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This online supplementary material gives the proofs of Theorems 1 and 2

S1 Proof of Theorem 1

Let B be the class of Borel sets of R+ and U = {Ø, {0}, {1}, {0, 1}}. For the

temporarily homogeneous Markov chain {σ2
t } defined as σ2

t = g(σ2
t−1, εt−1), we

denote its state space by (R+ × {0, 1},B × U), and set its transition probability

function as

P (x,A) =

∫
Aε

f(y)dy for x ∈ R+ × {0, 1} and A ∈ B × U ,

where Aε = {y : g(x, y) ∈ A} and f(·) is the density of εt. From Theorem 1 of

Feigin and Tweedie (1985) and Theorem 4 of Tweedie (1983), it is sufficient to

show the following claims:

(i) {σ2
t } is a Feller Markov chain;

(ii) {σ2
t } is ϕ-irreducible for some measure ϕ on the state space (R+×{0, 1},B×

U);

(iii) There exists a compact set C ⊂ R+ × {0, 1} such that ϕ(C) > 0 and a

nonnegative continuous function (or test function) V : R+ × {0, 1} → R
such that

V (x) ≥ 1, for any x ∈ C,

and, for some 0 < c < 1,

E{V (σ2
t )|σ2

t−1 = x} ≤ cV (x), for any x ∈ Cc,

where Cc is the complement of C.
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We first prove Claim (i). Note that

σ2
t =(ω(1) + α(1)σ2

t−1ε
2
t−1 + β(1)σ2

t−1)I(εt−1 ≤ rL/σt−1)

+ (ω(1) + α(1)σ2
t−1ε

2
t−1 + β(1)σ2

t−1)Rt−1I(rL/σt−1 < εt−1 ≤ rL/σt−1)

+ (ω(2) + α(2)σ2
t−1ε

2
t−1 + β(2)σ2

t−1)(1−Rt−1)I(rL/σt−1 < εt−1 ≤ rL/σt−1)

+ (ω(2) + α(2)σ2
t−1ε

2
t−1 + β(2)σ2

t−1)I(εt−1 > rU/σt−1)

(S1.1)

and, for a bounded and continuous function h(·, ·),

E{h(σ2
t , Rt)|(σ2

t−1, Rt−1) = (x1, x2)}

= E{h(ω(1) + α(1)x1ε
2
t−1 + β(1)x1, 1)I(εt−1 ≤ rL/x1)}

+ x2E{h(ω(1) + α(1)x1ε
2
t−1 + β(1)x1, 1)I(rL/x1 < εt−1 ≤ rU/x1)}

+ (1− x2)E{h(ω(2) + α(2)x1ε
2
t−1 + β(2)x1, 0)I(rL/x1 < εt−1 ≤ rU/x1)}

+ E{h(ω(2) + α(2)x1ε
2
t−1 + β(2)x1, 0)I(εt−1 ≥ rU/x1)}.

(S1.2)

Denote gh(x1, εt−1) = h(ω(1)+α(1)x1ε
2
t−1+β(1)x1, 1) and Ch = supx1,x2

|h(x1, x2)| <
∞. Due to the dominated convergence theorem and the fact that x1 > min{ω(1), ω(2)} >

0, it holds that

|E{gh(x1, εt−1)I(εt−1 ≤ rL/x1)} − E{gh(x∗1, εt−1)I(εt−1 ≤ rL/x
∗
1)}|

≤ E|gh(x1, εt−1)− gh(x
∗
1, εt−1)|+ Ch · E|I(εt−1 ≤ rL/x1)− I(εt−1 ≤ rL/x

∗
1)|

=

∫
|gh(x1, y)− gh(x

∗
1, y)|f(y)dy + Ch

∫ rL/x1

rL/x
∗
1

f(y)dy → 0

as |x∗1 − x1| → 0, i.e. E{gh(x1, εt−1)I(εt−1 ≤ rL/x1)} is continuous with respect

to x1. Similarly we can show that the other three terms at the right hand side of

(S1.2) are continuous with respect to x1. As a result, E{h(σ2
t , Rt)|(σ2

t−1, Rt−1) =

(x1, x2)} is continuous with respect to x1 ∈ R+, and hence with respect to

(x1, x2) ∈ R+ × {0, 1}. Thus, the Markov chain {σ2
t } is a Feller chain.

