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Abstract: This paper proposes a composite likelihood approach as an alternative to

the full likelihood approach for the analysis of time series data from hidden Markov

models. The proposed method requires correctly specifying only the joint den-

sity of pairs of consecutive observations. Hence, the proposed composite likelihood

is algebraically simpler than the corresponding full likelihood while it retains the

information on transition probabilities. The proposed maximum composite like-

lihood estimator with a regularization term added to the composite likelihood is

consistent, asymptotically normal, and easy to implement. This estimator over-

comes a difficulty in maximum likelihood estimation: both the full and composite

likelihoods are unbounded when the kernel distribution is normal. Our simulation

studies show that the new estimator is highly efficient and robust. We apply the

method to a time series for the USD/GBP exchange rate under a two-state hid-

den Markov model, as suggested by Engel and Hamilton (1990). The composite

likelihood approach is more robust for inference than the full likelihood.

Key words and phrases: α-mixing, EM-algorithm, equilibrium distribution, ergod-

icity, finite mixture model, forward-backward algorithm, regime-switching, regular-

ization, stationary.

1. Introduction

Let {Yt}∞t=0 be a time series. A classical platform for the analysis of time

series data, directly or after a transformation, is the auto-regressive-moving-

average model. It postulates

Yt = c+

p∑
i=1

φiYt−i +

q∑
j=1

θjϵt−j ,

where the ϵt are white noise. Statistical methods for the reliable inference of

most aspects of the model are well developed (Box, Jenkins, and Reinsel (1994)).

An implicit assumption in the model is that the time series is a linear sta-

tionary process. However, time series often exhibit nonlinearity and/or nonsta-

tionarity. For instance, an economy may be in either a fast or a slow growth

phase. To accommodate these characteristics, researchers (Hamilton (1988); En-

gel (1994)) have found that hidden Markov models (HMM) provide a simple and
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sensible alternative. The HMM postulates a series of unobserved or hidden states

{St}∞t=0 underlying {Yt}∞t=0. Given {St}∞t=0, {Yt}∞t=0 are conditionally indepen-

dent and the kernel distribution, the conditional distribution of Yt, is completely

determined by the state St. In a typical econometrics example, St assumes one

of two possible states representing the fast and slow growth phases/regimes of

an economy respectively, and Yt is some performance index.

Likelihood inference has been used by Engel (1994) and others to investigate

various financial time series. The HMM has also been widely used in such areas

as speech recognition and genome sequencing. We refer to Cappé, Moulines, and

Rydén (2005) for a more complete introduction to the HMM. A full likelihood

(FL) function is defined to be proportional to the joint density of {Yt}Tt=0. A

highly efficient forward-backward algorithm was developed by Baum et al. (1970)

to maximize the FL. Leroux (1992) and Bickel, Ritov, and Rydén (1998) showed

that the maximum likelihood estimators (MLE) are consistent and asymptotically

normal under HMM when its kernel distribution satisfies certain conditions.

There are challenges with the FL approach: the complex analytical form of

the FL makes the maximization algorithm numerically less stable; when the ker-

nel distribution is normal, the maximum FL value is infinite; and the effectiveness

of the FL approach can be influenced by departures from the model assumptions.

These shortcomings may tip the balance in favor of the simpler and likely more

robust composite likelihood (CL) approach (Lindsay (1988)).

The CL has some clear advantages. We propose using the joint density of just

pairs of two consecutive observations, and the resulting statistical inferences are

expected to be more robust against some degree of model mis-specification. The

simpler algebraic form of the CL allows an easier and more thorough asymptotic

analysis, and the numerical issues associated with the CL have a more intuitive

and straightforward solution. Since observations are ordered with the bulk of

the serial dependence occurring in adjacent observations, pairs of consecutive

observations contain useful transition information. Hence, the CL likely suffers

only minor efficiency loss compared to the FL.

There is a rich literature associated with the CL. Modern information tech-

nology enables researchers to collect large quantities of complex data and, rather

than modeling their joint distribution, one can construct CLs through lower-

dimensional joint distributions. The CLs greatly simplify the complexity of the

analysis and in many cases suffer only a mild loss in statistical efficiency. We

refer to Hjort and Varin (2008) for Markov chain models, to Engle, Shephard,

and Sheppard (2008) for the estimation of time-varying covariances between the

returns of assets in a high-dimensional portfolio, to Ng et al. (2011) for time se-

ries models with a latent Gaussian autoregressive process, and to Pakel, Shepard,

and Sheppard (2011) for GARCH panels characterized by time-varying volatility.
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Comprehensive reviews of recent work can be found in Varin (2008) and Varin,

Reid, and Firth (2011).

The rest of the paper is as follows. In Section 2 we give brief introductions to

the HMM model and the FL and CL functions. In Section 3 we discuss CL-based

estimation and its asymptotic properties. Section 4 presents Monte Carlo studies

comparing the finite-sample properties of the CL and FL approaches. Section 5

reports empirical results for the analysis of the exchange rate between the U.S.

dollar and the British pound. Section 6 presents our conclusions.

