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Abstract

In this supplement we present some additional proofs, and discuss
further the assumptions of the main manuscript.

Appendices

A Some further empirical coverage results

Table 1: Empirical coverage probabilities for the proposed confidence bands
with o = 0.05.

I3 R n =100 n = 1000 n = 5000
0 Sn 0.972 0.963 0.959
) supp(po) 0 0.953 0.959
mixture
of 0.95 Sh 0.991 0.971 0.970
uniforms ' supp(po) 0 0.961 0.970
05 Sn 0.959 0.953 0.991
' supp(po) 0 0.944 0.991
0 Sn 0.956 0.949 0.949
po(R)~0.95  0.001 0.922 0.949
double
2209 ‘ po(R) ~0.95  0.001 0.922 0.948
0.5 Shn 0.980 0.989 0.989
' po(R) ~0.95 0.001 0.959 0.990




Let R < Sy. The results in Table 1 give the empirical coverage on the set
R as indicated in the third column. That is, we report the proportion of
times that

Cni(s) < po(s) < Guu(s), forallseR

was observed. The confidence bands are optimized for R = supp(p;,), and
this allows us to compare the behavior for other choices of R.

The results of Table 1 clearly show the cost of only defining the confi-
dence bands on supp(p;,) = Sy, in the simulations. For larger sample sizes,
this cost decreases. However, for small sample sizes, the undercoverage is
drastically big, simply because S, does not cover the set R yet. This issue
aside, we find that the confidence bands perform rather well. In the double
logarithmic setting for 8 < 0.5, we expect to obtain asymptotically correct
coverage bands, and hence, empirical coverage probabilities not statistically
different from 0.95 are shown in bold. In all uniform mixture scenarios, we
expect an asymptotically conservative result; that is, the asymptotic cov-
erage should is expected to be greater than 0.95. In the table, empirical
coverage probabilities not statistically smaller than 0.95 are shown in bold
(for the mixture of uniforms case).

B Proofs and technical details

B.1 Note on finding the MLE

In several proofs, we make use of the following idea (a well known practice
in shape-constrained estimation problems):

To compute P, |, we first relax consideration over pmfs to positive se-
quences, U|,;(Sy) , by changing the criterion function L, to

J-1
Pn(p) = Ln(p)—Z%p(Zj) = La(p)- ), p(2). (B-1)

2€Sn

This is possible because the two maximization problems are equivalent. To
see this, note that if p is a positive sequence with support 5,, maximizes ®,,,
then for all ¢ € R with |c| very small

0 i 2P+ ep) = @u(p) _ | 3 p(2)

c—0 C

2€Sn

implying that p is necessarily a pmf. In the sequel, we denote by U(S,,) the
space of positive unimodal sequences with support S,,.



B.2 Proofs from Section 4
Proof of Theorem 4.1. We first recall that

p(plpo) > 0, (B-2)

with equality if and only if p = py (P a.s.). This result is often referred to as
Gibbs’ inequality. We now proceed progressively in steps. We first assume
that ’So‘ > 2.

1. Let Q denote the cdf of any discrete distribution on N and @ denote
its least concave majorant (on N). Let § denote the pmf associated
with Q. We first claim that § is such that

f log ng > 0, for all decreasing pmf p.
p

This follows from the results of Patilea (1997, 2001) for decreasing
densities as follows: Let Fy(z) = Q(z — 1) denote a cdf on R,, and let
Fy denote its least concave majorant on R, (LCM), with associated
pdf fo. Then, from Patilea (1997, 2001) it follows that To satisfies

flog%dFo > 0,

for all decreasing densities f, and hence also for all decreasing densities
with the form f(z) = 5~ 9‘11[079](x)du(9), where p is discrete with
mass only at Z,. In other words, any f which is piecewise constant,
with points of jump occurring possibly only at Z. . For such densities f,
let p(2) = (7 f(z)dx = f(z+1),z € N. In addition, note that g(z) =
[2 Jo(z)dz = fo(z + 1), from the definition of @ and Fy. Then we

have that
flogng = > og Q(Z
b 2>0
- Ylog fO(Z”) (Fo(z+1) - Fo(2))
2>0 f( )

log —OdFo > 0,
J 1os
and the result follows.

2. Next, let a = Y5, po(si), q1 (i) = @ 'po(sivn ), and g2(i) = (1-a) ' po(sx-1-i)-
Both ¢; and ¢ are pmfs on N and we apply step one above to find their

q1,G2- Define po|x(s;) = aqi(i-+),i > k and Polx(s;) = (1-a)G@(k-1-1)



for i < kK — 1. Then clearly po|. € U'|x(Sp). Furthermore, for any
p € U'1(So)

‘/logp\oTJﬁdPO _ Zl p0|( ) (z)+zl pij(l) ( )

i<k-1 ( ) i>K

_ log(l_a)%(ﬂ_l_z)po(si)

i<k-1 p(si)
+Zl goqu((z )I{) o)
e s, (0B 1) po(s)
-« )ig%;ll & p(si) l-«
+a;10g OZQ;)((Z;)H)POSD
= (1- a)Zlog )q (z)+oz210g 0z )ql(z),
2>0 ( ) 2>0 ( )

where pa(2) = (1 -a) p(se_1-.) and p1(2) = @ 'p(sxs2). Now, let c;
denote the constant such that ¢1 Y. ,59p1(2) =1, and let p; = ¢;p1 (and
similarly for py). Let 8 =3 ,50P(Sk+z). Then, we have that the above
is equal to

(2) 71 (2)

(1-« Zlog qg(z)+aZlog q1(2)
2>0 ) 2>0 ( )
= (I1-a)logecs +aloger + (1 - a)Zlog~( )qg()
220
+a§)log~( )ql(z)
(1-a)

+ozlogg > 0,

> (I1-«a)loges +aloge; = (1- Oz)log(1 5)

where the last inequality follows from the Gibbs’ inequality in (B-2)
applied to two Bernoulli distributions with success probabilities o and
B respectively. It follows that

/ log 22 4 5 0
b

for any p e U'|.(Sp). We have therefore proved existence of By,

. Finally, we prove that pp|. as defined above is the unique solution to
(4.11) in the two cases stated in the proposition.

e Suppose that pg € U!|.(Sp). Then, by Gibbs’ inequality, we have
that

flog@dpo > 0, VpeU|o(So).
p



Suppose then that Py is another candidate for the KL projection, as
above. Then we would have that

—

flog@dpo > 0 and also /log—dPo > 0.
Pbo
But this implies that
f log 24P, = o,
Po

and (again by Gibbs’ inequality) it follows that py = po, Py a.s..

e Suppose that py ¢ U'|.(S0) with ¥j.0logljlpo(s;) < oo. Then,
by Proposition 4.3, we have that supp€u1|n(50)flogde0 € (—o00,0].
Hence, (4.11) is equivalent to

Do = argmax 1|, (s,) f logpdFy.