We next prove the irreducibility at Claim (ii), and first consider the case

with rL ≤ rU ≤ 0. Note that, if εj > 0 for all 0 ≤ j ≤ t− 1, then the process will
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stay at the upper regime up to time t and, by (S1.1),

σ2
t = ω(2)+(α(2)ε2t−1+β(2))

ω(2)
t−1∑
i=1

i∏
j=2

(α(2)ε2t−j + β(2)) + σ2
0

t−2∏
j=2

(α(2)ε2t−j + β(2))

 .

(S1.3)

From the assumptions of this theorem, there exist a τ > 0 and a 0 < ρ < 1 such

that α(1)τ2+β(1) ≤ ρ and α(2)τ2+β(2) ≤ ρ. Let M = ω(2)[1+ (1−ρ)−1β(2)]+1,

and denote by µM the restriction of the Lebesgue measure on (M,M∗), where

M∗ > M is a fixed value, and we will introduce its selection in the proof for

Claim (iii). From (S1.3), it can be verified that, if 0 < εj < τ with 0 ≤ j ≤ t− 2

and εt−1 > 0, then

σ2
t ≤ Lσ,t +

(
ω(2)

1− ρ
+ σ2

0ρ
t−1

)
α(2)ε2t−1

where

Lσ,t = ω(2) +

(
ω(2)

1− ρ
+ σ2

0ρ
t−1

)
β(2).

Thus, conditional on σ2
0 = x1, 0 < εj < τ with 0 ≤ j ≤ t − 2 and εt−1 > 0,

the random variable σ2
t admits a density, fσ,t(·), positive on [Lσ,t,+∞). For any

B ⊂ B and any x = (x1, x2) ∈ R+ × {0, 1}, there exists a t∗ > 0 such that

Lσ,t∗ < M , and then

P{σ2
t∗ ∈ B|(σ2

0, R0) = x}

≥ P{σ2
t∗ ∈ B|0 < εj < τ with 0 ≤ j ≤ t∗ − 2, εt∗−1 > 0, (σ2

0, R0) = x}

· P{0 < εj < τ with 0 ≤ j ≤ t∗ − 2, εt∗−1 > 0}

=

∫
B

∩
(M,M∗)

fσ,t∗(y)dy

[∫ τ

0
f(y)dy

]t∗−1 ∫ +∞

0
f(y)dy > 0

if µM (B) > 0. Define the measure µ = µM ×µ1 on the space (R+×{0, 1},B×U),
where µ1 is a measure on ({0, 1},U) with µ1({0}) = µ1({1}) > 0. Hence, the

process {σ2
t } is µ-irreducible. Similarly, we can show the irreducibility for the

case 0 ≤ rL ≤ rU by using the structure at the lower regime.

For the case of rL < 0 < rU , the process will stay at the upper regime up to

time t if R0 = 0 and εj > 0 for all 0 ≤ j ≤ t− 1, while it will keep staying at the
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lower regime if R0 = 1 and εj < 0 for all 0 ≤ j ≤ t− 1. As a result, we can show

the irreducibility similarly, and hence finish the proof for Claim (ii).

Finally we prove Claim (iii). Consider the test function V (x) = 1 + |x1|,
where x = (x1, x2)

′. From (S1.1), we have that

σ2
t ≤ max{ω(1), ω(2)}+max{α(1), α(2)}σ2

t−1ε
2
t−1 +max{β(1), β(2)}σ2

t−1,

and

E{V (σ2
t )|σ2

t−1 = x} ≤ max{ω(1), ω(2)}+ c|x1|,

where c = max{α(1), α(2)}+max{β(1), β(2)} < 1. Let

C =

{
x : |x1| ≤ max

(
ω(1) − 1

c
,
ω(2) − 1

c
,M + 0.5

)}
and Cc be its complement, where M is defined as in the proof for Claim (ii). It

can be easily verified that

(a) V (x) ≥ 1 when x ∈ C, and

(b) E{V (σ2
t )|σ2

t−1 = x} ≤ cV (x) when x ∈ Cc.