2. Hidden Markov Model

2.1. Hidden Markov model and the full likelihood

Let {St}∞0 be a homogeneous Markov chain with finite state space {1, . . . , N}
and transition probability matrix Γ = [pij ]N×N where for i, j = 1, . . . , N , pij =

P (St+1 = j | St = i). Let {Yt}∞t=1 be conditionally independent given {St}∞t=1.

The kernel distribution, the conditional density of Yt given St = i, is f(y; θi) and

it belongs to a parametric family {f(y; θ) : θ ∈ Θ} with Θ a subset of Euclid

space. Given a set of observations {Yt}Tt=1, we investigate inference issues on Γ

and θ = (θ1, . . . , θN )τ .

Here, we assume that N is known and θi ̸= θj for all i ̸= j. The state

sequence {St}Tt=1 is unobserved. Because St switches from one regime (state) to

another, the hidden Markov model (HMM) is called the regime-switching model

in finance. Engel and Hamilton (1990) used a two-regime HMM with a normal

kernel distribution to model exchange rates between the U.S. dollar and the

British pound. They found that the HMM provided a better description of the

data than, for instance, a simple random walk.

We use the notation s(1:T ) for s1, . . . , sT wherever appropriate. Let

ps(1 : T) = ps1

T∏
t=2

pst−1,st

be the probability that the HMM takes state values s(1:T ) over the period of in-

terest 1:T , where pi = P (S1 = i). The joint density function of Y (1:T ), regarded

as the likelihood function, is

L(Γ,θ) =
∑

s(1 : T)

{
ps(1 : T)

T∏
t=1

f(yt; θst)
}
,

where the summation is over all possible state sequences s(1:T ) of the Markov

chain.

When the transition probabilities p1j = · · · = pNj = πj for all j = 1, . . . , N ,

the state sequence consists of independent and identically distributed random

variables. Therefore ps(1 : T) =
∏T

t=1 πst and
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L(Γ,θ) =

T∏
t=1

{ N∑
j=1

πjf(yt; θj)
}
.

Consequently, Y1, . . . , YT are also independent and identically distributed random

variables, here from the finite mixture distribution with density
∑N

j=1 πjf(y; θj).

2.2. Composite likelihood

Under HMM, the conditional joint density function of (Yt, Yt+1) is given by

f(yt, yt+1 | St = i, St+1 = j) = f(yt; θi)f(yt+1; θj).

Let Ψ(θ, θ∗) be a bivariate distribution on Θ×Θ assigning equilibrium probability

πij to (θi, θj) for i, j = 1 : N , where

πij = P (St = i, St+1 = j) = P (St = i)P (St+1 = j | St = i) = pipij .

At equilibrium, the unconditional joint density function is given by

f(yt, yt+1; Ψ) =

∫
f(yt; θ)f(yt+1; θ

∗) dΨ. (2.1)

Marginally, (yt, yt+1) is a sample from a finite mixture with up toN2 components.

If we “incorrectly” regard T − 1 pairs of consecutive observations in y(1:T )

as independent bivariate random variables, the resulting likelihood function is
T−1∏
t=1

f(yt, yt+1; Ψ). (2.2)

This CL is algebraically the same as the likelihood function of a finite bivariate

mixture model. Chen (1998) found that adding a regularization term C
∑

i, j

log(πij) for some C > 0 to the log-likelihood improves the finite sample proper-

ties. Thus, we take the logarithm of the CL to be

ℓcl(Ψ) =

T−1∑
t=1

log f(yt, yt+1; Ψ) + C
∑
i, j

log πij (2.3)

with f(yt, yt+1; Ψ) given by (2.1). From now on, we use Ψ to denote both the

mixing distribution and the parameter vector containing πij ’s and θi’s; and its

meaning should be clear from the context.

It will be seen from the EM-algorithm that adding a penalty with C = 1

enforces a lower bound (T+N2−1)−1 on πij . Although this lower bound is small

and disappears when T → ∞, it effectively stabilizes the fitted parameter values

of (θi, θj). In addition, the finite sample effect of the penalty improves markedly
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from C = 0 to C = 1, but it remains nearly unchanged for C = 0.5, . . . , 2. Thus,

we take C = 1 as in Chen (1998). The CL in (2.3) is a pseudo-likelihood because

of non-independence.

In the CL setting, we use πij as the parameters since pij and πij are mutually

determined: πij is, by definition, determined by pij ; and pij can be recovered from

πij through pij = πij/pi = πij/
∑

k πik.

3. Estimation

3.1. Full and composite likelihood estimators

The global maximizer of the FL is asymptotically unique, consistent, and

asymptotically normal when T → ∞ under certain conditions. These results are

given by Leroux (1992), Bickel, Ritov, and Rydén (1998) and Cappé, Moulines,

and Rydén (2005). Numerically, the MLEs can be computed as the iteration limit

of forward-backward algorithm (Baum et al. (1970)), which is a special case of

the EM algorithm in Dempster, Laird, and Rubin (1977).

A crucial condition for consistency is to be able to smoothly extend f(x; θ)

to a compact space containing Θ. This condition is violated for the normal

distribution. For illustration, we compute L(Γ,θ) for a specific pair of Γ, θ.