By the strict concavity of log, we have that log(aa+(1-a)b) > aloga+
(1 - a)logb, with equality iff a = b. Suppose that p; and p» are two
different pmfs at which the cross entropy achieves its maximum. Then,
by convexity of U!|(So), Po = ap1 + (1 — a)Pa is also in U*|.(Sy), and
hence

flogﬁgdPo = flog{a’ﬁlJr(l—a)ﬁg}dPo
a/log]’o‘ldPg+(l—a)[logﬁgdPo

argmaxpe 1, (o) f logpdPy

\%

which yields a contradiction. Therefore, we must have that py = D2, Pp-
almost surely. But this implies that on the set {s € Sy : po(s) >0}, p1
and P> must both be equal to the slope of the greatest convex minorant
(GCM) of the cumulative sum of py(s;) to the left of s,—1 and the slope
of its LCM to the right of s,. Since the latter has the same support
as pg, we conclude that uniqueness has to hold everywhere.

Lastly, suppose that |So| = 1. Then py € U!|.(Sp) must be unimodal with
So = {sx}, and Py = po. The same proof as the first part of point three above
applies. O

Lemma B.1. Suppose that ¥ ;.0logl|j|po(s;) < co. Then for each r € Z such
that s, € Sy, there exists a q € U|,(So) such that [logqdPy(x) € (-o0,0].



Proof. Fix k € Z with x # 0. Then

. 1T =K
Stogli-rlpo(s;) = % loglil Lo pots;) + log il po(so)
JEK j¢{r,0} |.7‘

) | — K
S loglilpo(s)+ Y log E="lp(s,) + log Ikl po(s0)
J#0,K j¢{x,0} |.7|

. ) — K
Sloglilpo(s) ¢ Y log E="p(s) + log ul.
J#0 j¢{r,0} 1

IN

Now, since limj;|_, log (|5 - #|/|j]) = 0, and by the assumption of the lemma,
all three terms above are finite, and it follows that };., log|j —x[po(s;) < oo
for all k € Z.

Define a pmf ¢ with support Sy as

1 .
q(s;) o | limnllog®li=rl Jrrs b, (B-3)
J 21018;22 j=k—-1,k,K+1,

for s; € Sp. Since [, (zlog?z)ldx = 1/(log2), there exists a normalizing
constant for ¢ € U*|;(Sp). It remains to calculate its entropy. That is,

> loga(sj)po(s;) = D— Y loglj—rlpo(s;) -2 ) loglog|j - rlpo(s;),
J li-k|>2 li—r|>2

where D is some finite constant. The second term is also finite by the first
part of this proof. For the last term we have that

0 < > logloglj-&lpo(s;) < > logli—clpo(s;),

li-r|ze l7-r|ze
and hence this term is also finite. The result follows. O

Proof of Theorem 4.2. The first point can be shown using Gibbs’ inequality
as done above in the proof of Theorem 4.1. To prove the second point, we
first note that by Proposition 4.3, under the assumptions of the theorem,
(4.9) and (4.10) are equivalent. Therefore, to prove that (4.9) holds, it is
sufficient to show that (4.10) holds, for some py. By Lemma B.1, for each
K € Z there exists a ¢ € U'|,,(Sp) such that [ loggdPy > —oo. Therefore, each
[ logpolx(z) dPy(z) > —oo (although this bound is not uniform in x). Next,
by Lemma C.1, we have that

[ 108 ml(@) dPo(x) = SlogBol(s;)pocs;)
J
< =) loglj = Kl po(s;)
VE
< —logl|k —m|po(sm),



for some fixed m such that s,, € Sp. Letting kK - +oo, it follows that the
maximum cannot be attained for large values of |x|, and hence the supremum
of [logPolx(z)dPy(x) can be found by considering a finite collection of
values of x. This proves existence of a maximizer Py € U'(Sy) (and also that
{Po} is a finite set). 0

Proof of Proposition 4.5. We first show that if ¥ ;.log|jl[dPy = oo, then
[ logpdPy = oo, for any unimodal p. This follows since, if p is unimodal,
then p e U (Sp) for some & € Z. Hence, by Lemma C.1, we have that

IA

flogdeo Zlogmin(1,|j—/<a|fl)po(sj)
j

= 2. loglj = Kl po(s;).

JER

Now, if £ =0, then [logpdPy < ~Yjenloglj — klpo(ss) = ¥ z0loglilpo(s;).
If k #0, then

S ogli-rlpolsy) = - toglil L2 pots;) ~log Ikl po(so)
J#K ]i{ﬁo} ||
) ) — K
 Yloglilmo(s) = Y log E=n () ~log [l po(s0) + log lpo(sy)
j#0 j¢{r,0} |J|
< ~Sloglilpo(s) - Y log¥ |P0(5J)+10g|"0|
7#0 ]ﬁé{in}

Since limy;|,, log (|7 = #|/|j]) = 0, there exists an integer J > 0 such that for

all [j] > J
j — 11
log J _/i| € [——,—].
4l 22

Then,

Z log |p0(5])

| — K
= > log |j|.| |p0(8j)+ > 108“' i |po(sg)
j¢{r,0},ljl<J J j¢{n70},|j|>J J
T CORETID e
j¢{r,0} ljl<J J ¢ {K.0},|jl>J
| — K 1
> > log J . |po(sj)——=—0,
Wl 2
j¢{r,0},ljl<J J

for some finite constant C'. Therefore,

[ 108pdPy < = S loglilpo(s;) + Cloglr,
7#0



and the first part of the claim follows (noting that since x € Z and k # 0,
then log|k| < o0). The second part of the claim follows immediately from
Lemma B.1. O

B.2.1 Proof of Theorem 4.4

We start by showing the following lemma.