Let

M∗ = max

(
ω(1) − 1

c
,
ω(2) − 1

c
,M

)
+ 1,

and it holds that M < max{c−1(ω(1) − 1), c−1(ω(2) − 1),M + 0.5} < M∗. Thus,

µ(C) = µ1({0, 1})

[
max

(
ω(1) − 1

c
,
ω(2) − 1

c
,M + 0.5

)
−M

]
> 0,

where µ is the irreducibility measure constructed previously. As a result, we

finish the proof for Claim (iii), and hence the proof of Theorem 1.

S2 Proof of Theorem 2

We first denote Rt = Rt(rL, rU , d), R0t = Rt(r0L, r0U , d0) and R̃t = R̃t(rL, rU , d)

for simplicity. Moreover, let ∥ · ∥ be the Euclidean norm, Ft be the σ-field

generated by {εt, εt−1, ...}, and C be a generic constant which may vary from

line to line but independent of time t and the parameter space.

We follow the standard arguments in Huber (1967) to show the strong con-

sistency of λ̃n, and it is sufficient to verify the following three claims:
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(i) supθ∈Θ,a≤rL≤rU≤b,d∈D |n−1
∑n

t=1[l̃t(λ) − lt(λ)]| → 0 with probability one

as n → ∞, where the parameter vector λ = (θ′, rL, rU , d)
′.

(ii) E[lt(λ)] ≥ E[lt(λ0)] for all λ, and the equality holds if and only if λ = λ0.

(iii) For any λ,

E sup
λ∗∈Uλ(η)

|lt(λ∗)− lt(λ)| → 0 as η → 0,

where Uλ(η) = {λ∗ : ∥λ∗−λ∥ < η}. Thus, E[lt(λ)] is a continuous function

of λ.

We first show Claim (i). Let

Bt(λ) =

(
β
(1)
1 · · · β

(1)
p

Ip−1 0(p−1)×1

)
Rt +

(
β
(2)
1 · · · β

(2)
p

Ip−1 0(p−1)×1

)
(1−Rt),

and denote it by B̃t(λ) when Rt in Bt(λ) is replaced by R̃t, where Ik is the k×k

identity matrix, and 0k×1 is a k-dimensional zero vector. From Lemma A.1 in Li

and Li (2008), it is implied by Assumption 1 that

sup
λ

∥
i−1∏
j=0

Bt−j(λ)∥S = O(ρi) and sup
λ

∥
i−1∏
j=0

B̃t−j(λ)∥S = O(ρi), (S2.4)

where 0 < ρ < 1, and ∥ · ∥S is the spectral norm. Note that

σ̃2
t (λ) =

ω(1) +

q∑
i=1

α
(1)
i y2t−i +

p∑
j=1

β
(1)
j σ̃2

t−j(λ)

 R̃t

+

ω(2) +

q∑
i=1

α
(2)
i y2t−i +

p∑
j=1

β
(2)
j σ̃2

t−j(λ)

 [1− R̃t], 1 ≤ t ≤ n,

(S2.5)

where the initial values (σ̃2
0(λ), ..., σ̃

2
1−p(λ))

′ = σ̃2
0 are nonnegative random vari-

ables or even non-random. We then can show that

sup
λ

|σ2
t (λ)| ≤ C

∞∑
j=0

ρjzt−j and sup
λ

|σ̃2
t (λ)| ≤ C

 ∞∑
j=0

ρjzt−j + ρt∥σ̃2
0∥

 ,

(S2.6)
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where zt = 1 +
∑q

i=1 y
2
t−i. Define

σ̂2
t (λ) =

ω(1) +

q∑
i=1

α
(1)
i y2t−i +

p∑
j=1

β
(1)
j σ̂2

t−j(λ)

Rt

+

ω(2) +

q∑
i=1

α
(2)
i y2t−i +

p∑
j=1

β
(2)
j σ̂2

t−j(λ)

 [1−Rt], 1 ≤ t ≤ n,

(S2.7)

where the initial values (σ̂2
0(λ), ..., σ̂

2
1−p(λ))

′ = σ̃2
0 are the same as those for σ̃2

t (λ).

