ON BUFFERED THRESHOLD GARCH MODELS

Pak Hang Lo, Wai Keung Li, Philip L.H. Yu and Guodong Li

University of Hong Kong

Supplementary Material

This online supplementary material gives the proofs of Theorems 1 and 2

S1 Proof of Theorem 1

Let \mathcal{B} be the class of Borel sets of \mathbb{R}^+ and $\mathcal{U} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$. For the temporarily homogeneous Markov chain $\{\sigma_t^2\}$ defined as $\sigma_t^2 = \mathbf{g}(\sigma_{t-1}^2, \varepsilon_{t-1})$, we denote its state space by $(\mathbb{R}^+ \times \{0, 1\}, \mathcal{B} \times \mathcal{U})$, and set its transition probability function as

$$P(\mathbf{x}, \mathbf{A}) = \int_{\mathbf{A}_{\varepsilon}} f(y) dy \quad \text{for } \mathbf{x} \in \mathbb{R}^+ \times \{0, 1\} \text{ and } \mathbf{A} \in \mathcal{B} \times \mathcal{U},$$

where $\mathbf{A}_{\varepsilon} = \{y : \mathbf{g}(\mathbf{x}, y) \in \mathbf{A}\}$ and $f(\cdot)$ is the density of ε_t . From Theorem 1 of Feigin and Tweedie (1985) and Theorem 4 of Tweedie (1983), it is sufficient to show the following claims:

- (i) $\{\boldsymbol{\sigma}_t^2\}$ is a Feller Markov chain;
- (ii) $\{\boldsymbol{\sigma}_t^2\}$ is ϕ -irreducible for some measure ϕ on the state space $(\mathbb{R}^+ \times \{0, 1\}, \mathcal{B} \times \mathcal{U});$
- (iii) There exists a compact set $C \subset \mathbb{R}^+ \times \{0,1\}$ such that $\phi(C) > 0$ and a nonnegative continuous function (or test function) $V : \mathbb{R}^+ \times \{0,1\} \to \mathbb{R}$ such that

$$V(\mathbf{x}) \geq 1$$
, for any $\mathbf{x} \in C$,

and, for some 0 < c < 1,

$$E\{V(\boldsymbol{\sigma}_t^2)|\boldsymbol{\sigma}_{t-1}^2 = \mathbf{x}\} \le cV(\mathbf{x}), \text{ for any } \mathbf{x} \in C^c,$$

where C^c is the complement of C.

We first prove Claim (i). Note that

$$\sigma_{t}^{2} = (\omega^{(1)} + \alpha^{(1)}\sigma_{t-1}^{2}\varepsilon_{t-1}^{2} + \beta^{(1)}\sigma_{t-1}^{2})I(\varepsilon_{t-1} \le r_{L}/\sigma_{t-1}) + (\omega^{(1)} + \alpha^{(1)}\sigma_{t-1}^{2}\varepsilon_{t-1}^{2} + \beta^{(1)}\sigma_{t-1}^{2})R_{t-1}I(r_{L}/\sigma_{t-1} < \varepsilon_{t-1} \le r_{L}/\sigma_{t-1}) + (\omega^{(2)} + \alpha^{(2)}\sigma_{t-1}^{2}\varepsilon_{t-1}^{2} + \beta^{(2)}\sigma_{t-1}^{2})(1 - R_{t-1})I(r_{L}/\sigma_{t-1} < \varepsilon_{t-1} \le r_{L}/\sigma_{t-1}) + (\omega^{(2)} + \alpha^{(2)}\sigma_{t-1}^{2}\varepsilon_{t-1}^{2} + \beta^{(2)}\sigma_{t-1}^{2})I(\varepsilon_{t-1} > r_{U}/\sigma_{t-1})$$
(S1.1)

and, for a bounded and continuous function $h(\cdot, \cdot)$,

$$E\{h(\sigma_t^2, R_t) | (\sigma_{t-1}^2, R_{t-1}) = (x_1, x_2)\}$$

$$= E\{h(\omega^{(1)} + \alpha^{(1)} x_1 \varepsilon_{t-1}^2 + \beta^{(1)} x_1, 1) I(\varepsilon_{t-1} \le r_L/x_1)\}$$

$$+ x_2 E\{h(\omega^{(1)} + \alpha^{(1)} x_1 \varepsilon_{t-1}^2 + \beta^{(1)} x_1, 1) I(r_L/x_1 < \varepsilon_{t-1} \le r_U/x_1)\}$$

$$+ (1 - x_2) E\{h(\omega^{(2)} + \alpha^{(2)} x_1 \varepsilon_{t-1}^2 + \beta^{(2)} x_1, 0) I(r_L/x_1 < \varepsilon_{t-1} \le r_U/x_1)\}$$

$$+ E\{h(\omega^{(2)} + \alpha^{(2)} x_1 \varepsilon_{t-1}^2 + \beta^{(2)} x_1, 0) I(\varepsilon_{t-1} \ge r_U/x_1)\}.$$
(S1.2)