Let ϕ(y;µ, σ) be the normal density function with mean µ and variance σ2. Let

N = 2, µ1 = y1, p1 = p2 = pij = 0.5, µ2 = 0, and σ2 = 1/
√
2, and leave σ1

unspecified. Here θ = (µ, σ)τ and we have ps(1 : T) = 2−T for any state sequence

s(1:T ). For this pair of Γ and θ, as σ1 → 0,

L(Γ,θ) ≥ 2−T · ϕ(y1;µ1, σ1)

T∏
t=2

ϕ(yt;µ2, σ2)

= σ−1
1 · 2−1/2 · (4π)−T/2 · exp

{
−

T∑
t=2

y2t

}
→∞. (3.1)

Thus, there are multiple global maxima for L(Γ,θ) and none of them are con-

sistent. Since ϕ(y;µ, σ) cannot be smoothly extended to σ = 0, the consistency

proof of Leroux (1992) is not applicable. A nondegenerate local maximum seems

to work well but is vulnerable. This pitfall is applicable not only to the normal

distribution but also to all location-scale distribution families.

The FL function closely resembles the likelihood function under a finite mix-

ture model, which also has the unbounded-likelihood phenomenon. For a finite

mixture of normal distributions, Hathaway (1985) proposed using the constraint

maxi, j σi/σj < M < ∞ to restore the consistency and asymptotic normality of

the parameter estimates. However, the size of M has a direct influence on the
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resulting constrained maximum likelihood estimator, and the constraint leads to

additional computational issues. Adding a penalty to the log-likelihood achieves

the same goal (Chen and Tan (2009)) with only an indirect influence on the value

of the estimator.

For the HMM with a normal kernel, we add another regularization term and

use

ℓpcl(Ψ) = ℓcl(Ψ)− T−1/2
N∑
i=1

{
log

(σ2
i

σ̂2
0

)
+

σ̂2
0

σ2
i

}
, (3.2)

where σ̂2
0 is the sample variance of the time series. According to Chen and

Tan (2009), this suffices to restore the asymptotic properties of the maximum

likelihood estimators for finite normal mixture models, and it effectively improves

the convergence properties of the corresponding EM-algorithm. This claim easily

extends to the HMM with a normal kernel distribution. The FL may be similarly

regularized so that the resulting estimator is consistent, but that is not the focus

of this paper.

3.2. Numerical computation

The forward-backward algorithm of Baum et al. (1970) provides an elegant

solution to the FL-based MLE, but successive multiplication in the FL can lead

to underflow. A high-quality R package, depmixS4, is available but it occasionally

crashes, likely because of the unboundedness of the FL.

In the implementation of the EM algorithm for the FL, the unobservable

state variable St is treated as missing data, and the iterative scheme imputes the

missing values of St in the E-step and estimates parameter values by maximizing

the complete data log FL in the M-step. With ηt(i) = 1 if St = i and 0 otherwise,

and ξt(i, j) = ηt(i)ηt+1(j), the complete data log FL is given by

ℓ
(c)
fl (Ψ) =

∑
i

η1(i) log pi +

T−1∑
t=1

∑
i, j

ξt(i, j) log pij +

T∑
t=1

∑
i

ηt(i) log{f(yt; θi)}.

E-step: Given the observed data and the parameter estimates Ψ(k) from kth

iteration, the missing data ηt(i) and ξt(i, j) are their conditional expectations.

Put ai(1) = p
(k)
i f(y1; θi) and bi(T ) = 1. For t ∈ 2 : T or t ∈ 1 : (T − 1), compute

recursively

ai(t) =
∑
j

aj(t− 1)p
(k)
ji f(yt; θi),

bi(t) =
∑
j

p
(k)
ij f(yt+1; θj)bj(t+ 1)

and then
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η
(k+1)
t (i) =

ai(t)bi(t)∑
j aj(T )

,

w
(k+1)
t (i, j) = p

(k)
ij f(yt; θj)

ai(t− 1)bj(t)∑
j aj(T )

.

M-step: After the E-step, maximize

Q(Ψ) =
∑
i

η
(k+1)
1 (i) log pi +

T−1∑
t=1

∑
i, j

w
(k+1)
t (i, j) log pij

+
T∑
t=1

∑
i

η
(k+1)
t (i) log{f(yt; θi)}

with respect to Ψ.
There are various alternative EM algorithms for the FL for HMMs. For

example, extending Mongillo and Denève (2008) and Cappé and Moulines (2009),
Cappé (2011) proposed an online EM algorithm.

The numerical solution for the CL is much simpler. The ℓcl(Ψ) in (2.3) is
algebraically identical to a log-likelihood of the mixing distribution Ψ given a set
of independent and identically distributed bivariate observations (yt, yt+1), so the
numerical problem is to maximize a likelihood function under a finite mixture
model. We need pay attention to the fact that the specific CL structure requires
us to impute the (St, St+1) values in pairs.

The CL contribution of (yt, yt+1) is given by∏
i, j

[πijf(yt; θi)f(yt+1; θj)]
ξt(i,j).

Hence, the complete data log CL (with a penalty on πij) is

ℓ
(c)
cl (Ψ) =

T−1∑
t=1

∑
i, j

ξt(i, j) log{πijf(yt; θi)f(yt+1; θj)}+
∑
i, j

log πij

=

T−1∑
t=1

∑
i, j

ξt(i, j) log πij +
∑
i, j

log πij

+
T−1∑
t=1

∑
i, j

ξt(i, j) log{f(yt; θi)f(yt+1; θj)}.