Lemma B.2. Suppose that ¥;.ologli|po(s;) < co. Let M, be the modal
region of Dpn. Then, we can find M > 0 sufficiently large, such that with
probability one there exists an integer ng >0 such that

sup max |k| < M + 1.
n>ng keMy,

Proof. Fix €1 € (0,po(sp)/4), and define the event that A§ = {sup |F,, - Fy| <
€1}. By the Dvoretzky-Kiefer-Wolfowitz inequality the probability of A, is
at most 221 Applying Lemma C.1, we have that

[ 1ogmuledF, < -3 logli- nip,(s:)
PET
< —loglklp,(s0) < -—logl|k|(po(so) —2¢1)
< —loglk|po(s0)/2 < —log M po(so)/2,

if || > M. Let B,, denote the event that [ logp,|.dF, > —log M po(so)/2,
whenever |k| > M. By the above, we have that B, c A,. Since P(A,) is
summable, the Borel-Cantelli lemma implies that P(B,, i.0.) = 0. Thus, we
have shown that, with probability one, there exists an integer n; such that
for all n > ny

[ ogBulud < ~log Mupo(s0)/2. VIs|> M.

Without loss of generality, we can assume that Sy = {s;,i € K} with
K =7. Next, define ¢ as in (B-3), and note that here we have

> 1log q(s:)|po(ss) < oo,

(2

using similar arguments to those used in the proof of Proposition 4.3. Recall
that the pmf ¢ € U!|-0(So). Fix €2 > 0. By the strong law of large numbers,
we can find with probability one an integer no such that for all n > no

floquIFn > flqudFO—EQ.

Since [ logqdFy € R, we can furthermore choose e2 and M so that
floquIFn > —log M po(s0)/2.

8



Thus, it follows that with probability one, there exists an ng (in fact, ng =
max{nj,na}), such that

f logqdF,, > f 10 Pl dFye

for all || > M. But this implies that p,|. cannot be equal to the MLE p;,
when |k| > M, proving the result. O

Proof of Theorem 4.4. We want to show that P, — pg. First, we recall that
pointwise convergence and convergence in f,1 < k < oo and Hellinger dis-
tance h are all equivalent for sequences of pmfs. This follows for example
from Lemma C.2 in the on-line supporting material of Balabdaoui et al.
(2013). We also recall that a collection of probability measures is tight if,
for all € > 0, there exists a compact set K = K (&), such that for all measures
1 in the collection, we have pu(K°) < e. Let P, denote the measure induced
by Pr. We first claim that {P,},s; is tight with probability one. Fix e > 0.
Then, by the Glivenko-Cantelli theorem, we can find with probability one an
integer ny > 0 such that for all n > ny, supg, [Fn(s) - Fo(s)| <</6. Also, by
definition of the cdf, there exists a constant My > 0 such that for all M > My,

1- Fo(M) + Fo(—M - 1) < 5/6
Note that this implies that we have with probability one
1-F,(M)+F,(-M-1)
= 1—-5b(ﬂf)+—ﬁb(—ﬂ4-—l)
+{Fo(M) - Fn(M)} +{Fn(-M - 1) - Fo(-M - 1)}
< €/2,
for all n > nq and all M > M.
Next, let &, be such that p;, e U'|z, (So). Then, by the result of Lemma B.2,

with probability one, there exist M > My and an integer ny > 0 such that for
all n > ny, sup,s,, [Fn| < M. On this event, we have that

Po([-M,M]%) = > Bu(2)+ > Bul2)

z>M+1 2<-M-1
< Y )+ ) Pa(?)
z>M+1 z<-M-1

1-F,(M)+F,(-M-1)<¢g/2

where the inequality in the second line follows from Proposition C.2. We
have therefore shown that there exists a sufficiently large ng = max{ni,ns}
such that {Pn}nzno is tight. Since any finite collection of distributions is also
tight, it follows that {P,},s1 is tight, with probability one.

Since {P,} is tight, it is also sequentially compact. Thus, let {P,,} de-
note a weakly convergent subsequence, which, for convenience, we continue



to denote as {P,}. The Portmanteau theorem then implies that the associ-
ated pmf D, (s;) converges for all s; € Sy (since (s —J,s+ ) are continuity
sets for appropriate choice of ), and we let p denote the limiting pmf. To
complete the proof, we need only show that p is an element of {pp}. Note
that convergence in the set metric then follows because {py} is necessarily a
finite set.

Now, since we maximize the criterion function [logpdF, — Y .cs, p(2)
(B-1) over positive and unimodal sequences and since Y. ,.g Dn(2) = 1, we
can write

> logBo(2) () = Y. Po(z;)

IA

> 108D (2)) Pr(z)) ~ 1
> 10g(b+Dn (%)) Pa(2) - 1,
for b > 0. Re-arranging the terms above, this yields
0 < Y log(b+DPn(2))Pn(25) = 2 10gPo(2)) Br(25) + D Po(z) — 1
< D log(b+Pn(2)) Bu(2)) = 2 logBo(25) P (),
where the last inequality follows since Y py(2;) < 1. Finally, because p,, puts
all of its mass only on the z;, we can re-write the latter as

0 < > log(b+Dn(s;)) Bu(ss) = D logPo(s;) Brls))-
On the other hand, we have that
> log(b+Pi(s5)) Pr(sy) = D logBo(s;) P (s5)
= 2 log(b+Dn(s;)) (Bn(s5) —po(s5)) + D logBo(s5) (Po(s) = Pu(s))

+ Zlog (b +ﬁn(8j)) po(s;) + Zlog (w) Po(s;).

b+Do(s;) Po(sy)

IA

(B-4)

Next we get rid of the first two terms on the right-hand side. First, using
summation by parts,