Denote $g_h(x_1, \varepsilon_{t-1}) = h(\omega^{(1)} + \alpha^{(1)}x_1\varepsilon_{t-1}^2 + \beta^{(1)}x_1, 1)$ and $C_h = \sup_{x_1, x_2} |h(x_1, x_2)| < \infty$. Due to the dominated convergence theorem and the fact that $x_1 > \min\{\omega^{(1)}, \omega^{(2)}\} > 0$, it holds that

$$\begin{aligned} |E\{g_h(x_1,\varepsilon_{t-1})I(\varepsilon_{t-1} \le r_L/x_1)\} - E\{g_h(x_1^*,\varepsilon_{t-1})I(\varepsilon_{t-1} \le r_L/x_1^*)\}| \\ &\le E|g_h(x_1,\varepsilon_{t-1}) - g_h(x_1^*,\varepsilon_{t-1})| + C_h \cdot E|I(\varepsilon_{t-1} \le r_L/x_1) - I(\varepsilon_{t-1} \le r_L/x_1^*)| \\ &= \int |g_h(x_1,y) - g_h(x_1^*,y)|f(y)dy + C_h \int_{r_L/x_1^*}^{r_L/x_1} f(y)dy \to 0 \end{aligned}$$

as $|x_1^* - x_1| \to 0$, i.e. $E\{g_h(x_1, \varepsilon_{t-1}) I(\varepsilon_{t-1} \leq r_L/x_1)\}$ is continuous with respect to x_1 . Similarly we can show that the other three terms at the right hand side of (S1.2) are continuous with respect to x_1 . As a result, $E\{h(\sigma_t^2, R_t) | (\sigma_{t-1}^2, R_{t-1}) =$ $(x_1, x_2)\}$ is continuous with respect to $x_1 \in \mathbb{R}^+$, and hence with respect to $(x_1, x_2) \in \mathbb{R}^+ \times \{0, 1\}$. Thus, the Markov chain $\{\sigma_t^2\}$ is a Feller chain.

We next prove the irreducibility at Claim (ii), and first consider the case with $r_L \leq r_U \leq 0$. Note that, if $\varepsilon_j > 0$ for all $0 \leq j \leq t - 1$, then the process will stay at the upper regime up to time t and, by (S1.1),

$$\sigma_t^2 = \omega^{(2)} + (\alpha^{(2)} \varepsilon_{t-1}^2 + \beta^{(2)}) \left[\omega^{(2)} \sum_{i=1}^{t-1} \prod_{j=2}^i (\alpha^{(2)} \varepsilon_{t-j}^2 + \beta^{(2)}) + \sigma_0^2 \prod_{j=2}^{t-2} (\alpha^{(2)} \varepsilon_{t-j}^2 + \beta^{(2)}) \right].$$
(S1.3)

From the assumptions of this theorem, there exist a $\tau > 0$ and a $0 < \rho < 1$ such that $\alpha^{(1)}\tau^2 + \beta^{(1)} \leq \rho$ and $\alpha^{(2)}\tau^2 + \beta^{(2)} \leq \rho$. Let $M = \omega^{(2)}[1 + (1 - \rho)^{-1}\beta^{(2)}] + 1$, and denote by μ_M the restriction of the Lebesgue measure on (M, M^*) , where $M^* > M$ is a fixed value, and we will introduce its selection in the proof for Claim (iii). From (S1.3), it can be verified that, if $0 < \varepsilon_j < \tau$ with $0 \leq j \leq t - 2$ and $\varepsilon_{t-1} > 0$, then

$$\sigma_t^2 \le L_{\sigma,t} + \left(\frac{\omega^{(2)}}{1-\rho} + \sigma_0^2 \rho^{t-1}\right) \alpha^{(2)} \varepsilon_{t-1}^2$$

where

$$L_{\sigma,t} = \omega^{(2)} + \left(\frac{\omega^{(2)}}{1-\rho} + \sigma_0^2 \rho^{t-1}\right) \beta^{(2)}.$$

Thus, conditional on $\sigma_0^2 = x_1$, $0 < \varepsilon_j < \tau$ with $0 \le j \le t - 2$ and $\varepsilon_{t-1} > 0$, the random variable σ_t^2 admits a density, $f_{\sigma,t}(\cdot)$, positive on $[L_{\sigma,t}, +\infty)$. For any $B \subset \mathcal{B}$ and any $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^+ \times \{0, 1\}$, there exists a $t^* > 0$ such that $L_{\sigma,t^*} < M$, and then

$$P\{\sigma_{t^*}^2 \in B | (\sigma_0^2, R_0) = \mathbf{x}\}$$

$$\geq P\{\sigma_{t^*}^2 \in B | 0 < \varepsilon_j < \tau \text{ with } 0 \le j \le t^* - 2, \varepsilon_{t^*-1} > 0, (\sigma_0^2, R_0) = \mathbf{x}\}$$

$$\cdot P\{0 < \varepsilon_j < \tau \text{ with } 0 \le j \le t^* - 2, \varepsilon_{t^*-1} > 0\}$$

$$= \int_{B \cap (M, M^*)} f_{\sigma, t^*}(y) dy \left[\int_0^\tau f(y) dy \right]^{t^*-1} \int_0^{+\infty} f(y) dy > 0$$

if $\mu_M(B) > 0$. Define the measure $\mu = \mu_M \times \mu_1$ on the space $(\mathbb{R}^+ \times \{0, 1\}, \mathcal{B} \times \mathcal{U})$, where μ_1 is a measure on $(\{0, 1\}, \mathcal{U})$ with $\mu_1(\{0\}) = \mu_1(\{1\}) > 0$. Hence, the process $\{\sigma_t^2\}$ is μ -irreducible. Similarly, we can show the irreducibility for the case $0 \leq r_L \leq r_U$ by using the structure at the lower regime.

