Zhang and Wu (2011).

As an alternative, we consider the generalized cross-validation (GCV) meth-

ods of Craven and Wahba (1979), and correct the dependence by incorporating

estimates of the covariance matrices into the criterion function, as suggested by

Wang (1998). In particular, if ζ⊤i = (ζi,1, . . . , ζi,n) is the i-th row of the data

matrix (AX1, . . . ,AXn), i = 1, . . . , r, then the local linear estimate with band-

width b can be written as ζ̂i(b) = H(b)ζi, where H(b) is the corresponding hat

matrix. We choose the bandwidth b̂n by minimizing

GCV(b) =

∑r
i=1{ζ̂i(b)− ζi}⊤Υ−1

i {ζ̂i(b)− ζi}
[1− tr{H(b)}/n]2

, (3.10)

where Υi = {cov(ζi,k, ζi,l)}1≤k,l≤n is the covariance matrix of ζi, i = 1, . . . , r; this

can be estimated by using the banding technique in Bickel and Levina (2008a)
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and Wu and Pourahmadi (2009). Simulation results in Section 4.1 suggest that
the GCV selector (3.10) works reasonably well as it is able to capture the actual
degree of smoothness of the underlying function. In practice we suggest choosing
the bandwidth by searching the minimizer of the GCV criterion (3.10) over the
range [c−1n−1/5, cn−1/5] with c = 3/2.

3.5. Covariance matrix estimation

The implementation of the tests (3.6) and (3.8) involves unknown quantities
depending on the covariance matrix Λ(t), t ∈ [0, 1]. The problem of estimating
covariance matrices has been extensively studied in the literature; see for example
Newey and West (1987), Andrews (1993), Lumley and Heagerty (1999), and Zhou
and Wu (2010), among others. We use the estimate proposed by Zhang and Wu
(2012), obtained by applying techniques of banding and local linear smoothing.
Asymptotic properties including the consistency and convergence rate can be
found in Zhang and Wu (2012). For completeness, we present the estimate.
Let τn and ϱn be tuning parameter sequences satisfying τn → 0, ϱn → 0, and
nτnϱn → ∞. Let In,1 = [0, τnϱn], In,2 = (τnϱn, 1 − τnϱn), In,3 = [1 − τnϱn, 1],
and

λj =



eje
⊤
j + 2ej

n∑
k=1

e⊤k I(0 <
k

n
− j

n
≤ τnϱn), if j

n ∈ In,1;

ej

n∑
k=1

e⊤k I(|
k

n
− j

n
| ≤ τnϱn), if j

n ∈ In,2;

eje
⊤
j + 2ej

n∑
k=1

e⊤k I(0 <
j

n
− k

n
≤ τnϱn), if j

n ∈ In,3,

where I(·) denotes the indicator function. We estimate the long-run covariance
matrices by

Λ̂n(t) =

n∑
j=1

wj,n,τn(t)
(λj + λ⊤

j )

2
, t ∈ [0, 1], (3.11)

where wj,n,τn(t) is the local linear weight with bandwidth τn. In computing
(3.11), since the error sequence (ej)

n
j=1 is usually not observable, we replace it

by the local linear residuals (êj)
n
j=1, and refer to Zhang and Wu (2012) for a

discussion on selecting the tuning parameters τn and ϱn.

3.6. A simulation-assisted testing procedure

An important observation of Theorems 2 and 3 is that both the maximum
absolute deviation and the integrated squared deviation are asymptotically piv-
otal, namely their asymptotic distributions do not depend on quantities related
to the underlying process. This motivates us to consider a simulation-assisted
testing procedure that can substantially improve the finite sample performance.
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(i) Select the bandwidth b̂n by minimizing the GCV criterion (3.10).

(ii) Obtain the local linear estimate µ̂n(t), t ∈ [0, 1], compute the residuals êj =

Xj − µ̂n(j/n), j = 1, . . . , n, and Λ̂n(t), t ∈ [0, 1], by (3.11).

(iii)Compute Dn(t), t∈ [0, 1], and form the test statistics Tn,∞=supt∈[0,1] |Dn(t)|
and Tn,2 =

∫ 1
0 |Dn(t)|2dt.

(iv)Generate i.i.d. standard multivariate normal random vectors X◦
j , and com-

pute the corresponding T ◦
n,∞ and T ◦

n,2 in the same manner as in steps (ii)

and (iii).

(v) Let α ∈ (0, 1) be the chosen significance level. Repeat step (iv) and obtain

the estimated quantiles q̂1−α,∞ of T ◦
n,∞ and q̂1−α,2 of T ◦

n,2.