2. 10g (b+Pn(s5)) (Pn(s5) — po(s)))
= > (Fu(s;) = Fo(s;)) [log (b +Pu(s;)) —log (b + Pu(sj-1))]-
Now, we know that p,, = D/« for some x. Then,

|2 10g (b +Ba(s;)) (Bu(s5) = po(s5))]

< supwn(sj)—F(sj>|{j§1[1og<b+m<sj)>—1og<b+ﬁn<8j_1>>]
 log (b-+ () =108 (b-+ Bu(sx-1))
+j§+1[10g(b+ﬁn(5j))-10g(b+1’5n(5j1))]}

< 4llog(b + maxFi(3,))] sup [Fa(sy) = Folsy)

< dmax{log(L+ 1), log() }sup F.(s;) ~ Fo(s,)l

10



which converges to zero. The law of large numbers shows that the second
term also converges to zero. This follows because sup,qyi(s,) [logpdPy >
—oo, which implies that Y |logDo(s;j)|po(s;) < oo. Therefore, rearranging
(B-4), we find that

. b+ﬁo(3j)) b+Po(s;)
lim sup log(A— po(sj) < ) log| ———==|po(sy)-
P2 b+ Pu(s;) ! 2 Po(s;) (5
Now, letting b — 0, we have by Fatou’s lemma that
(b+ﬁ0(8j)
b+ﬁn(8j)

Next, we take the limits on the right-hand side. First, by the dominated
convergence theorem

limnsuleog (b-’-ﬁ—o(sj)) po(sj) = zlog(b+ﬁ0(8j)) po(s5),

b+ﬁn(sj) b+ﬁ(8j)

lim sup lim sup Z log
b—0 n

)p()(s]') < 0.

since |log((b+Po)/(b + Dn))| < 2max{log(b+ 1),|logb|}. Next, we want to
show that

. b+ﬁo(8j)) Po(sy)
lim log(f po(s;) = SlogZ) pcsy).  (B-5
2B G sy ol) = 2loe{ Ty ol (B-9)
To do this, consider both pieces separately. First, log(b+pp(z)) is decreasing

in b and bounded above by log2, and hence by the monotone convergence
theorem we have that

lim ) log (b +Po(s;)) pos;) = Y logPo(s;) pols;)-

Similarly —log(b+Dp(s;)) is increasing as b decreases, and bounded below by
—log 2. Therefore also,

lim > log (b+P(s;)) po(s;) = X logP(s;) po(s;)-

Note that [ logpdP, is always finite for any unimodal p, and therefore we
may subtract the last two lines above to yield (B-5). We have thus shown
that

Zlog(m(sj)) po(s;) < 0.

p(s;)

Rearranging, this gives

sup [ logpdPy = Y logPo(si)po(si) < D logh(s;)po(s:),
peld(Sp)

and hence pe {pp}. O

11



Recall the definition of knots in (5.14) and the preceding paragraph.

Lemma B.3. Suppose that ¥ ;.0logl|jlpo(s;) < 0o and |{Po}| = 1. Let T €T
be a knot point of py. Then, almost surely, there exists an ng such that for
all n > ng we have that T is also a knot of Py,.

Proof. Without loss of generality, assume that 7 = si, and that pp(sg,) >
Po(8ko-1)- Then, from Theorem 4.4, we know that sup [Po(s;) — Pn(s;)| <&,
where € < (Po(Sk,) — Do(Sko-1))/2, for all sufficiently large n. Therefore,

Pn(Sko) 2D0(Sky) =€ > Do(Sko-1) +€ 2 Pn(Sky-1)s
and the result follows. O

Proof of Corollary 4.6. Write M = {sk,,...,Sk,}, and note that, by def-
inition, we have that Do(sk,) > Do(Sk;-1) and Po(sky) > Po(Sky+1). From
Lemma B.3 and the ¢; consistency results of Theorem 4.4, it follows that,
with probability one, there exists an ng such that for all n > ng,

ﬁn(sj) < ﬁn(skl—l) < ﬁn(sk1)7 jgkl_la
ﬁn(st) > ﬁn(skqu) 2 ﬁn(sj)a ]2k2+1

This, of course, implies that the mode of p,, must be in M = {si,,..., Sk, }-
O

Proof of Corollary 4.7. This is an immediate consequence of Theorem 4.4
and the inequality

|Fa(si) = Fo(s)l < 3 1Dn(s5) = Do(sy)l.

B.3 Proof of Theorem 5.1

Let {W,(s),s € Sp} = {/n(P,,(s) —po(s)),s € Sp}, denote the empirical
white noise process.

Proposition B.4. Let C = {U;?:llj} u {U;?:le} with k finite and I;,D;
defined as in (5.13). Then, with probability one, there exists an integer
ng > 0 such that for n > ng

V1(Bn = po)(s) = ¢[Wn](s), for allseC.

Proof. By the strong law of large numbers, with probability one, we can find
an integer n; > 0 such that for all n > ny, C c §,. Next, by Corollary 4.6,
with probability one, we can find ny > ny such that for n > no we have that
M,, ¢ M. This means that the P, is found as the minimizer in U'|.(Sp)

12



where k € M. By Lemma B.3, again with probability one, we can find an
n3 > ng such that the knots TZ-I,TiD,i =0,...,k are also knots of p,, for all
n > ng (recall the definitions of the knots from (5.14) and the preceding
paragraph). Therefore, by Lemma C.4, for all n > n3 we have that for
1<j<k

iSOl:(]_)n)[j](S), S€ Iju

anti[(ﬁn)Dj](s)as € Dj'

That is, we have that ,,(s) = ¢[p,,](s), s € C, for n > ns. Since py is constant
on each I;, D; by definition, this implies that

V(P = po)(8) = o[W,](s), for all se€C,

see Lemma C.5. O

Pn(s)
Pn(s)

Lemma B.5. Let V be a mean-zero Gaussian vector of dimension d > 0
with variance-covariance matriz ¥ given by cov(V;,V;) = d’ldizj —d™2. Then
uni[ V] is unique with probability one.