For the case of $r_L < 0 < r_U$, the process will stay at the upper regime up to time t if $R_0 = 0$ and $\varepsilon_j > 0$ for all $0 \le j \le t - 1$, while it will keep staying at the lower regime if $R_0 = 1$ and $\varepsilon_j < 0$ for all $0 \le j \le t - 1$. As a result, we can show the irreducibility similarly, and hence finish the proof for Claim (ii).

Finally we prove Claim (iii). Consider the test function $V(\mathbf{x}) = 1 + |x_1|$, where $\mathbf{x} = (x_1, x_2)'$. From (S1.1), we have that

$$\sigma_t^2 \le \max\{\omega^{(1)}, \omega^{(2)}\} + \max\{\alpha^{(1)}, \alpha^{(2)}\}\sigma_{t-1}^2\varepsilon_{t-1}^2 + \max\{\beta^{(1)}, \beta^{(2)}\}\sigma_{t-1}^2,$$

and

$$E\{V(\sigma_t^2)|\sigma_{t-1}^2 = \mathbf{x}\} \le \max\{\omega^{(1)}, \omega^{(2)}\} + c|x_1|,$$

where $c = \max\{\alpha^{(1)}, \alpha^{(2)}\} + \max\{\beta^{(1)}, \beta^{(2)}\} < 1$. Let

$$C = \left\{ \mathbf{x} : |x_1| \le \max\left(\frac{\omega^{(1)} - 1}{c}, \frac{\omega^{(2)} - 1}{c}, M + 0.5\right) \right\}$$

and C^c be its complement, where M is defined as in the proof for Claim (ii). It can be easily verified that

(a) $V(\mathbf{x}) \geq 1$ when $\mathbf{x} \in C$, and

(b)
$$E\{V(\boldsymbol{\sigma}_t^2)|\boldsymbol{\sigma}_{t-1}^2 = \mathbf{x}\} \leq cV(\mathbf{x})$$
 when $\mathbf{x} \in C^c$.

Let

$$M^* = \max\left(\frac{\omega^{(1)} - 1}{c}, \frac{\omega^{(2)} - 1}{c}, M\right) + 1,$$

and it holds that $M < \max\{c^{-1}(\omega^{(1)}-1), c^{-1}(\omega^{(2)}-1), M+0.5\} < M^*$. Thus,

$$\mu(C) = \mu_1(\{0,1\}) \left[\max\left(\frac{\omega^{(1)} - 1}{c}, \frac{\omega^{(2)} - 1}{c}, M + 0.5\right) - M \right] > 0,$$

where μ is the irreducibility measure constructed previously. As a result, we finish the proof for Claim (iii), and hence the proof of Theorem 1.

S2 Proof of Theorem 2

We first denote $R_t = R_t(r_L, r_U, d)$, $R_{0t} = R_t(r_{0L}, r_{0U}, d_0)$ and $\tilde{R}_t = \tilde{R}_t(r_L, r_U, d)$ for simplicity. Moreover, let $\|\cdot\|$ be the Euclidean norm, \mathcal{F}_t be the σ -field generated by $\{\varepsilon_t, \varepsilon_{t-1}, \ldots\}$, and C be a generic constant which may vary from line to line but independent of time t and the parameter space.

We follow the standard arguments in Huber (1967) to show the strong consistency of $\widetilde{\lambda}_n$, and it is sufficient to verify the following three claims: (i) $\sup_{\boldsymbol{\theta}\in\boldsymbol{\Theta}, a\leq r_L\leq r_U\leq b, d\in D} |n^{-1}\sum_{t=1}^n [\widetilde{l}_t(\boldsymbol{\lambda}) - l_t(\boldsymbol{\lambda})]| \to 0$ with probability one as $n \to \infty$, where the parameter vector $\boldsymbol{\lambda} = (\boldsymbol{\theta}', r_L, r_U, d)'$.

(ii) $E[l_t(\boldsymbol{\lambda})] \geq E[l_t(\boldsymbol{\lambda}_0)]$ for all $\boldsymbol{\lambda}$, and the equality holds if and only if $\boldsymbol{\lambda} = \boldsymbol{\lambda}_0$.

(iii) For any λ ,

$$E \sup_{\boldsymbol{\lambda}^* \in U_{\lambda}(\eta)} |l_t(\boldsymbol{\lambda}^*) - l_t(\boldsymbol{\lambda})| \to 0 \quad \text{ as } \eta \to 0,$$

where $U_{\lambda}(\eta) = \{ \boldsymbol{\lambda}^* : \| \boldsymbol{\lambda}^* - \boldsymbol{\lambda} \| < \eta \}$. Thus, $E[l_t(\boldsymbol{\lambda})]$ is a continuous function of $\boldsymbol{\lambda}$.