Given Ψ(k), we compute the conditional expectation as if (yt, yt+1) were
independent samples from the bivariate finite mixture model via Bayes’ formula:

w
(k+1)
t (i, j) = E{ξt(i, j) | yt, yt+1; Ψ

(k)} =
π
(k)
ij f(yt; θ

(k)
i )f(yt+1; θ

(k)
j )

f(yt, yt+1; Ψ(k))
.
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Replacing ξt(i, j) by w
(k+1)
t (i, j) in ℓcl, we obtain the so-called Q-function in the

E-step:

Q(Ψ|Ψ(k)) =
∑
i, j

{ T−1∑
t=1

w
(k+1)
t (i, j) + 1

}
log πij

+

T−1∑
t=1

∑
i, j

w
(k+1)
t (i, j) log{f(yt; θi)f(yt+1; θj)}.

The equilibrium probabilities πij must satisfy some linear constrains:
∑N

j=1 πij

=
∑N

j=1 πji for all i ∈ 1 :N and
∑

i,j πij = 1. When N = 2, the solution to the

first term in Q(Ψ|Ψ(k)) is

π
(k+1)
11 =

∑T−1
t=1 w

(k+1)
t (1, 1) + 1

T + 3
, π

(k+1)
22 =

∑T−1
t=1 w

(k+1)
t (2, 2) + 1

T + 3
,

π
(k+1)
12 = π

(k+1)
21 =

∑T−1
t=1 {w

(k+1)
t (1, 2) + w

(k+1)
t (2, 1)}+ 2

2 (T + 3)
.

WhenN ≥ 3, there are no explicit solutions. Numerically, the task is to maximize

a convex function under N linear constrains. In our simulations, a Newton-

Raphson algorithm was used.

There is often an explicit solution to the maximization with respect to θi of

the second term in Q; and it is f -dependent but often simple. For instance, if

f is a Poisson density, then θi corresponds to the conditional mean of y given

S = i and

θ
(k+1)
i =

∑T−1
t=1

{[∑
j w

(k+1)
t (i, j)

]
yt +

[∑
j w

(k+1)
t (j, i)

]
yt+1

}∑T−1
t=1

∑
j

{
w

(k+1)
t (i, j) + w

(k+1)
t (j, i)

} .

When f is a normal density and the composite likelihood is given by (3.2),

the M-step maximizes the regularized Q-function

Q̃(Ψ|Ψ(k)) = Q(Ψ|Ψ(k))− T−1/2
2∑

i=1

{
log(

σ2
i

σ̂2
0

) +
σ̂2
0

σ2
i

}
with respect to θ = (µ, σ2). The update formulas for π

(k+1)
ij and µ

(k+1)
i are the

same as those of π
(k+1)
ij and θ

(k+1)
i in the Poisson case, but

σ2
i
(k+1)

=

∑
t

{∑
j w

(k+1)
t (i, j)(yt−µ

(k+1)
i )2+

∑
j w

(k+1)
t (j, i)(yt+1−µ

(k+1)
i )2

}
+2T−1/2σ̂2

0∑
t

∑
j

{
w

(k+1)
t (i, j) + w

(k+1)
t (j, i)

}
+ 2T−1/2

.
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Here the penalty has placed a lower bound T−3/2σ̂2
0 on σ2

i
(k+1)

, which prevents

singularity.

In practice, when a likelihood is constructed, the parameter vector is esti-

mated by one of its global maxima. Theorem 1 in the Appendix shows that the

global maximum of the CL is asymptotically unique. We use multiple initial

values for the above EM-iteration to locate the global maximum.

We select a sensible local maximum for FL in simulation studies to compare

the performance of the FL and CL in terms of bias and mean squared error. We

also examine the two estimators in terms of the in-sample goodness-of-fit and the

out-of-sample prediction.

3.3. In-sample and out-of-sample performance

The in-sample fitted values of yt are linear combinations of the form

ŷt =
∑
i

wtiµ̂i, (3.3)

where wti and µ̂i are the fitted conditional probability of St = i and the regime-

specific mean given the in-sample data y(1:T ). They are obtained by either the

CL or the FL estimators. In the following, we focus on the HMM with a normal

kernel.

Applying the forward-backward recursive formula, we calculate wti as follows.

Let ai(1) = p̂iϕ(y1; µ̂i; σ̂i) and bi(T ) = 1 for u ∈ 1 : N and for t ∈ 2 : T ,

ai(t) =
∑
j

p̂jif(yt; µ̂i, σ̂i)aj(t− 1),

bi(t− 1) =
∑
j

p̂ijf(yt; µ̂j , σ̂j)bj(t),

and for t = 1:T , wti = ai(t)bi(t)/
∑

j aj(T ).

As a performance measure, the in-sample mean squared error is

MSEin =
1

T

T∑
t=1

(ŷt − yt)
2. (3.4)

The out-of-sample predicted value at t in the external period T + (1:T ∗) is

ỹt =
∑
i

w̃tiµ̂j , (3.5)

where w̃ti is the fitted conditional probability Pr(St = i | y1, . . . , yt−1) given by

w̃ti =
∑
j

p̂jiŵ(t−1)j (3.6)
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Table 1. Simulation parameter settings for two-state HMM.