Proof. Suppose that V1 and V5 are two different solutions for the minimiza-
tion problem. Our goal will be to show that P(V; # V) = 0. Since any
minimizer of uni(V) can be re-written as local averages of the original vec-
tor V, it follows that we can find dxd matrices A and A, such that Vl = AV
and Vy = A4,V, where A4;,i = 1,2 can be written as

A0 0 ... 0
— A2
I-| 0 A0 ... 0

o 0 o0 o0 A
with A7, 1< j <my, given by the ; x [; matrix
11 ... 1
Aj — : : :

i R
J11 1 ... 1
Also, note that if %71 = A}V then
V-Vl = Vi(I-A)V.
Finally, let A denote the set of all possible matrices ZZ’, and note that
|A| is finite. Hence,

P (@1 * VQ)

P(Vy#Vy, VI(I - A1)V =V(I - 4,)V)

> P(VI(I-B1)V=V"(I-By)V)
B1,B2,cA,B1+B>

3 P(VI(B1 - B)V=0).
Bl,BQ,GA,Bl¢BQ

IN
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Let S = %2 so that we can write V = SZ for Z ~ Ny(0,I). The ma-
trix ST(By - By)S is Hermitian, and therefore admits a spectral decom-
position, which we write as TAT”, where T' is an orthogonal matrix and
A = diag(A1, ..., Ap, = Aps1s ..., —Ag) with A; > 0, 1 <4 < d. Note that since
By # By, there exists at least one index i € {1,...,d} such that \; # 0. It is
also important to note that only B € A with m =1 yields BV = 0. Finally,
let U =T'"Z. Note that U ~N(0,I). Then, we can write

P(V(B, - B2)V=0)

P(Z'TATT Z = 0)
= P(UTAU =0)
PMUT + .o+ MUY = MpaUp oy + ...+ \U).

Notice that in the last line at least one of the quantities on the left or
right hand side is not equal to zero and that in such case it is a continuous
random variable (in fact, each has a gamma distribution). Also, notice that
the left hand side is independent of the right hand side. This shows that
P (VT(By = B3)V=0) =0, and the result follows. O

Proof of Theorem 5.1. The proof is divided into several main steps. We first
address a slight technicality: the MLE 7, is defined on S,,, while pg is defined
on Sg. The results we prove here all “live” in the space of ¢} sequences defined
on Sy. To make our results concrete, we therefore embed all sequences on S;,
into sequences on Sy by setting them equal to zero for s ¢ .5,.

Below, we present the proof for /4(Sy) with k& =2 only. Convergence for
3 < k < oo follows immediately, because ||g||x < ||g||l2 for k& > 2 and ¢ € ¢5 and
hence || - || is a continuous mapping on ¢2(.Sy) for k > 2.

1. We first show that W,, converges in £2(.Sp) to the limit W. This is essen-
tially a well known result (cf. Jankowski and Wellner (2009, Theorem

3.1)), noting that for s ¢ Sy, W,,(s) = —/npo(s) = /n(p,(s) — po(s))
is still well-defined, since for s ¢ S,,,p,,(s) = 0.

2. We will next show that \/n(p, —po) = ¢[W] in £2(Sy ~x M). That is,
we consider the sequence only on the set Sg\ M. This result is proved
in two sub-steps:

(a) We first show that ¢ is continuous in £2(Sp N~ M). This, together
with step one above implies that ¢o[W, ] = o[W] in £2(Sp \ M).

(b) The next step is to show that |[\/7(Pn—po) — o[W.,.]|[3 £ 0 (where
the /o norm is calculated only on the support Sp~ M). In fact,
we prove slightly stronger convergence (in expectation).

3. Finally, we will tackle convergence on the set M. This follows essen-
tially from the argmax continuous mapping theorem. Note that since
|M| is necessarily finite, we also have convergence in ¢o(M) of the
process on the set M.

14



4. To put the two results together, note that the convergence in steps
two and three can also be stated as joint convergence (and not just
convergence of marginals). This holds because of the joint convergence
of Wy, in step one. From here the full result follows.

We now fill in the details in steps 2 and 3 above. To prove 2(a), consider
a converging sequence ¢, — ¢ in £3(Sp ~ M) and fix € > 0. Then we can find
an integer ng and K > 0 large enough such that

sup . ¢>(s;) <€/6, and > ¢*(s;) < £/6.

n2N0 |4|> K |i|> K

Now, let K; < -K and K3 > K be such that sk, sk, € 7. We then have that

> (planl(si) - wlal(s))? < )y (lan](s0) —¢lal (s:)*

s;¢M iE[Kl,Kg],SﬁM
2 Y el 2 Y elddP(s).
i¢[K1,K2] i¢[K1,K2]

Now, by Lemma C.5 (choosing p = ¢ = 0) we have that

> elalPs) < Y ans),

1¢[K1,K2] 1¢[K1,K2]

and similarly for ¢, replaced with ¢. Also, by continuity of the operators iso
and anti (Proposition C.6), we can choose an nj > ng such that for all n > ny

> (elanl(si) - elal(5:))* < /3.

ie[K1,K2],5:¢M

It follows that for all n > nq, we have that

> (plan)(si) - elal(s)? < /342 Y an(si) +2 Y ¢*(si)
si¢M li|>K [i|>K
< g/3+4g/6=¢.

This shows that ¢ is continuous in ¢2(Sy \ M).

To prove 2(b), we fix € > 0 and pick K large enough so that 3. x po(si) <
e. Now, let K; < -K and K3 > K be such that sg,,sk, € T. Let Wn(s) =
V1(Pn = po)(s). Then

S (W - oW (si) < > (Wa(si) - o[Wa](s:))?
s;¢M 1e[K1,K2],8,¢M
+2 Z WZ(SZ) +2 Z WZ(SZ)
i¢[K1,K2],si€Sn i¢[K1,K2],Si€Sn

+4 Z Wi(sl)
1¢[K1,K2],5:¢Sn

15



Now, for n large enough, by Proposition B.4 we have that W, (s;) = [W,,](s;)

foralli € [K1, K2], s; ¢ M. Also, Sie(x, ko].sie8n Wa(5:) < Tie[ky ko sies, WE(S:)

by Lemma C.5. We therefore have that for n sufficiently large

Hwn_‘P[WR]Hg < 4 Z W?I,(sl)
[i|>K

0 <mE[|[W, ~o[Wo]l3] < B [lm|[W, - o[W,]||3]
< 4B|lim Y W2(s;)|<4E| > Wi(s;)
li|>K li|>K
= Zpo(si)<€-

[i|>K

Since € was arbitrary, this proves the result.