We first show Claim (i). Let

$$B_t(\boldsymbol{\lambda}) = \begin{pmatrix} \beta_1^{(1)} & \cdots & \beta_p^{(1)} \\ & I_{p-1} & \mathbf{0}_{(p-1)\times 1} \end{pmatrix} R_t + \begin{pmatrix} \beta_1^{(2)} & \cdots & \beta_p^{(2)} \\ & I_{p-1} & \mathbf{0}_{(p-1)\times 1} \end{pmatrix} (1 - R_t),$$

and denote it by $\widetilde{B}_t(\boldsymbol{\lambda})$ when R_t in $B_t(\boldsymbol{\lambda})$ is replaced by \widetilde{R}_t , where I_k is the $k \times k$ identity matrix, and $\mathbf{0}_{k\times 1}$ is a k-dimensional zero vector. From Lemma A.1 in Li and Li (2008), it is implied by Assumption 1 that

$$\sup_{\boldsymbol{\lambda}} \|\prod_{j=0}^{i-1} B_{t-j}(\boldsymbol{\lambda})\|_{S} = O(\rho^{i}) \quad \text{and} \quad \sup_{\boldsymbol{\lambda}} \|\prod_{j=0}^{i-1} \widetilde{B}_{t-j}(\boldsymbol{\lambda})\|_{S} = O(\rho^{i}), \quad (S2.4)$$

where $0 < \rho < 1$, and $\|\cdot\|_S$ is the spectral norm. Note that

$$\widetilde{\sigma}_{t}^{2}(\boldsymbol{\lambda}) = \left[\omega^{(1)} + \sum_{i=1}^{q} \alpha_{i}^{(1)} y_{t-i}^{2} + \sum_{j=1}^{p} \beta_{j}^{(1)} \widetilde{\sigma}_{t-j}^{2}(\boldsymbol{\lambda}) \right] \widetilde{R}_{t} \\ + \left[\omega^{(2)} + \sum_{i=1}^{q} \alpha_{i}^{(2)} y_{t-i}^{2} + \sum_{j=1}^{p} \beta_{j}^{(2)} \widetilde{\sigma}_{t-j}^{2}(\boldsymbol{\lambda}) \right] [1 - \widetilde{R}_{t}], \quad 1 \le t \le n,$$
(S2.5)

where the initial values $(\tilde{\sigma}_0^2(\boldsymbol{\lambda}), ..., \tilde{\sigma}_{1-p}^2(\boldsymbol{\lambda}))' = \tilde{\boldsymbol{\sigma}}_0^2$ are nonnegative random variables or even non-random. We then can show that

$$\sup_{\boldsymbol{\lambda}} |\sigma_t^2(\boldsymbol{\lambda})| \le C \sum_{j=0}^{\infty} \rho^j z_{t-j} \quad \text{and} \quad \sup_{\boldsymbol{\lambda}} |\widetilde{\sigma}_t^2(\boldsymbol{\lambda})| \le C \left(\sum_{j=0}^{\infty} \rho^j z_{t-j} + \rho^t \|\widetilde{\boldsymbol{\sigma}}_0^2\| \right),$$
(S2.6)

where $z_t = 1 + \sum_{i=1}^q y_{t-i}^2$. Define

$$\hat{\sigma}_{t}^{2}(\boldsymbol{\lambda}) = \left[\omega^{(1)} + \sum_{i=1}^{q} \alpha_{i}^{(1)} y_{t-i}^{2} + \sum_{j=1}^{p} \beta_{j}^{(1)} \hat{\sigma}_{t-j}^{2}(\boldsymbol{\lambda}) \right] R_{t} \\ + \left[\omega^{(2)} + \sum_{i=1}^{q} \alpha_{i}^{(2)} y_{t-i}^{2} + \sum_{j=1}^{p} \beta_{j}^{(2)} \hat{\sigma}_{t-j}^{2}(\boldsymbol{\lambda}) \right] [1 - R_{t}], \quad 1 \le t \le n,$$
(S2.7)

where the initial values $(\widehat{\sigma}_0^2(\boldsymbol{\lambda}), ..., \widehat{\sigma}_{1-p}^2(\boldsymbol{\lambda}))' = \widetilde{\boldsymbol{\sigma}}_0^2$ are the same as those for $\widetilde{\sigma}_t^2(\boldsymbol{\lambda})$. Accordingly, let $\widehat{l}_t(\boldsymbol{\lambda}) = y_t^2/\widehat{\sigma}_t^2(\boldsymbol{\lambda}) + \log[\widehat{\sigma}_t^2(\boldsymbol{\lambda})]$. Similarly, it can be shown that

$$\sup_{\boldsymbol{\lambda}} |\widehat{\sigma}_t^2(\boldsymbol{\lambda})| \le C \left(\sum_{j=0}^{\infty} \rho^j z_{t-j} + \rho^t \|\widetilde{\boldsymbol{\sigma}}_0^2\| \right)$$
(S2.8)

and

$$\sup_{\boldsymbol{\lambda}} |\widehat{\sigma}_t^2(\boldsymbol{\lambda}) - \sigma_t^2(\boldsymbol{\lambda})| = \sup_{\boldsymbol{\lambda}} \left| \mathbf{l}_p' \prod_{j=0}^{t-1} B_{t-j}(\boldsymbol{\lambda}) [\widetilde{\boldsymbol{\sigma}}_0^2 - \boldsymbol{\sigma}_0^2(\boldsymbol{\lambda})] \right| \le C(\|\widetilde{\boldsymbol{\sigma}}_0^2\| + \sup_{\boldsymbol{\lambda}} \|\boldsymbol{\sigma}_0^2(\boldsymbol{\lambda})\|) \rho^t,$$
(S2.9)