Mean (µ1, µ2) = (-3.7,2.6)
Variance (i) = 1 2 3

(σ1, σ2) = (4.1, 4.5) (2.1, 2.3) (2.1, 6.3)
Transition prob (j) = 1 2 3 4 5

(p11, p22) = (0.90, 0.89) (0.75, 0.75) (0.85, 0.65) (0.35, 0.65) (0.40, 0.80)

with ŵ(t−1)i=ai(t−1)/
∑

j aj(t− 1). The out-of-sample performance measure is

MSEout =
1

T ∗

T+T ∗∑
t=T+1

(ỹt − yt)
2. (3.7)

4. Monte Carlo Studies

In the first stimulation study, we selected fifteen parameter settings for the

two-state HMM with a normal kernel distribution, denoted (i, j), where i and j

are the choice numbers for (σ1, σ2) and (p11, p22) respectively; see Table 1.

The first setting mimics the long swing pattern in exchange rates found

by Engel and Hamilton (1990). In this pattern the two exchange-rate regimes

are characterized by a positive and a negative trend respectively, with a higher

probability of staying in the current state than switching to the alternative state.

The three settings (i, j) with i = 1, 2, 3 and j = 4 correspond to the scenario

where the time series for each of the three models is a series of independent and

identically distributed random variables. The three settings (i, j) with i = 1, 2, 3

and j = 5 represent the case where regime 2 dominates. The three sets of

parameter values for (σ1, σ2) represent the extent to which the two hidden states

can be identified.

In the simulation, we set the in-sample and out-of-sample sizes to T =

150, 300 and T ∗ = 30 respectively. The in-sample size of T = 150 matches a

later example. We generated 1,000 sets of time series for each of the 15 settings.

For each data set, we obtained the CL and FL estimates based on the in-sample

data. We then computed the bias for each parameter: the absolute difference

between the true parameter value and the average of the corresponding param-

eter estimates over all the repetitions for a setting. We computed the standard

deviation of these estimates based on 1,000 repetitions for each setting. For each

time series, we also computed the in-sample and out-of-sample MSE as defined

in (3.4) and (3.7), respectively.

For the Monte Carlo study we wrote our own R-code for the CL method and

used the CRAN R-Package depmixS4 (Visser and Speekenbrink (2010)) for the

FL method. The package crashed several times but not often enough to distort

the comparison between the FL and CL. Table 2 summarizes the results for the
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Table 2. Bias(standard deviation) and average in- and out-of-sample MSEs
of CL and FL.