Finally, we tackle step 3. We will do this by applying the argmax con-
tinuous mapping theorem, cf. van der Vaart and Wellner (1996, Theorem
3.2.2, page 286). Let L,(p) denote again the empirical log-likelihood, and
recall that

Pn = argmax,.g Ln(Pnlx)-

Now, by Lemma B.3 applied to TOI and Td) , and by Lemma C.4 we can also
have that

Dn = argmax,cy Ln (ﬁn|ﬁ)v

and furthermore, each Dy|.(s),s € M is determined by the LCM/GCM
characterization only on M. Let d = |M| and recall the definition of Uy
from Section 2.2.2 as the space of unimodal vectors of length d. Also, let
U; ={uely:u>0}. For se M, and for sufficiently large n, we have that

| o5(2 2

seM seM

\/ﬁ(ﬁn - pO)

n

seM

o+
- argminqe\/ﬁ(u;_po) [— Zj\:/llog( - \/_)Z_)n+ Z 4 Z

n seM VL gem

since Y gep o and Y g W, are constants on which the minimization does

16
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not depend. Now, let

= %lg(w) EEEE
<R R R R R
- lE T e s B
PR A
where
A = 3 RO

Finally, since pg is constant on M, we would therefore like to conclude that

Vi -po) = argming,, 3 =W = wila)

where Wy, denotes the vector of random variables {W(s),s € M}. To do
this, we need to check the criteria of the argmax continuous mapping theo-
rem, that is

1. /n(Pn—po) is tight (“uniformly tight” in the sense of van der Vaart and
Wellner (1996)) since it is equal to \/n(pylz, —po) for some %, € M, and
each \/n(Pn|k — po) converges, using for example, Marshall’s lemma.

2. The requirement that M, (\/n(P, — po)) 2 sup, M, (q) is satisfied by
definition of the 7.

3. By Lemma B.5, ¥,.(¢ — W)? has a unique minimum on Uy, that is,
uni[ W ] has a unique solution. To see this, recall that on M, W is nor-
mally distributed with mean zero and covariance given by
cov(W(s;), W(s;)) = 05;; — 62, letting 6 = po(s),s € M. Now, define
V(s) = (OIM) T2 (W(s) = Zoept W(s)/IM]), s0 that W = (6d)'/?V +
Yeem W(s)/d, using d = [M|. A quick check shows that V is still nor-
mally distributed with mean zero and cov(V(s;),V(s;)) =d 16, ;—d 2.
Applying Lemma C.5, we have that

wi[W] = (0d)2uni[V]+ Y W(s)/d.
seM
By Lemma B.5, uni[V] has a unique solution, and therefore, uni[W]
does also.

4. Note lastly that Y. r¢(q— W)? is a.s. continuous in g.
The result follows. O
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B.4 Proof of Proposition 5.3

Lemma B.6. Suppose that } g, p(l)/Q(s) < oco. Then

VY po(s) =op(1).

S¢Sy

Proof. Let Py(A) = Yseapo(s) and Pp(A) = YecaPn(s). By the Borisov-
Durst theorem (Dudley, 1999, Theorem 7.9, page 279) the power set of Sp,

250 is a Donsker class for Py if and only of Y seSo p[l)/Q(s) < co. Now, let G
denote the zero-mean Gaussian random field on 2°° with covariance

E[G(A)G(B)] = Py(AnB) - Ry (A)Py(B).
The Borisov-Durst theorem tells us that
V(P -P)) = G in £ (2%). (B-6)
Since Sy is countable, we have that
sup [B.(4) ~ Po(A)| = § 6 0) >0,
almost surely as n — oo since the class 2°° is also Glivenko-Cantelli. Since
by definition, P,,(S5) = 0, the latter implies that
T Py(S5) =0 (B-1)

almost surely. Furthermore, using the Skorokhod representation the conver-
gence in (B-6) (see e.g. Theorem 1.10.4 of van der Vaart and Wellner, 1996)
implies that we can assume that there exists a common probability space on
which /n(P,, — Py) and G are defined such that

sup [Vn(Pn(A) - Po(A)) - G(A)| >0

almost surely. This implies that

Tim (Vn(Pn(S5) - Po(S7)) = Gry (57)) =0

almost surely. However, G(S) d Z\JPo(S¢)(1 - Py(SS)) with Z ~ N(0,1).
Using this along with P,,(S$) =0 and (B-7) it follows that

lim /nPy(S¢) = 0.

We conclude that on the original probability space /nPy(S:) —4 0 which is
equivalent to

VAPy(SS) =/ Y po(s) B0,

seS¢

because the limit is degenerate. O
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Proof of Proposition 5.3. Let us first fix k € M. From Corollary 4.6 we have
that with probability one, there exists a sufficiently large ng such that p,, =
Dnlz, with %, € M if n > ng. This also implies that M c S,, for all n > ny.
Consider such an n.

Since x € M, we know that py € U!|,.(Sp). From the characterization of
the restricted MLE, we know that Fn|k(s),s € S, (the associate CDF) is
found as the least concave majorant of the graph

{(4,Fn(zi)), k <i<m}

where z; denotes an ordered enumeration of the elements of S,, = {z1,..., 2}
and k = k(k, Sy) is such that z, = s, (recalling that M c S),). Next, define
the function

Fo(zi) = Y,po(%)-
7%
This depends of course on the observed S,. Note that by definition this
function is concave on k <i <m and convex on 1 <i <k — 1. Now, the usual
proof of Marshall’s lemma applies. That is, let a = sup,s [Fn(2:) = Fo(2:)|-
Then for all i > k, we have (1)

Fn|k(zz)—Fo(zl) > Fn(Zi)—FO(Zi) > -a.