where $\mathbf{l}_p = (1, 0, ..., 0)'$ is a *p*-dimensional vector, and $\boldsymbol{\sigma}_0^2(\boldsymbol{\lambda}) = (\sigma_0^2(\boldsymbol{\lambda}), ..., \sigma_{1-p}^2(\boldsymbol{\lambda}))'$. Note that $E(\sum_{t=1}^n \rho^t y_t^2) \leq \rho E(y_t^2)/(1-\rho)$. Hence, by (S2.6), (S2.9), the compactness of $\boldsymbol{\Theta}$ and the fact that $\log(x) \leq x - 1$, we can show that

$$\begin{split} \sup_{\boldsymbol{\lambda}} \left| \frac{1}{n} \sum_{t=1}^{n} \widehat{l}_{t}(\boldsymbol{\lambda}) - l_{t}(\boldsymbol{\lambda}) \right| \\ &\leq \frac{1}{n} \sum_{t=1}^{n} \sup_{\boldsymbol{\lambda}} \left\{ \frac{|\widehat{\sigma}_{t}^{2}(\boldsymbol{\lambda}) - \sigma_{t}^{2}(\boldsymbol{\lambda})|}{\widehat{\sigma}_{t}^{2}(\boldsymbol{\lambda}) \sigma_{t}^{2}(\boldsymbol{\lambda})} y_{t}^{2} + \left| \log \left(1 + \frac{\widehat{\sigma}_{t}^{2}(\boldsymbol{\lambda}) - \sigma_{t}^{2}(\boldsymbol{\lambda})}{\sigma_{t}^{2}(\boldsymbol{\lambda})} \right) \right| \right\} \\ &\leq C(\|\widetilde{\boldsymbol{\sigma}}_{0}^{2}\| + \sup_{\boldsymbol{\lambda}} \|\boldsymbol{\sigma}_{0}^{2}(\boldsymbol{\lambda})\|) \left(\frac{1}{\underline{\omega}^{2}} \frac{1}{n} \sum_{t=1}^{n} \rho^{t} y_{t}^{2} + \frac{1}{\underline{\omega}} \frac{1}{n} \sum_{t=1}^{n} \rho^{t} \right) \\ &\rightarrow 0 \end{split}$$
 (S2.10)

with probability one as $n \to \infty$, where $\underline{\omega} = \inf_{\theta \in \Theta} \{ \omega^{(1)}, \omega^{(2)} \} > 0$.

Note that $0 \le t_0 \le n$ and, from the proof of Theorem 2 in Li et al. (2015), it holds that

$$P(\lim_{n \to \infty} t_0 = \infty) = 0.$$
(S2.11)

Without loss of generality, we assume that $t_0 > p$. When $t > t_0$, it holds that $\tilde{R}_t = R_t$ and, by (S2.4), (S2.5) and (S2.7),

$$\begin{split} \sup_{\boldsymbol{\lambda}} |\widetilde{\sigma}_{t}^{2}(\boldsymbol{\lambda}) - \widehat{\sigma}_{t}^{2}(\boldsymbol{\lambda})| &= \sup_{\boldsymbol{\lambda}} \left| \mathbf{l}_{p}^{t-t_{0}-1} \prod_{j=0}^{t-t_{0}-1} B_{t-j}(\boldsymbol{\lambda}) \begin{pmatrix} \widetilde{\sigma}_{t_{0}}^{2}(\boldsymbol{\lambda}) - \widehat{\sigma}_{t_{0}}^{2}(\boldsymbol{\lambda}) \\ \vdots \\ \widetilde{\sigma}_{t_{0}-p+1}^{2}(\boldsymbol{\lambda}) - \widehat{\sigma}_{t_{0}-p+1}^{2}(\boldsymbol{\lambda}) \end{pmatrix} \right| \\ &\leq C\rho^{t-t_{0}} \sum_{t=1}^{t_{0}} \sup_{\boldsymbol{\lambda}} |\widetilde{\sigma}_{t}^{2}(\boldsymbol{\lambda}) - \widehat{\sigma}_{t}^{2}(\boldsymbol{\lambda})|, \end{split}$$

which implies that

$$\frac{1}{n}\sum_{t=t_0+1}^{n}\sup_{\boldsymbol{\lambda}}|\widetilde{\sigma}_t^2(\boldsymbol{\lambda})-\widehat{\sigma}_t^2(\boldsymbol{\lambda})| \leq \frac{C}{1-\rho}\cdot\frac{1}{n}\sum_{t=1}^{t_0}\sup_{\boldsymbol{\lambda}}|\widetilde{\sigma}_t^2(\boldsymbol{\lambda})-\widehat{\sigma}_t^2(\boldsymbol{\lambda})|, \quad (S2.12)$$

and

$$\frac{1}{n}\sum_{t=t_0+1}^{n}y_t^2\sup_{\boldsymbol{\lambda}}|\widetilde{\sigma}_t^2(\boldsymbol{\lambda})-\widehat{\sigma}_t^2(\boldsymbol{\lambda})| \le C\rho^{-t_0}\sum_{t=1}^{\infty}\rho^t y_t^2 \cdot \frac{1}{n}\sum_{t=1}^{t_0}\sup_{\boldsymbol{\lambda}}|\widetilde{\sigma}_t^2(\boldsymbol{\lambda})-\widehat{\sigma}_t^2(\boldsymbol{\lambda})|.$$
(S2.13)