Accordingly, let l̂t(λ) = y2t /σ̂
2
t (λ) + log[σ̂2

t (λ)]. Similarly, it can be shown that

sup
λ

|σ̂2
t (λ)| ≤ C

 ∞∑
j=0

ρjzt−j + ρt∥σ̃2
0∥

 (S2.8)

and

sup
λ

|σ̂2
t (λ)−σ2

t (λ)| = sup
λ

∣∣∣∣∣∣l′p
t−1∏
j=0

Bt−j(λ)[σ̃
2
0 − σ2

0(λ)]

∣∣∣∣∣∣ ≤ C(∥σ̃2
0∥+sup

λ
∥σ2

0(λ)∥)ρt,

(S2.9)

where lp = (1, 0, ..., 0)′ is a p-dimensional vector, and σ2
0(λ) = (σ2

0(λ), ..., σ
2
1−p(λ))

′.

Note that E(
∑n

t=1 ρ
ty2t ) ≤ ρE(y2t )/(1 − ρ). Hence, by (S2.6), (S2.9), the com-

pactness of Θ and the fact that log(x) ≤ x− 1, we can show that

sup
λ

∣∣∣∣∣ 1n
n∑

t=1

l̂t(λ)− lt(λ)

∣∣∣∣∣
≤ 1

n

n∑
t=1

sup
λ

{
|σ̂2

t (λ)− σ2
t (λ)|

σ̂2
t (λ)σ

2
t (λ)

y2t +

∣∣∣∣log(1 + σ̂2
t (λ)− σ2

t (λ)

σ2
t (λ)

)∣∣∣∣}

≤ C(∥σ̃2
0∥+ sup

λ
∥σ2

0(λ)∥)

(
1

ω2

1

n

n∑
t=1

ρty2t +
1

ω

1

n

n∑
t=1

ρt

)
→ 0

(S2.10)

with probability one as n → ∞, where ω = infθ∈Θ{ω(1), ω(2)} > 0.

Note that 0 ≤ t0 ≤ n and, from the proof of Theorem 2 in Li et al. (2015),

it holds that

P ( lim
n→∞

t0 = ∞) = 0. (S2.11)
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Without loss of generality, we assume that t0 > p. When t > t0, it holds that

R̃t = Rt and, by (S2.4), (S2.5) and (S2.7),

sup
λ

|σ̃2
t (λ)− σ̂2

t (λ)| = sup
λ

∣∣∣∣∣∣∣∣l
′
p

t−t0−1∏
j=0

Bt−j(λ)


σ̃2
t0(λ)− σ̂2

t0(λ)
...

σ̃2
t0−p+1(λ)− σ̂2

t0−p+1(λ)


∣∣∣∣∣∣∣∣

≤ Cρt−t0

t0∑
t=1

sup
λ

|σ̃2
t (λ)− σ̂2

t (λ)|,

which implies that

1

n

n∑
t=t0+1

sup
λ

|σ̃2
t (λ)− σ̂2

t (λ)| ≤
C

1− ρ
· 1
n

t0∑
t=1

sup
λ

|σ̃2
t (λ)− σ̂2

t (λ)|, (S2.12)

and

1

n

n∑
t=t0+1

y2t sup
λ

|σ̃2
t (λ)− σ̂2

t (λ)| ≤ Cρ−t0

∞∑
t=1

ρty2t ·
1

n

t0∑
t=1

sup
λ

|σ̃2
t (λ)− σ̂2

t (λ)|.