On the other hand Fy(2) + a is a concave majorant of F,(z) on i > k,
and hence (2) Fo(z) + a > F,(z). Combining the results of (1) and (2)
gives that sup;s, |Fp(2) = Fo(2i)| € supjsy [Fn(2:) = Fo(zi)|- Repeating the
argument on greatest concave minorants, yields a similar result for i < k-1,
which combined gives

suP.cs;, [Fnjp(2) = Fo(2)] < sup.eg, [Fu(2) = Fo(2)]-

This result holds for any choice of kK € M. Next, from Corollary 4.6 we
have that with probability one, there exists a sufficiently large ng such that
Dn = Dnlr, with %, € M. Let Fn denote the CDF associated with p,. We
then have that

sup |F(2) = Fo(2)] < sup sup | B, (2) - Fo(2)]
zeSy KeEM zeSy,
< sup [Fn(z) - Fo(2)|.
2€Sn

Next, it follows that

sup |F(s) - Fo(s)| < sup|Fn(s) - Fo(s)|+ sup [Fo(s;) - Fo(si)|
seSn seSn seSy,
< sup|Fn(s) - Fo(s)| + Z po(s).
s€S0 seS¢
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On the other hand,

|[Fu(s) = Fo(s)] = |Fu(s) = Fo(s) + Fo(s) = Fo(s)|

> |Fu(s) - Fo(s)| - [Fo(s) = Fo(s)|

N

This yields

sup [Fo(s) ~ Fo(s)] < sup [Fa(s) ~ Fo(s)[+2 3 po(s).

s€Sg s€Sg seS¢

The full result is obtained by applying Lemma B.6. O

B.5 Proofs for Section 6

Proof of Proposition 6.1. Using our assumption of finite support, the result
follows immediately from Theorems 4.4 and 5.1 via Slutsky’s theorem and
the continuity of norms on RY. Next, recall the definition of ¢ in (5.15). We
have that

Dy

since pg is constant on the intervals Z;, M,D;. The final inequality now
follows as in Proposition 5.2. O

Proposition B.7. Let W denote a mean zero Gaussian process defined
on Sy such that coo(W(s;),W(s;)) = po(si)di,; = po(si)po(s;), si € So. Let
W,, denote a mean zero Gaussian process defined on supp(py) such that
cov(Wy, (i), Wi (7)) = Dn(5i)dij — Dn(5i)Dn(5), Si € supp(Dn). Let qoo and
Go,o denote the quantiles such that

P([Wlleo > go.0) =, P([Wylleo > T00) =,
respectively. Then Qoo — o, almost surely.

Proof. First, let p, denote any fired pmf such that p, converges to py and
has the same properties as Py, :

(a) pn converges pointwise to pp, and
(b) limypy— o0 limy, ¥, j5m Pn(si) = 0.

Suppose also that W,, is defined as above, except that p, replaces P, in
the definition (in essence, we remove the randomness associated with this
choice). Then one can easily show that W, converges weakly to W in /5.
This follows from (a) convergence of finite dimensional distributions, which
is immediate from convergence of p,, to pg, and (b) tightness in ¢5. To prove
tightness, we refer again to Jankowski and Wellner (2009, Lemma 6.2). Note
that we have that
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1. E[||W,|3] <1 for all n

2. For sufficiently large n, we have that

> E[Wi(s)] < 3 palsi),

|ss|>m |si|>m

which shows that W, is tight in ¢5. The required weak convergence follows.
Now, since the £, is continuous in f5, convergence of the quantiles follows.

Thus, we obtain convergence of the quantiles (as numbers), based on
conditions (a) and (b) of p,. We will now show that these conditions hold
almost surely, establishing the full result. Condition (a) follows immediately
from Theorem 4.4. To see also that Condition (b) holds, note that from
Propositions C.2 and B.4, there exists a sufficiently large n such that with
probability one

Z ﬁn(sz) = Fn(_m)"‘l_ﬁn(m) < Fn(_m)+1_Fn(m)

|si|>m

for m ¢ M. That lim,, lim, (F,(-m) + 1 = F,(m)) = 0 almost surely follows
from the properties of the empirical CDF and CDF's in general. OJ

C Additional Technical Results

C.1 Useful bounds
Lemma C.1. Any p e U'|..(So) satisfies
p(sj) < min{l, l7 - /<a|_1}.

Proof. We have that

L2 ol 2 Splsn) = GreDpls) 2 (G-mn(sy)

Similarly, we have
k-1 k-1
Lo> Yop(si) 2 X p(s) = (5-5)p(s;).
=] i=J

Together, these yield the first inequality. O
Proposition C.2. The restricted MLE D,|. satisfies the inequalities
Fn‘n(z) Fn(2) 22 s,

Fn|ﬁ(z) < ]Fn(z) Z < Sp-1-

v

Proof. Follows immediately from the GCM/LCM characterization of Dy|.
O
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C.2 Proof of Proposition 2.1

Suppose that there exists ¢ such that p satisfies (2.4). It is clear that p is a
pmf. We now verify that p is unimodal with mode either at s, or s,. Let

(Ap)(5) = p(sj1) —p(s;). We calculate

_‘I(Sj—n) < 0 -
. . < J2K
(Ap)(j) = { aGnte)

l7+1-K|

>0 j<K-2.

Therefore, p is non-decreasing on {s; : j > k} and non-increasing on {s; : j <
k—1}. For j = k-1, we calculate

i=K—1 )
p(sk) —p(sk-1) = Z q(si) Z m

2—/<U+1 =i - kK|

which could be either > 0 or < 0. This shows that p is unimodal with mode
either at s,._1 or s,.

Conversely, if p is a pmf which is unimodal with mode either at s;_1 or
Sk Let g be defined as

N -(i-r+1)(Ap)(i) i>~k,
60 = | amea?