By the ergodic theorem, we have that

$$\frac{1}{t_0} \sum_{t=1}^{t_0} \sum_{j=0}^{\infty} \rho^j z_{t-j} \to \sum_{j=0}^{\infty} \rho^j E(z_{t-j}) \quad \text{and} \quad \frac{1}{t_0} \sum_{t=1}^{t_0} y_t^2 \sum_{j=0}^{\infty} \rho^j z_{t-j} \to \sum_{j=0}^{\infty} \rho^j E(y_t^2 z_{t-j})$$

with probability one as $t_0 \to \infty$. This, together with (S2.6), (S2.8) and (S2.11), implies that

$$\frac{1}{n}\sum_{t=1}^{t_0}\sup_{\boldsymbol{\lambda}}|\widetilde{\sigma}_t^2(\boldsymbol{\lambda}) - \widehat{\sigma}_t^2(\boldsymbol{\lambda})| \le \frac{2Ct_0}{n} \cdot \frac{1}{t_0}\sum_{t=1}^{t_0}\sum_{j=0}^{\infty}\rho^j z_{t-j} + \frac{2C\rho}{1-\rho}\|\widetilde{\boldsymbol{\sigma}}_0^2\|n^{-1} \to 0 \quad (S2.14)$$

and

$$\frac{1}{n}\sum_{t=1}^{t_0} y_t^2 \sup_{\boldsymbol{\lambda}} |\widetilde{\sigma}_t^2(\boldsymbol{\lambda}) - \widehat{\sigma}_t^2(\boldsymbol{\lambda})| \le \frac{2Ct_0}{n} \cdot \frac{1}{t_0} \sum_{t=1}^{t_0} y_t^2 \sum_{j=0}^{\infty} \rho^j z_{t-j} + 2C \|\widetilde{\boldsymbol{\sigma}}_0^2\| \cdot \frac{1}{n} \sum_{t=1}^{\infty} \rho^t y_t^2 \to 0$$
(S2.15)

with probability one as $n \to \infty$. By a method similar to (S2.10), together with (S2.12)-(S2.15), we can show that $\sup_{\boldsymbol{\lambda}} |n^{-1} \sum_{t=1}^{n} [\tilde{l}_{t}(\boldsymbol{\lambda}) - \hat{l}_{t}(\boldsymbol{\lambda})]| \to 0$, and then $\sup_{\boldsymbol{\lambda}} |n^{-1} \sum_{t=1}^{n} [\tilde{l}_{t}(\boldsymbol{\lambda}) - l_{t}(\boldsymbol{\lambda})]| \to 0$ with probability one as $n \to \infty$. This completes the proof of Claim (i). We now prove Claim (ii). Note that $x - 1 - \log x \ge 0$ for x > 0, and the equality holds only when x = 1. We then have that

$$E[l_t(\boldsymbol{\lambda}) - l_t(\boldsymbol{\lambda}_0)] = E\left(\frac{\sigma_t^2(\boldsymbol{\lambda}_0)}{\sigma_t^2(\boldsymbol{\lambda})} - 1 - \log\frac{\sigma_t^2(\boldsymbol{\lambda}_0)}{\sigma_t^2(\boldsymbol{\lambda})}\right) \ge 0,$$

and the equality holds if and only if $\sigma_t^2(\boldsymbol{\lambda}) = \sigma_t^2(\boldsymbol{\lambda}_0)$ with probability one. It is then sufficient for Claim (ii) to show that $\boldsymbol{\lambda} = \boldsymbol{\lambda}_0$ under the assumption of $\sigma_t^2(\boldsymbol{\lambda}) = \sigma_t^2(\boldsymbol{\lambda}_0)$ with probability one for all t.

Note that, with probability one,

$$0 = \sigma_t^2(\boldsymbol{\lambda}) - \sigma_t^2(\boldsymbol{\lambda}_0)$$

= $[\omega^{(1)}R_t + \omega^{(2)}(1 - R_t)] - [\omega_0^{(1)}R_{0t} + \omega_0^{(2)}(1 - R_{0t})]$
+ $\sum_{i=1}^q \{ [\alpha_i^{(1)}R_t + \alpha_i^{(2)}(1 - R_t)] - [\alpha_{0i}^{(1)}R_{0t} + \alpha_{0i}^{(2)}(1 - R_{0t})] \} y_{t-i}^2$
+ $\sum_{j=1}^p \{ [\beta_j^{(1)}R_t + \beta_j^{(2)}(1 - R_t)] - [\beta_{0j}^{(1)}R_{0t} + \beta_{0j}^{(2)}(1 - R_{0t})] \} \sigma_{t-j}^2(\boldsymbol{\lambda}_0).$
(S2.16)

By conditioning the above equation on the σ -field \mathcal{F}_{t-2} and from Assumption 2, we have that

$$[\alpha_1^{(1)}R_t + \alpha_1^{(2)}(1 - R_t)] - [\alpha_{01}^{(1)}R_{0t} + \alpha_{01}^{(2)}(1 - R_{0t})] = 0.$$