Setting Parameter MSE

-Method µ1 µ2 σ1 σ2 p11 p22 In Out

(1,1)-CL 0.226 (0.98) 0.434 (1.22) 0.286 (0.55) 0.391 (0.63) 0.119 (0.10) 0.141 (0.10) 11.89 26.13

(1,1)-FL 0.075 (0.87) 0.131 (1.09) 0.142 (0.52) 0.176 (0.62) 0.021 (0.10) 0.025 (0.09) 14.95 25.78

(1,2)-CL 0.066 (1.16) 0.449 (1.36) 0.254 (0.65) 0.344 (0.74) 0.058 (0.12) 0.085 (0.12) 11.97 27.64

(1,2)-FL 0.049 (1.53) 0.324 (1.76) 0.270 (0.83) 0.277 (0.87) 0.011 (0.17) 0.025 (0.18) 14.16 27.76

(1,3)-CL 0.610 (1.00) 0.818 (1.78) 0.451 (0.62) 0.175 (0.91) 0.140 (0.14) 0.029 (0.12) 12.63 25.91

(1,3)-FL 0.432 (1.30) 0.441 (2.38) 0.455 (0.79) 0.249 (1.04) 0.078 (0.20) 0.020 (0.20) 14.30 25.94

(1,4)-CL 0.852 (1.51) 0.874 (1.35) 0.018 (0.84) 0.438 (0.84) 0.144 (0.14) 0.141 (0.14) 12.93 28.49

(1,4)-FL 0.612 (2.39) 1.006 (2.20) 0.171 (1.13) 0.553 (1.16) 0.146 (0.30) 0.137 (0.30) 15.30 28.57

(1,5)-CL 1.609 (1.62) 1.133 (1.24) 0.148 (0.89) 0.550 (0.76) 0.136 (0.13) 0.232 (0.15) 13.52 27.32

(1,5)-FL 1.183 (2.64) 1.089 (1.98) 0.053 (1.29) 0.671 (1.13) 0.145 (0.28) 0.204 (0.30) 16.01 27.40

(2,1)-CL 0.007 (0.32) 0.029 (0.37) 0.044 (0.20) 0.066 (0.26) 0.025 (0.05) 0.031 (0.06) 3.80 9.59

(2,1)-FL 0.005 (0.29) 0.003 (0.34) 0.035 (0.20) 0.036 (0.24) 0.006 (0.04) 0.008 (0.05) 3.99 9.52

(2,2)-CL 0.010 (0.38) 0.011 (0.43) 0.034 (0.26) 0.043 (0.30) 0.017 (0.07) 0.015 (0.07) 3.24 13.08

(2,2)-FL 0.004 (0.39) 0.012 (0.43) 0.032 (0.26) 0.026 (0.30) 0.004 (0.06) 0.001 (0.07) 3.35 13.05

(2,3)-CL 0.035 (0.29) 0.106 (0.70) 0.044 (0.19) 0.042 (0.42) 0.015 (0.05) 0.017 (0.09) 3.28 11.54

(2,3)-FL 0.018 (0.28) 0.157 (0.81) 0.042 (0.20) 0.004 (0.50) 0.004 (0.05) 0.002 (0.10) 3.51 11.54

(2,4)-CL 0.203 (0.81) 0.133 (0.50) 0.038 (0.48) 0.098 (0.31) 0.027 (0.11) 0.035 (0.10) 3.16 14.27

(2,4)-FL 0.248 (1.05) 0.101 (0.61) 0.059 (0.59) 0.093 (0.39) 0.024 (0.15) 0.039 (0.14) 3.55 14.29

(2,5)-CL 0.495 (1.18) 0.171 (0.42) 0.141 (0.61) 0.125 (0.27) 0.037 (0.11) 0.054 (0.11) 3.54 12.36

(2,5)-FL 0.765 (1.54) 0.153 (0.47) 0.294 (0.77) 0.181 (0.38) 0.074 (0.17) 0.056 (0.14) 4.29 12.37

(3,1)-CL 0.047 (0.36) 1.259 (1.73) 0.179 (0.48) 0.679 (1.04) 0.071 (0.07) 0.149 (0.13) 14.23 28.05

(3,1)-FL 0.013 (0.30) 0.216 (1.05) 0.004 (0.26) 0.165 (0.61) 0.011 (0.02) 0.019 (0.07) 18.16 27.47

(3,2)-CL 0.075 (0.38) 1.309 (1.98) 0.187 (0.52) 0.697 (1.08) 0.020 (0.08) 0.117 (0.14) 14.17 31.28

(3,2)-FL 0.027 (0.35) 0.452 (1.43) 0.003 (0.36) 0.256 (0.78) 0.011 (0.09) 0.039 (0.12) 16.82 31.20

(3,3)-CL 0.010 (0.26) 1.074 (2.18) 0.056 (0.30) 0.784 (1.21) 0.012 (0.06) 0.094 (0.14) 9.92 22.80

(3,3)-FL 0.012 (0.25) 0.510 (1.80) 0.001 (0.23) 0.428 (1.04) 0.001 (0.06) 0.038 (0.14) 11.03 22.79

(3,4)-CL 0.285 (0.63) 2.102 (2.18) 0.577 (0.79) 0.996 (1.12) 0.150 (0.16) 0.159 (0.16) 14.82 36.84

(3,4)-FL 0.214 (0.68) 1.284 (2.13) 0.286 (0.78) 0.595 (1.04) 0.084 (0.19) 0.107 (0.18) 17.98 36.91

(3,5)-CL 0.618 (0.90) 2.479 (2.02) 0.991 (0.98) 0.967 (1.08) 0.138 (0.14) 0.231 (0.16) 16.04 38.84

(3,5)-FL 0.548 (1.11) 1.966 (2.43) 0.712 (1.14) 0.751 (1.16) 0.119 (0.19) 0.176 (0.22) 19.53 38.92

first Monte Carlo study in terms of the bias, the standard deviation (in brackets),

and the average in-sample and out-of-sample MSEs.

The two estimators have similar biases and standard deviations. From the

paired-t test at the unadjusted 5% level, CL has a significantly lower standard

error for estimating µ1, a higher bias for µ2 and σ2, and a higher bias but lower

standard error for p11 and p22. None of these are apparent to the naked eye.

It is, however, clear that the CL in-sample MSEs are lower. Having lower in-

sample MSEs is an indication of the model flexibility of the CL, as it specifies the

joint distribution of only two consecutive observations. Do not regard the lower

in-sample MSEs as efficiency gain, but a model robustness property of the CL.
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When the sample size increases from T = 150 to T = 300, the biases and

standard deviations of both are generally smaller. The rest of the observations

are similar, so we omit these details here.

In the second simulation, we generated data from four three-state HMMs

with a normal kernel distribution. We set T = 150 and 300 but report the

results only for T = 150. Three-state HMMs contain many more parameters, so

it is cumbersome to report all the figures. We looked toward more condensed

summaries and computed the total (relative) mean square errors as

N∑
s=1

(µ̂s − µs)
2

σ2
s

,
N∑
s=1

(σ̂s − σs)
2

σ2
s

,
N∑

i,j=1

(p̂ij − pij)
2.

We first computed these three values for each data set and each model. Subse-

quently, we computed their averages over the simulation repetitions. Our pre-

vious simulation results indicated that CL was dramatically superior to the FL

in terms of these performance measurements. Due to the intuition that the FL

method is the most efficient, considered three explanations: simulation error,

the beneficial effect of the penalty, and small sample size. We re-designed the

simulation study accordingly. The results are in Table 3.