By the property of p, ¢ > 0. Furthermore, using Fubini’s theorem and the
fact that p is a pmf, we have that

>a(si) = =X (G-r+D(Ap)H)+ X (k=) (Ap)(i-1)
J

ik J<k-1
oo Kk—1-1
= _Z(:] Z (p(sj+1) - p(sy))+z(; Z (p(55) = p(sj-1))
1=0 j=t+K =0 j=-o0

= i)p(siJrﬁ)"—in(Sﬂli)
= Yp(si)+ D p(si)=1

2K i<k-1

and hence ¢ is a pmf. Finally, q satisfies

o) s als)

1-Kk+1 S k-

S0+ 1) g(sie)

_ _‘Z(Ap)u)az_l(Ap)(i—l)

p(8k) + P(8x-1) < 00

which completes the proof. O
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C.3 Properties of the anti,iso, and uni operators

There is a well-known equivalence between the monotonic projection in the
sense of least squares and likelihood maximization (e.g. the maximum likeli-
hood and least squares estimators are the same for a decreasing density).
As such equivalences are not always readily available in a standard ref-
erence on isotonic estimation, for completeness, we state this relationship
explicitly in the following lemma. Let Zj = Zgn {u € R? : u; > 0} and
D =Dgn{ueR?:u; > 0}.

Lemma C.3. Suppose that v e R? such that v; >0 forj=1,...,d. Then

d
iso[v] argmax,ezs { > vjlog(u;
j=1
d
Y
j=1

anti[v] = argmaxuepg{ jlog(u;

d
)= 2o U
j=1
d
)= 2o
j=1
Proof. 1t is known that
d 2
argmin,,.z, Z(vj - uj)
j=1

is equal to the right slope of the GCM of the cumulative sum diagram
{(0,0),(j, %7, v;),j = 1,...,d}. Note that implies in particular that these

slopes have to be positive if v; >0 for all j e {1,...,d}, and hence
d 2 d 2
argminyez, Y (vj —u;)” = argmingers > (vj —u;)™.
j=1 j=1

Now maximizing the criterion L(u) = Z;»lzl vjlog(u;) - Z;-izl u; on Z; admits
a unique solution. Let {u’}sy be a maximizing sequence of L. Suppose that
there exists j € {1,...,d} such that

lim uf =0 or lim u} = oo.

S—>00 S—>00
Then, in this case we would have lim,_,o L(u®) = —co contradicting the fact
that {u®}sey 1S @ maximizing sequence since it must satisfy limg_, oo L(u®) >
L(v) = Z;l:l vjlog(vj) - Z;'l:1 vj > —oo. Hence, there exists Ky > K; > 0
such that K7 <uj; < Ky for j =1,...,d. It follows that the maximization is
performed on a compact set and existence of the maximum is now guaranteed
by continuity of L. Uniqueness follows from strict concavity of L. We denote
this unique solution by T. Let j € {1,...,d}. For e € R, let

—~  —~ .
Ui =7y +6]Il$’i$j7 1 <1< d
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Then, for € > 0 small enough, we have 7° € 77, and L(7°) < L(7). Therefore
113%(1 (L(7°) - L(D)) <0.

When j is a knot point, that is, Uj.1 > 7U; then it is easy to see that
lim e (L(T°) - L(®)) = 0.

This yields
ivz{{],forallje{l ,d} (C-8)

i1 U | =4, if 7 is a knot point.

Let By, ..., B, denote a partition of {1,...,d} such that VI € B;, u; = ¢; some
positive constant, for i =1,...,7. Let i1,19,...,%, denote the largest integers
of By,...,By respectively. Note that i, = d. Then, if follows from (C-8)
that
I, |<joi =%, B, forall jeBy={1,...,i1}
= ' |= 50 = XL, T, for j =iy,

The same reasoning can be applied for the other sets B;,2 <7 < r to conclude
that

(C-9)

S |= 2 vi,if jis a jump pomt

i {> Zl L forall je{l,...,d}

Hence, the solution 7' is given by the slope of the LCM of the cumulative sum
of v. The same reasoning can be applied to the projection on D}, proving
the result. O

In the following, we state a result which shows that isotonic/antitonic
projections can be transformed into “localized” projections between the knots
of the “global” isotonic/antitonic solution. Recall that if v = (v1,...,v4) €
RY, then vy = (vs,...,v;) for 1 <s <t <d.

Lemma C.4. Let v = (v1,...,vq) € R? such that v; >0, j=1,...,d. Also
let 7 =1iso[v] and 1 < s1 < ... < s, <d the locations of the knot points of U,
that is

V1 =...= Vg <Ugy41 = ... Vg9 <... <WVg.41 =...=7g.

Then, for 1<j<k<r

D(sj+1):sp = 180[U(s 1), ]-
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Proof. The proof follows immediately from the fact that Uy, 41y, Is charac-
terized by the same Fenchel conditions as iso(v(sjﬂ):sk). Indeed, we know
from the characterization of ¥ = iso(v) that

>t v, forall te{l,...,d}

A = Zﬁzl v;,if ¢ is a jump point

t
>
and therefore

L= ﬁzsjvi,forallte{5j+1,...,sk}
Zvi _Zt

i=s; i=s; Vi> if t is a jump point

which give exactly the characterization of the isotonic projection of the sub-
vector V(s;+1)zs,

O

Lemma C.5. Suppose that v e R* and let p € T, q € Dy. Also, let a>0,beR
denote two fixed constants. Then the following (in)equalities hold

liso[v] = pll < llo-pl3, [lanti[v] gl < [lv-dqll3
antifav +b] = aanti[v]+b, isolav+b] = aiso[v]+b,
unifav+b] = auni[v]+b.

Proof. The first two inequalities appear in Robertson et al. (1988, Theorem
1.6.1); cf. Jankowski and Wellner (2009, Lemma 6.1). The three equalities
are all proved in a similar manner. For example,

anti[v +b] = argmin,p, [lu—(v+ B

= argmin,ep, [|(u - b) - vll3

. 2
argmin, .y ep, [|lu =3

argmin,.p, |lu - v|3+b = anti[v] +b.
O

Continuity of the operators anti and iso follows immediately from Jankowski
and Wellner (2009, Lemma 6.1).

Proposition C.6. Suppose that v, € R and that limy,_eo vy, = v. Then

lim iso[v,] =iso[v], and lim anti[v,] = anti[v].
n—o0 n—00
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