Note that $E[R_t R_{0t}] \ge P(y_{t-d} < r_L, y_{t-d_0} < r_{0L}) > 0$ and $E[(1 - R_t)(1 - R_{0t})] \ge P(y_{t-d} > r_U, y_{t-d_0} > r_{0U}) > 0$. It then can be shown that $\alpha_1^{(1)} = \alpha_{01}^{(1)}, \alpha_1^{(2)} = \alpha_{01}^{(2)}$ and $R_t = R_{0t}$ if $\alpha_{01}^{(1)} + \alpha_{01}^{(2)} > 0$, or $\alpha_1^{(1)} = \alpha_1^{(2)} = 0$ if $\alpha_{01}^{(1)} = \alpha_{01}^{(2)} = 0$. From the definition of $\sigma_t^2(\lambda_0)$ at (??) and by conditioning equation (S2.16) on the σ -field \mathcal{F}_{t-3} , we can further obtain that

$$0 = \{ [\beta_1^{(1)} R_t + \beta_1^{(2)} (1 - R_t)] - [\beta_{01}^{(1)} R_{0t} + \beta_{01}^{(2)} (1 - R_{0t})] \} \cdot [\alpha_{01}^{(1)} R_{0t} + \alpha_{01}^{(2)} (1 - R_{0t})] + [\alpha_2^{(1)} R_t + \alpha_2^{(2)} (1 - R_t)] - [\alpha_{02}^{(1)} R_{0t} + \alpha_{02}^{(2)} (1 - R_{0t})],$$

which implies that $\alpha_2^{(1)} = \alpha_{02}^{(1)}$, $\alpha_2^{(2)} = \alpha_{02}^{(2)}$, $\beta_1^{(1)} = \beta_{01}^{(1)}$ and $\beta_1^{(2)} = \beta_{01}^{(2)}$ if $\alpha_{01}^{(1)} + \alpha_{01}^{(2)} > 0$, or $\alpha_2^{(1)} = \alpha_{02}^{(1)}$, $\alpha_2^{(2)} = \alpha_{02}^{(2)}$ and $R_t = R_{0t}$ if $\alpha_{01}^{(1)} = \alpha_{01}^{(2)} = 0$ and $\alpha_{02}^{(1)} + \alpha_{02}^{(2)} > 0$, or $\alpha_2^{(1)} = \alpha_2^{(2)} = 0$ if $\alpha_{01}^{(1)} = \alpha_{01}^{(2)} = \alpha_{02}^{(2)} = \alpha_{02}^{(2)} = 0$. Similarly, we can show that $\boldsymbol{\theta}^{(1)} = \boldsymbol{\theta}_0^{(1)}$, $\boldsymbol{\theta}^{(2)} = \boldsymbol{\theta}_0^{(2)}$ and $R_t = R_{0t}$.

The fact of $R_t = R_{0t}$ leads to

$$0 = P(R_t = 0, R_{0t} = 1)$$

$$\geq P(y_{t-d_0} \le r_{0L}, y_{t-d} > r_U) + P(y_{t-d_0} \le r_{0L}, r_U \ge y_{t-d} > r_L, y_{t-d-1} > r_U)$$

$$+ P(r_{0L} < y_{t-d_0} \le r_{0U}, y_{t-d_0-1} \le r_{0L}, y_{t-d} > r_U),$$

which implies that $d = d_0$, $r_L \ge r_{0L}$ and $r_U \ge r_{0U}$. Similarly, we have that $r_L \le r_{0L}$ and $r_U \le r_{0U}$ from $P(R_t = 1, R_{0t} = 0) = 0$. Thus, $d = d_0$, $r_L = r_{0L}$ and $r_U = r_{0U}$, and we then complete the proof of Claim (ii).

We now consider proving Claim (iii). Let $\boldsymbol{\lambda}^* = (\boldsymbol{\theta}^{*\prime}, r_L^*, r_U^*, d)' \in U_{\lambda}(\eta)$, and denote $\boldsymbol{\lambda}_1^* = (\boldsymbol{\theta}', r_L^*, r_U^*, d)'$ and $R_t^* = R_t(r_L^*, r_U^*, d)$, where $\boldsymbol{\lambda} = (\boldsymbol{\theta}', r_L, r_U, d)'$. Note that

$$\sigma_t^2(\boldsymbol{\lambda}_1^*) - \sigma_t^2(\boldsymbol{\lambda}) = \xi_t(\boldsymbol{\lambda})(R_t^* - R_t) + \sum_{j=1}^p [\beta_j^{(1)}R_t^* + \beta_j^{(2)}(1 - R_t^*)][\sigma_{t-j}^2(\boldsymbol{\lambda}_1^*) - \sigma_{t-j}^2(\boldsymbol{\lambda})],$$

and then

$$\sup_{\boldsymbol{\lambda}^* \in U_{\lambda}(\eta)} |\sigma_t^2(\boldsymbol{\lambda}_1^*) - \sigma_t^2(\boldsymbol{\lambda})| \le C \sum_{j=0}^{\infty} \rho^j |\xi_{t-j}(\boldsymbol{\lambda})| \sup_{\boldsymbol{\lambda}^* \in U_{\lambda}(\eta)} |R_t^* - R_t|,$$