(vi) Reject the null hypothesis (3.1) at level α if Tn,∞ > q̂1−α,∞ based on the max-

imum absolute deviation, or Tn,2 > q̂1−α,2 based on the integrated squared

deviation.

4. Numerical Experiments

4.1. Simulation studies

Degras et al. (2012) considered the problem of testing for mean trend par-

allelism among multiple time series (Xi,j)
n
j=1, i = 1, . . . , p, where the asymp-

totic distribution of their test statistic Tn,i.i.d. is approximated by its counter-

part T ◦
n,i.i.d. for i.i.d. Gaussian processes (Wu and Zhou (2011)). Let ei,j =

Xi,j − E(Xi,j) denote the measurement error, a key assumption in Degras et al.

(2012) is that the error processes (ei,j)
n
j=1, i = 1, . . . , p, are i.i.d.. As commented

by Guinness and Stein (2013), this i.i.d. assumption can be quite strong and is

easily violated for spatial-temporal processes. We provide a comparison of the

proposed methods with the test of Degras et al. (2012).

Let ϵk = (ϵ1,k, . . . , ϵp,k), k ∈ Z, be i.i.d. random vectors with independent

Rademacher components satisfying pr(ϵi,k = −1) = pr(ϵi,k = 1) = 1/2. Let

M = (0.25|i−j|)1≤i,j,≤p, then ξk = Mϵk, k ∈ Z, forms a sequence of i.i.d. ran-

dom vectors but with correlated components. Let Li(t) be the i-th order Leg-

endre polynomial, and L(t) ∈ Rp×p be the diagonal matrix with i-th diagonal

component Li(2t− 1)/4. Then

ej =

∞∑
k=0

L
( j
n

)k
ξj−k, j = 1, . . . , n, (4.1)

is a sequence of dependent and nonstationary noises with correlated components.

With n = 1, 000, p = 10, and the bandwidth bn = n−1/5 = 0.25, we consider

testing whether the mean trend functions of (ei,j)
n
j=1, i = 1, . . . , p, are parallel

to each other. The Epanechnikov kernel was used throughout our numerical
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experiments. The cut-off values were obtained by 5,000 simulated T ◦
n,∞, T ◦

n,2, and

T ◦
n,i.i.d., and the results are summarized in Figure 1 based on 5,000 realizations

of Tn,∞, Tn,2, and Tn,i.i.d.. From Figure 1 (c), we can see that the test of Degras

et al. (2012) fails to provide valid p-values when the error processes are not i.i.d..

The proposed tests based on the maximum absolute deviation as in Figure 1

(a) and the integrated squared deviation as in Figure 1 (b) perform reasonably

well. At nominal levels (90%, 95%, 99%), the empirical acceptance probabilities

are (89.8%, 94.2%, 98.7%) for Figure 1 (a) and (91.4%, 95.2%, 98.9%) for Figure

1 (b).

Although both proposed tests survive in the presence of spatial dependence

and inhomogeneity, which is more powerful for finite sample problems is ambigu-

ous due to the slow convergence in (3.9). We examine the finite sample power

of the proposed two tests via simulation studies. Let Xj = µ(j/n) + ej , j =

1, . . . , n, with the error process (ej)
n
j=1 specified as in (4.1) and the mean func-

tion µ(t) = {µ1(t), . . . , µp(t)} satisfying µi(t) = 0 for i ≤ p/2 and µi(t) = df(t)

for i > p/2, where d represents the magnitude of deviation from the null and f(t)

is a nonconstant function. We consider two types of alternatives.

(SA) Systematic alternative: f(t) = t, t ∈ [0, 1], which deviates from the con-

stancy in an even and systematic manner; see Figure 2 (a).

(BA) Bumpy alternative: f(t) = 3 exp{−211(t− 1/2)2}, t ∈ [0, 1], which deviates

from the constancy in an abrupt and bumpy manner; see Figure 2 (b).

With the nominal level α = 0.05, the cut-off values were obtained by the

simulation-assisted testing procedure described in Section 3.6, with 5,000 simu-

lated T ◦
n,∞ and T ◦

n,2. The results, based on 5,000 realizations of the underlying

process, are summarized in Figure 2 (c) and (d) for alternatives (SA) and (BA),

respectively, where the case d = 0 corresponds to the null.