(S2.13)

By the ergodic theorem, we have that

1

t0

t0∑
t=1

∞∑
j=0

ρjzt−j →
∞∑
j=0

ρjE(zt−j) and
1

t0

t0∑
t=1

y2t

∞∑
j=0

ρjzt−j →
∞∑
j=0

ρjE(y2t zt−j)

with probability one as t0 → ∞. This, together with (S2.6), (S2.8) and (S2.11),

implies that

1

n

t0∑
t=1

sup
λ

|σ̃2
t (λ)−σ̂2

t (λ)| ≤
2Ct0
n

· 1
t0

t0∑
t=1

∞∑
j=0

ρjzt−j+
2Cρ

1− ρ
∥σ̃2

0∥n−1 → 0 (S2.14)

and

1

n

t0∑
t=1

y2t sup
λ

|σ̃2
t (λ)−σ̂2

t (λ)| ≤
2Ct0
n

· 1
t0

t0∑
t=1

y2t

∞∑
j=0

ρjzt−j+2C∥σ̃2
0∥·

1

n

∞∑
t=1

ρty2t → 0

(S2.15)

with probability one as n → ∞. By a method similar to (S2.10), together

with (S2.12)-(S2.15), we can show that supλ |n−1
∑n

t=1[l̃t(λ) − l̂t(λ)]| → 0, and

then supλ |n−1
∑n

t=1[l̃t(λ) − lt(λ)]| → 0 with probability one as n → ∞. This

completes the proof of Claim (i).
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We now prove Claim (ii). Note that x − 1 − log x ≥ 0 for x > 0, and the

equality holds only when x = 1. We then have that

E[lt(λ)− lt(λ0)] = E

(
σ2
t (λ0)

σ2
t (λ)

− 1− log
σ2
t (λ0)

σ2
t (λ)

)
≥ 0,

and the equality holds if and only if σ2
t (λ) = σ2

t (λ0) with probability one. It

is then sufficient for Claim (ii) to show that λ = λ0 under the assumption of

σ2
t (λ) = σ2

t (λ0) with probability one for all t.

Note that, with probability one,

0 = σ2
t (λ)− σ2

t (λ0)

= [ω(1)Rt + ω(2)(1−Rt)]− [ω
(1)
0 R0t + ω

(2)
0 (1−R0t)]

+

q∑
i=1

{[α(1)
i Rt + α

(2)
i (1−Rt)]− [α

(1)
0i R0t + α

(2)
0i (1−R0t)]}y2t−i

+

p∑
j=1

{[β(1)
j Rt + β

(2)
j (1−Rt)]− [β

(1)
0j R0t + β

(2)
0j (1−R0t)]}σ2

t−j(λ0).

(S2.16)

By conditioning the above equation on the σ-field Ft−2 and from Assumption 2,

we have that

[α
(1)
1 Rt + α

(2)
1 (1−Rt)]− [α

(1)
01 R0t + α

(2)
01 (1−R0t)] = 0.

Note that E[RtR0t] ≥ P (yt−d < rL, yt−d0 < r0L) > 0 and E[(1−Rt)(1−R0t)] ≥
P (yt−d > rU , yt−d0 > r0U ) > 0. It then can be shown that α

(1)
1 = α

(1)
01 , α

(2)
1 = α

(2)
01

and Rt = R0t if α
(1)
01 + α

(2)
01 > 0, or α

(1)
1 = α

(2)
1 = 0 if α

(1)
01 = α

(2)
01 = 0. From the

definition of σ2
t (λ0) at (??) and by conditioning equation (S2.16) on the σ-field

Ft−3, we can further obtain that

0 ={[β(1)
1 Rt + β

(2)
1 (1−Rt)]− [β

(1)
01 R0t + β

(2)
01 (1−R0t)]} · [α(1)

01 R0t + α
(2)
01 (1−R0t)]

+ [α
(1)
2 Rt + α

(2)
2 (1−Rt)]− [α

(1)
02 R0t + α

(2)
02 (1−R0t)],

which implies that α
(1)
2 = α

(1)
02 , α

(2)
2 = α

(2)
02 , β

(1)
1 = β

(1)
01 and β

(2)
1 = β

(2)
01 if

α
(1)
01 + α

(2)
01 > 0, or α

(1)
2 = α

(1)
02 , α

(2)
2 = α

(2)
02 and Rt = R0t if α

(1)
01 = α

(2)
01 = 0 and

α
(1)
02 + α

(2)
02 > 0, or α

(1)
2 = α

(2)
2 = 0 if α

(1)
01 = α

(2)
01 = α

(1)
02 = α

(2)
02 = 0. Similarly, we

can show that θ(1) = θ
(1)
0 , θ(2) = θ

(2)
0 and Rt = R0t.
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The fact of Rt = R0t leads to