where $\xi_t(\boldsymbol{\lambda}) = (\omega^{(1)} - \omega^{(2)}) + \sum_{i=1}^q (\alpha_i^{(1)} - \alpha_i^{(2)}) y_{t-i}^2 + \sum_{j=1}^p (\beta_j^{(1)} - \beta_j^{(2)}) \sigma_{t-j}^2(\boldsymbol{\lambda}).$ Moreover, from the proof of Theorem 2 in Li et al. (2015),

$$E \sup_{\boldsymbol{\lambda}^* \in U_{\lambda}(\eta)} |R_t(r_L^*, r_U^*, d) - R_t(r_L, r_U, d)| \to 0$$

as $\eta \to 0$. By a method similar to (S2.10), together with Hölder inequality and $E|y_t|^{4+\delta} < \infty$, we have that

$$E \sup_{\boldsymbol{\lambda}^{*} \in U_{\lambda}(\eta)} |l_{t}(\boldsymbol{\lambda}_{1}^{*}) - l_{t}(\boldsymbol{\lambda})|$$

$$\leq E \left[\left(\frac{1}{\omega} + \frac{y_{t}^{2}}{\omega^{2}} \right) \sup_{\boldsymbol{\lambda}^{*} \in U_{\lambda}(\eta)} |\sigma_{t}^{2}(\boldsymbol{\lambda}_{1}^{*}) - \sigma_{t}^{2}(\boldsymbol{\lambda})| \right]$$

$$\leq C \left\{ E \left[\left(\frac{1}{\omega} + \frac{y_{t}^{2}}{\omega^{2}} \right) \sum_{j=0}^{\infty} \rho^{j} |\xi_{t-j}(\boldsymbol{\lambda})| \right]^{1+\delta/4} \right\}^{4/(4+\delta)} \left\{ E \sup_{\boldsymbol{\lambda}^{*} \in U_{\lambda}(\eta)} |R_{t}^{*} - R_{t}| \right\}^{\delta/(4+\delta)}$$

$$\to 0 \qquad (S2.17)$$

as $\eta \to 0$. Consider

$$\frac{\partial \sigma_t^2(\boldsymbol{\lambda})}{\partial \boldsymbol{\theta}} = \mathbf{x}_t(\boldsymbol{\lambda}) + \sum_{i=1}^{\infty} \prod_{j=0}^{i-1} B_{t-j}(\boldsymbol{\lambda}) \mathbf{x}_{t-i}(\boldsymbol{\lambda}),$$

where $\mathbf{x}_{1t}(\boldsymbol{\lambda}) = (1, y_{t-1}^2, ..., y_{t-q}^2, \sigma_{t-1}^2(\boldsymbol{\lambda}), ..., \sigma_{t-p}^2(\boldsymbol{\lambda}))'$ and $\mathbf{x}_t(\boldsymbol{\lambda}) = (\mathbf{x}'_{1t}(\boldsymbol{\lambda})R_t, \mathbf{x}'_{1t}(\boldsymbol{\lambda})(1-R_t))'$. By (S2.6) and the compactness of $\boldsymbol{\Theta}$, we can show that

$$E \sup_{\boldsymbol{\lambda}^* \in U_{\lambda}(\eta)} |l_t(\boldsymbol{\lambda}^*) - l_t(\boldsymbol{\lambda}_1^*)| \le \eta \cdot E \sup_{\boldsymbol{\lambda}} \left| \left(\frac{1}{\sigma_t^2(\boldsymbol{\lambda})} - \frac{y_t^2}{\sigma_t^4(\boldsymbol{\lambda})} \right) \frac{\partial \sigma_t^2(\boldsymbol{\lambda})}{\partial \boldsymbol{\theta}} \right| = O(\eta),$$

which, together with (S2.17), implies Claim (iii).

Following the standard argument for the strong consistency in Huber (1967), together with Claims (i), (ii) and (iii), we can show that $\tilde{\lambda}_n \to \lambda_0$ with probability one; see also Francq and Zakoïan (2004) and Straumann and Mikosch (2006). Hence, we finish the proof.

References

- Feigin, P. D. and Tweedie, R. L. (1985). Random coefficient autoregressive processes: a markov chain analysis of stationarity and finiteness of moments. *Journal of Time Series Analysis* 6 1–14.
- Francq, C. and Zakoïan, J. M. (2004). Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes. *Bernoulli* **10** 605–637.
- Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. In *Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability*, vol. 1. University of California Press, Berkeley.
- Li, G., Guan, B., Li, W. K. and Yu, P. L. H. (2015). Hysteretic autoregressive time series models. *Biometrika* 102 717–723.
- Li, G. and Li, W. K. (2008). Testing for threshold moving average with conditional heteroscedasticity. *Statistica Sinica* 18 647–665.
- Straumann, D. and Mikosch, T. (2006). Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: a stochastic recurrence equations approach. *The Annals of Statistics* **34** 2449–2495.

REFERENCES

Tweedie, R. L. (1983). Criteria for rates of convergence of Markov chains, with application to queueing and storage theory. In *Probability, Statistics and Anal*ysis (J. F. C. Kingman and G. E. H. Reuter, eds.). Cambridge University Press, Cambridge.