In Figure 2 the power of both tests increases to one as d, the deviation from

the null, increases. The L2-based test seems to be more powerful than its L∞-

based counterpart, in line with the discussion in Section 3.3. As commented by

Zhou (2010), L2-based methods should be preferred over their L∞-based coun-

terparts when one is interested in verifying a specific null hypothesis, while the

L∞-based methods can be useful in assessing the overall pattern of the curve as

it relates to the construction of simultaneous confidence tubes. That paper con-

sidered the problem of testing parametric forms of quantile curves for univariate

time series, where the underlying process has a functional dependence measure

θn,q = O(ρn) for some ρ ∈ (0, 1), while our multivariate nonstationary time series

has a functional dependence measure θn,q = O(n−ι) for some ι > 2.
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Figure 1. A comparison of (a) the proposed test based on the maximum
absolute deviation, (b) the proposed test based on the integrated squared
deviation, and (c) the test of Degras et al. (2012). Q-Q plots of (a) Tn,∞
against T ◦

n,∞; (b) Tn,2 against T ◦
n,2; and (c) Tn,i.i.d. against T

◦
n,i.i.d.. For all

the plots, the dashed lines have unit slope and zero intercept.

We carried out simulation studies to examine the sensitivity of the proposed

tests to the choice of the bandwidth. Let

Xj = µ(
j

n
) + σej , j = 1, . . . , n,

where the error process (ej)
n
j=1 is specified as in (4.1) and the mean function

µ(t) = {µ1(t), . . . , µp(t)} with µi(t) = sin(2πt)+ i/p, i = 1, . . . , p. For n = 1, 000

and p = 10, we considered testing the null hypothesis (3.1) for (Xj)
n
j=1 with A
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Figure 2. In (a) and (b) are plots of the alternative function f(t), t ∈ [0, 1],
under (SA) and (BA), respectively. In (c) and (d) are power curves of the
L∞-based test in Section 3.2 (dashed curves) and the L2-based test in Section
3.3 (solid curves) under alternatives (SA) and (BA), respectively.

specified as in (3.2). The cut-off values were obtained by using the simulation-

assisted method in Section 3.6 with 5,000 simulated T ◦
n,∞ and T ◦

n,2. The results

are summarized in Table 1 based on 5,000 realizations for each different combi-

nation of bandwidths b ∈ {0.1, . . . , 0.9} and noise-to-signal levels σ2 ∈ {1, 2}. It

can be seen that the empirical acceptance probabilities are fairly close to their

nominal levels (90%, 95%, 99%) as long as the bandwidth is not chosen to be too

small, in which case only a small number of data points are used to compute

the local mean and covariance estimates. For the simulated processes, Aµ(·) is
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Table 1. Empirical acceptance probabilities (in percentage) of the
simulation-assisted hypothesis testing procedure described in Section 3.6 for
n = 1, 000 and p = 10, where the noise-to-signal level σ2 = 1.

L∞-based L2-based
σ2 b 90% 95% 99% 90% 95% 99%

1 0.1 84.0 92.4 98.7 85.4 91.9 98.5
0.2 88.0 94.2 99.1 86.7 93.2 99.0
0.3 87.4 93.5 98.3 87.0 92.9 98.4
0.4 89.2 94.4 98.8 88.7 94.2 98.5
0.5 88.5 93.9 98.3 88.5 93.4 98.2
0.6 89.4 94.9 98.9 89.9 95.0 98.7
0.7 89.7 94.7 98.6 88.5 94.1 98.7
0.8 89.5 94.3 98.6 89.0 94.1 98.5
0.9 89.4 94.7 98.5 89.5 94.6 98.8

2 0.1 84.4 92.4 98.5 86.3 92.7 98.5
0.2 88.3 94.5 98.9 87.1 93.5 98.6
0.3 88.0 94.2 98.4 87.2 93.5 98.4
0.4 88.3 93.9 98.6 87.8 93.5 98.6
0.5 88.7 94.3 98.5 88.4 93.3 98.3
0.6 89.5 94.9 98.9 89.3 94.6 98.4
0.7 89.3 94.2 98.6 88.1 93.9 98.5
0.8 88.7 94.2 98.9 87.8 93.5 98.9
0.9 90.2 94.8 98.6 89.6 94.2 98.7

a constant and thus a large bandwidth is preferred to reduce the mean squared

error. This is reflected by the data-driven bandwidth selector discussed in Sec-

tion 3.4 as the medians of the selected bandwidths under a full search are above

0.9 for both σ2 = 1 and σ2 = 2.

4.2. Application to temperature data

We applied the proposed tests to measurements of air temperature at 15

measurement facilities, a central facility (E-13) in northern Oklahoma along with

14 extended facilities, in the Southern Great Plains region of the United States.