As we had included the true parameter values as initial values in both EM-

algorithms for CL and FL, the FL results improved on correction. In applications,

however, we do not have true values. This imperfect simulation experiment

remains informative: CL is numerically more stable.

We removed the penalty from the CL to gauge its benefit. The results of

CL with and without penalty are in columns pCL-MSE and CL-MSE. Without

exception, the penalty helped. Yet the unpenalized CL still outperformed FL

under Models 1 and 3, while it was comparable or slightly worse than the FL

under Models 2 and 4.

We increased the number of repetitions from 1,000 to 5,000 and examined

the difference between the first thousand, second thousand and so on. The vari-

ations were very small so that the outcomes in Table 3 are trustworthy, barring

unforeseen errors.

With these precautions taken, we are inclined to conclude that the CL with

penalty is superior to the FL. This advantage may fade away as the sample size

increases when the asymptotic efficiency of the FL kicks in. We carried out the

simulation for T = 300 under the same settings but the results were similar.

We expect the penalized FL to be competitive in efficiency but need to work

out the corresponding difficult theory.

The theory that we have developed is equally applicable to the HMM with

Poisson or other kernel distributions. Our third simulation study compared the



COMPOSITE LIKELIHOOD AND HMM 1581

Table 3. CL and FL performance under three-state HMM with normal kernel.
Last two columns are average MSEs for µi, σi, and pij

Model (µs, σs) Transition matrix pCL-MSE CL-MSE FL-MSE

1

−6.86 1.5
−1.50 1.0
2.53 2.0

 0.453 0.240 0.307
0.300 0.300 0.400
0.147 0.400 0.453

 0.163
0.095
0.061

 0.247
0.150
0.107

 0.457
0.232
0.142


2

−6.86 1.5
−1.50 1.0
2.53 2.0

 0.693 0.307 0.000
0.300 0.300 0.400
0.000 0.247 0.753

 0.130
0.064
0.052

 0.140
0.077
0.068

 0.120
0.067
0.057


3

−6.86 3.0
−1.50 2.0
2.53 3.0

 0.453 0.240 0.307
0.300 0.300 0.400
0.147 0.400 0.453

 0.480
0.162
0.122

 1.293
0.388
0.500

 1.478
0.514
0.612


4

−6.86 3.0
−1.50 2.0
2.53 3.0

 0.693 0.307 0.000
0.300 0.300 0.400
0.000 0.247 0.753

 0.426
0.117
0.142

 0.801
0.231
0.383

 0.545
0.182
0.254



CL and FL under a two-state HMM with a Poisson kernel. We arrived at nearly

identical conclusions to those for the two-state HMM with a normal kernel: the

CL and FL have similar precision in the parameter estimates, while CL gives

much lower in-sample MSEs.

A fourth simulation had data from a three-state HMM with a normal kernel

distribution with a two-state HMM fitted. Parameter estimations were nonsen-

sical but the in-sample and out-of-sample MSEs remained informative. Both the

CL and FL had a much higher in-sample MSE when the fitted model was incor-

rect. The out-of-sample MSEs using the correct or incorrect model were similar

for both the CL and FL. Neither method was preferred.

5. Example

We applied both the CL and FL to a two-state HMM to analyze changes in

the exchange rate between the U.S. dollar and the British pound. The data for

our study are the exchange rates expressed as U.S. dollars to one British pound

for the first day of each quarter from the first quarter of 1971 to the second

quarter of 2011. The data are noon buying rates in New York for cable transfers

payable in foreign currencies and are from the website of the Federal Reserve

Bank of St. Louis. As in Engel and Hamilton (1990), we defined the quarterly

change in the exchange rate to be yt = 100 × (ln(et) − ln(et−1)) where et and

et−1 are the exchange rates for quarters t and t − 1. The overall sample period

is divided into an in-sample period from the first quarter of 1971 to the third

quarter of 2008 and an out-of-sample period from the fourth quarter of 2008 to

the first quarter of 2011. Engel and Hamilton (1990) used the FL under the two-

state HMM to analyze quarterly changes in this exchange rate from the fourth
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Table 4. Analysis of the quarterly data of the exchange rates.

In-sample Q1, 1971 to Q3, 2008; out-of-sample Q4, 2008 to Q1, 2011
µ1 µ2 σ1 σ2 p11 p22 MSEin MSEout

CL -2.838 1.204 5.519 3.847 0.642 0.791 17.84 38.67
FL -0.762 0.455 5.974 3.038 0.983 0.963 24.20 40.68

In-sample Q4, 1973 to Q1, 1988; out-of-sample Q2, 1988 to Q3, 1990
µ1 µ2 σ1 σ2 p11 p22 MSEin MSEout

CL -4.622 2.779 4.213 4.270 0.590 0.645 10.89 24.85
FL -3.730 2.699 4.664 4.514 0.910 0.932 18.60 27.32

quarter of 1973 to the first quarter of 1988. Their data source was different from

ours.

We fitted the two-state HMM to the in-sample data of yt using both the CL

and FL methods, and calculated the in-sample and out-of-sample performance

measures with T =151 and T ∗=10. The top panel in Table 4 gives the parameter

estimates and MSEs.

There are significant discrepancies in the parameter estimates between the

CL and FL methods based on the in-sample data from Q1, 1971 to Q3, 2008.