0 = P (Rt = 0, R0t = 1)

≥ P (yt−d0 ≤ r0L, yt−d > rU ) + P (yt−d0 ≤ r0L, rU ≥ yt−d > rL, yt−d−1 > rU )

+ P (r0L < yt−d0 ≤ r0U , yt−d0−1 ≤ r0L, yt−d > rU ),

which implies that d = d0, rL ≥ r0L and rU ≥ r0U . Similarly, we have that

rL ≤ r0L and rU ≤ r0U from P (Rt = 1, R0t = 0) = 0. Thus, d = d0, rL = r0L

and rU = r0U , and we then complete the proof of Claim (ii).

We now consider proving Claim (iii). Let λ∗ = (θ∗′, r∗L, r
∗
U , d)

′ ∈ Uλ(η), and

denote λ∗
1 = (θ′, r∗L, r

∗
U , d)

′ and R∗
t = Rt(r

∗
L, r

∗
U , d), where λ = (θ′, rL, rU , d)

′.

Note that

σ2
t (λ

∗
1)− σ2

t (λ) = ξt(λ)(R
∗
t −Rt) +

p∑
j=1

[β
(1)
j R∗

t + β
(2)
j (1−R∗

t )][σ
2
t−j(λ

∗
1)− σ2

t−j(λ)],

and then

sup
λ∗∈Uλ(η)

|σ2
t (λ

∗
1)− σ2

t (λ)| ≤ C
∞∑
j=0

ρj |ξt−j(λ)| sup
λ∗∈Uλ(η)

|R∗
t −Rt|,

where ξt(λ) = (ω(1) − ω(2)) +
∑q

i=1(α
(1)
i − α

(2)
i )y2t−i +

∑p
j=1(β

(1)
j − β

(2)
j )σ2

t−j(λ).

Moreover, from the proof of Theorem 2 in Li et al. (2015),

E sup
λ∗∈Uλ(η)

|Rt(r
∗
L, r

∗
U , d)−Rt(rL, rU , d)| → 0

as η → 0. By a method similar to (S2.10), together with Hölder inequality and

E|yt|4+δ < ∞, we have that

E sup
λ∗∈Uλ(η)

|lt(λ∗
1)− lt(λ)|

≤ E

[(
1

ω
+

y2t
ω2

)
sup

λ∗∈Uλ(η)

|σ2
t (λ

∗
1)− σ2

t (λ)|

]

≤ C

E

( 1

ω
+

y2t
ω2

) ∞∑
j=0

ρj |ξt−j(λ)|

1+δ/4


4/(4+δ){
E sup
λ∗∈Uλ(η)

|R∗
t −Rt|

}δ/(4+δ)

→ 0

(S2.17)
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as η → 0. Consider

∂σ2
t (λ)

∂θ
= xt(λ) +

∞∑
i=1

i−1∏
j=0

Bt−j(λ)xt−i(λ),

where x1t(λ) = (1, y2t−1, ..., y
2
t−q, σ

2
t−1(λ), ..., σ

2
t−p(λ))

′ and xt(λ) = (x′
1t(λ)Rt,x

′
1t(λ)(1−

Rt))
′. By (S2.6) and the compactness of Θ, we can show that

E sup
λ∗∈Uλ(η)

|lt(λ∗)− lt(λ
∗
1)| ≤ η · E sup

λ

∣∣∣∣( 1

σ2
t (λ)

− y2t
σ4
t (λ)

)
∂σ2

t (λ)

∂θ

∣∣∣∣ = O(η),

which, together with (S2.17), implies Claim (iii).

Following the standard argument for the strong consistency in Huber (1967),

together with Claims (i), (ii) and (iii), we can show that λ̃n → λ0 with probability

one; see also Francq and Zaköıan (2004) and Straumann and Mikosch (2006).

Hence, we finish the proof.
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