The data has been studied by Guinness and Stein (2013) under the additive model

(1.1) for the purpose of spatial and temporal interpolation. It can be accessed

from the ARM website at http://www.archive.arm.gov. We use the 30-minute

averaged data during the period from 10/06/2005 to 10/30/2005, and provide a

statistical test for the additive assumption in model (1.1) used by Guinness and

Stein (2013); this with p = 15 and n =1,200. This is equivalent to testing the

mean trend parallelism assumption with vertical shifts caused by the site effect;

this seems plausible from the time series plot given in Figure 3 (a). In particular,

if we take the differences with respect to the records from the central facility

http://www.archive.arm.gov
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Figure 3. Time series plot of (a) air temperature records; and (b) differences
with respect to the central facility E-13 at 15 monitoring sites in the Southern
Great Plains region of the United States. The tick mark on the vertical axis
are separated by 20 ◦C, and records from different monitoring sites are offset
from each other by 20 ◦C.

E-13, then the mean trend parallelism assumption of the original temperature

series is equivalent to the mean trend constancy assumption of the differences;

see Figure 3 (b) for a time series plot of the corresponding differences.

We modeled the joint process by (2.1) and applied our tests. The selected

bandwidth b̂n = 0.36, and the corresponding test statistics were Tn,∞ = 78.18

and Tn,2 = 208.93. With 5,000 repetitions of step (iv) in Section 3.6, the p-

values are 0.000 for both Tn,∞ and Tn,2. In particular, at 1% significance level

the cut-off values are 16.86 and 21.69 for Tn,∞ and Tn,2, respectively. We reject

the null hypothesis at the 1% significance level, so the additive model (1.1) is not

statistically sufficient for modeling this data. Although the work of Guinness and

Stein (2013) has provided a decent interpolation scheme for the temperature data

collected in the Southern Great Plains region of the United States, the current

analysis suggests that there is still room for improvement of the models they used
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to generate their results. We leave this as a future research topic for climate

scientists, and a possible direction is to allow spatial-temporal interactions to

produce a more sophisticated interpolation of the temperature data considered.

5. Discussions

The paper models regular monitoring data as a multivariate time series in

which a fixed number of lengthy time series is associated with fixed measurement

facilities, and proposes statistical tests that can survive for a general class of non-

stationary and dependent processes so that our results can be widely applicable.

Although the paper is motivated by regular monitoring data where the num-

ber of measurement facilities p is usually fixed and much smaller than the length

of each time series n, the proposed tests possess the potential of being generalized

to situations where p = pn → ∞ as n → ∞. For this, we consider a variant of

the functional dependence measure (2.2) and use

θ♯k,q = max
1≤i≤p

{
sup
t∈[0,1]

∥Gi(t;Fk)−Gi(t;F⋆
k)∥q

}
, (5.1)

where Gi(t;Fk) is the i-th component of the vector G(t;Fk); the process is said

to be stochastically Lipschitz continuous or G ∈ CSL if there exists a constant

c♯0 < ∞ such that max1≤i≤p ∥Gi(t1;Fk)−Gi(t2;Fk)∥ ≤ c♯0|t1−t2| holds uniformly

for all t1, t2 ∈ [0, 1]. The dependence measure (5.1) provides a useful counterpart

of (2.2) for studying high-dimensional time series, and has been used by Chen,

Xu, and Wu (2013) for estimating large covariance and precision matrices. In

order to make statistical inference for high-dimensional objects, additional reg-

ularity conditions are usually needed among which sparsity is one of the most

popular; see for example Bickel and Levina (2008b), Cai and Zhou (2012) and ref-

erences therein. Corollary 1 states that the maximum absolute deviation and the

integrated squared deviation considered in Sections 3.2 and 3.3 respectively will

continue to have the desired asymptotic distributions provided that the matrix

A is sparse in the sense of the following condition.

(H1) There exists a constant cF such that the Frobenius norm ∥A∥F ≤ cF < ∞.

Corollary 1. Suppose p = pn → ∞ as n → ∞. If G ∈ CSL and (H1) holds, then

the results of Theorems 2 and 3 continue to hold under corresponding conditions

with θk,q replaced by θ♯k,q.

Although the sparsity condition (H1) serves as a reasonable requirement for

making statistical inference about high-dimensional objects, we conjecture that

it is not the weakest possible and can be relaxed to allow a growing Frobenius

norm if we have further knowledge about the underlying data generating mecha-

nism (for example measurement errors at different monitoring sites and different
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time points are i.i.d.) and the growth rate is expected to depend on the inter-

play between the inherited dependence and nonstationarity across both time and

space. We leave this as a possible future research topic.

Supplementary Materials

The Supplementary Material contains technical proofs of Theorems 1−3,

Propositions 1 and 2, and Corollary 1.
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