According to the CL, the two exchange-rate regimes have the expected quarterly

changes of −2.838% and 1.204% respectively. The corresponding figures for the

FL are −0.762% and 0.455%. This suggests that the FL estimator tends to un-

derestimate both negative and positive trends in the exchange rate. Furthermore,

for the CL the probability of remaining in the current regime is 0.642 for regime

1 and 0.791 for regime 2, whereas the corresponding figures for the FL are 0.983

and 0.963. Hence, the results of the CL indicate a stronger asymmetric effect

in the persistence of the two exchange-rate regimes and a higher odds of regime

switching.

We also examined the differences in estimated and forecast values between

the CL and FL methods. Figure 1 shows the observed quarterly changes (solid

line) together with the estimated and forecast quarterly changes based on the

CL (dotted line) and the FL (dashed line). The values based on the CL better

match the observed changes. Furthermore, we calculated the in- and out-of-

sample performance measures defined by (3.4) and (3.7). The value of MSEin

is 17.84 for the CL and 24.20 for the FL, while the value of MSEout is 38.67 for

the CL and 40.68 for the FL. The CL has better in-sample and out-of-sample

performance in this example.

As in Engel and Hamilton (1990), we also checked whether or not there is

evidence rejecting the null hypothesis that the exchange rate follows a random

walk in favor of the two-state HMM. We fitted the data of the quarterly changes

to a normal distribution, and calculated both estimated and forecast values for in-

and out-of-sample periods. The resulting MSE is 24.53 for the in-sample period
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The solid line is the observed quarterly change, the dotted line is the CL forecast, and the
dashed line is the FL forecast.

Figure 1. Observed, estimated, and forecast quarterly changes in exchange rate.

and 54.93 for the out-of-sample period. These outcomes support the observations

of Engel and Hamilton (1990) that the two-state HMM is more suitable for the

exchange-rate data than a random walk specification. In addition, we regressed

yt+1 against yt as a simple linear model and calculated the estimated and forecast

values. The MSE is 24.66 for the in-sample period and 56.88 for the out-of-sample

period. The results are again in favor of the two-state HMM.

We looked into the differences in the inference about the regime switching

of the exchange rate between the CL and FL methods. In Figure 2, the top

panel shows the observed exchange rate, and the middle and bottom panels

show the estimated conditional probability P (St = 1|y(1:T )) that the exchange

rate is in regime 1 for quarter t during the in-sample period based on the FL and

CL methods. Econometricians consider the exchange rate to be in regime 1 if

P (St = 1|y(1:T )) > 0.5 and in regime 2 otherwise. Accordingly, the shaded areas

in the middle and bottom panels of Figure 2 indicate the periods of regime 1 based

on the FL and CL methods respectively. Figure 2 shows that the classification of

the two underlying regimes based on the CL method more closely captures the

volatile periods for the exchange rate before the British government was forced to

withdraw the pound sterling from the European Exchange Rate Mechanism on

16 September 1992 after it was unable to keep the currency above its agreed lower

limit. Hence, the CL method characterizes the swing pattern in the exchange

rate better than the FL method.

For the purposes of comparison, we repeated the above analysis for the sub-

sample data with T = 62 and T ∗ = 10 where the in-sample period is the same as
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Figure 2. Observed exchange rate and estimated probabilities of being in state 1.

the sample period in Engel and Hamilton (1990). The parameter estimates and

MSEs are included in the bottom panel of Table 4. The FL estimates are consis-

tent with those of Engel and Hamilton (1990). While the FL and CL estimates

of the conditional mean and standard deviation are similar, the CL estimates of

the transition probabilities are much smaller, leading to more frequent regime

switches. The CL method does better than the FL method in terms of both

in- and out-of-sample performance: the values of MSEin and MSEout for the CL

method are smaller. In addition, in terms of the classification of the two under-

lying regimes, the CL results for the two in-sample data sets are similar whereas

the FL results are rather different. This suggests that the CL method is more

robust for inference about regime switching.

We examined the differences in the results between the CL and FL methods

when we used a three-state HMM to analyze both the whole sample and the

subsample data. As in the case of the two-state HMM, the differences between
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the CL and FL parameter estimates are much larger for the in-sample period

from Q1, 1971 to Q3, 2008, and the CL method has better in- and out-of-sample

performance since the values of MSEin and MSEout for the CL method are smaller

for both the sample periods. We have omitted the details; and the results are

available upon request.

6. Conclusion

We have proposed a CL approach for data analysis under the HMM. The

CL function is constructed based on pairs of consecutive observations. We have

discussed the consistency and asymptotic properties of the CL estimator. A

simulation study shows that the CL has efficiency comparable to that of the FL.

We have used a two-state HMM to analyze exchange rates between US dollars

and British pounds. The CL classification of the periods of dollar appreciation

and depreciation is more consistent and closer to the actual dollar movements.

The CL estimates based on two periods of data are closer, indicating that the

method has a degree of model robustness.

We have assumed that the number of regimes is known for the Markov

regime-switching model. The simpler mathematical structure of the CL may

make it a better choice than the FL for statistical inference on the number of

underlying regimes under the Markov regime-switching model. We hope to in-

vestigate this in the future.
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