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Abstract: We develop an estimation procedure for a discrete probability mass func-

tion (pmf) with unknown support. We derive its maximum likelihood estimator

under the mild and natural shape-constraint of unimodality. Shape-constrained es-

timation is a powerful and robust technique that additionally provides smoothing of

the empirical distribution yielding gains in efficiency. We show that our unimodal

estimator is consistent when the model is specified, and that it converges to the

best projection of the true pmf on the unimodal class under model misspecifica-

tion. We derive the limiting distribution of the the estimator, and use this to build

asymptotic confidence bands for the unknown pmf when the latter is unimodal. We

illustrate our approach using time-to-onset data of the Ebola virus during the 1976

outbreak in the former republic of Zaire.
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1. Introduction

Discrete or discretized data show up in many practical instances, see Harlan

et al. (2014); Chowell et al. (2013, 2009); Laskowski et al. (2011); Breman and

Johnson (2014). If computing the empirical distribution requires no assumptions

on the unknown law, gains in efficiency can be made by imposing additional

constraints. One such constraint is unimodality, a natural and mild assumption

in many statistical applications.

Nonparametric estimation of a unimodal density has been treated in many

research papers. When the mode is known, the problem boils down to fitting

the well-known Grenander estimator Grenander (1956). However, as noted by

Birgé (1997), it is unrealistic in practice to assume that the location of the mode

is known. The main consequence of not making such an assumption is that the

maximum likelihood estimator (MLE) fails to exist. To address this, several esti-

mators have been proposed Wegman (1968, 1969); Prakasa Rao (1969); Wegman

(1970a,b); Reiss (1973, 1976) that feature additional constraints. More recent

work appears in Birgé (1997), where the proposed estimator is chosen among

all possible unimodal Grenander estimators as the one with cumulative distribu-

tion function closest to the empirical distribution. Durot et al. (2013) consider

http://dx.doi.org/10.5705/ss.202014.0088
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the estimation of a discrete convex distribution, using the least squares criterion.

Recently, Dümbgen and Rufibach (2009) and Cule, Samworth and Stewart (2010)

proposed to use the maximum likelihood estimator of a log-concave density in

lieu of the unimodal assumption, partially due to the inherent problems faced

when estimating a unimodal density using maximum likelihood. Existence of the

unimodal MLE when the data are discrete is guaranteed, even when the mode is

unknown. While uniqueness is not always true, this problem is rather marginal,

as a rule for selecting from among the finite options is immediate, making our

estimator fully automatic and easy to compute. Furthermore, if the pmf is not

unimodal, the MLE is still consistent, in the sense that it approaches the best

unimodal pmf among a finite number of choices. Further details of this behavior

are provided in Section 4.

In the recent work of Balabdaoui et al. (2013), the discrete MLE under

the constraint of log-concavity was studied. One important consequence of this

work is that we can evaluate the loss when data exhibit unimodality but at the

same time log-concavity is not a valid assumption. The unimodal MLE seems

to be a more natural estimator to consider when additional features of the true

distribution besides unimodality are lacking or hard to obtain. On the other

hand, one expects the log-concave MLE to be more efficient than the unimodal

one in case log-concavity is a correct assumption. This is studied via simulations

in Section 3. Although restricted to discrete distributions, our results may be

interesting to those studying the continuous setting as well.

The manuscript is organized as follows. In Section 2, we provide the tech-

nical details required to define and compute the MLE of a discrete unimodal

distribution. In our set-up, the support is assumed to be unknown, and is es-

timated empirically from the data. In Section 3, we consider the finite sample

size behavior of our estimator via simulations. We compare here our estimator

with the discrete log-concave MLE, but also assess the loss of efficiency when

the support is unknown and must be estimated from the data. Sections 4 and 5

establish consistency and global asymptotic theory for the estimator. One of

our key contributions is the application of these to develop global confidence

bands for a unimodal pmf, see Section 6. We illustrate the estimator on a

data set for the 1976 Ebola outbreak in Zaire; see Section 7. The data show

a drastic difference in the time from infection to onset of symptoms depending

on the type of infection: whether the individual was infected from person-to-

person contact or from injection with an unsterilized needle. R (R Core Team

(2014)) code for this analysis (along with all simulations) is available online at

www.math.yorku.ca/~hkj/Research/. All proofs and additional details are left

to the Appendices of the online supplementary material.

www.math.yorku.ca/~hkj/Research/
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2. Maximum Likelihood Estimation

2.1. Discrete unimodal distributions

We consider estimation of a unimodal pmf of a discrete real-valued random

variable. We denote the support of such a pmf as S = {si}i∈K , where K is a

subset of Z. Without loss of generality, we take si ∈ R for all i ∈ K, and we

assume that si < si+1.

We say that a pmf p is unimodal if there exists an integer m such that

p(si) ≥ p(si+1), for all i ≥ m, and

p(si−1) ≤ p(si), for all i ≤ m. (2.1)

The element sm is thus a mode of the pmf p, but is not necessarily unique. In

general, we can define the modal region, denoted here by M, as

M = {sκ ∈ S : p satisfies (2.1) at m = κ}. (2.2)

M is necessarily a finite set and we have that p(s) = p(s′) for all s, s′ ∈ M.

Next, let U1(S) denote the space of unimodal pmfs with the same fixed support

S. For the purpose of estimating such a p, it is most convenient to decompose

the space of unimodal pmfs as

U1(S) =
∪
κ∈K

U1|κ(S), (2.3)

where U1|κ(S) is the space of pmfs which are increasing on {si : i ≤ κ− 1} and

decreasing on {si : i ≥ κ}. Here a pmf in U1|κ(S) is unimodal either at sκ−1 or

sκ depending on the order of its values at these points. It may seem, at first,

that it would be more natural to decompose U1(S) into the spaces of pmfs that

are unimodal at κ. However, it turned out that the decomposition (2.3) is much

more convenient. In addition, the MLE will always “decide” between these two

possibilities by choosing the one that yields the largest value of the likelihood.

If κ = minK, then U1|κ(S) is simply the space of non-increasing pmfs on S.

Notably, each space U1|κ(S) is convex, whereas U1(S) is not.

Known as Khintchine’s Theorem, a density with respect to Lebesgue measure

is unimodal if and only if it can be written as a mixture of uniform densities,

see for example Olshen and Savage (1970). Hence, it is expected that such a

representation exists also in the discrete setting.

Proposition 1. A pmf p satisfies p ∈ U1|κ(S) if and only if

p(si) =
∑
j≥0

1i∈{κ,...,κ+j}

j + 1
q(sj) +

∑
j≤−1

1i∈{κ+j,...,κ−1}

|j|
q(sj), (2.4)

for some pmf q with support S.
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A proof of Proposition 1 can be found in the Appendix. Using (2.3), a

unimodal p ∈ U1(S) admits a representation (2.4) for some κ ∈ K.

Remark 1. Suppose that K is finite, and write K = {0, 1, . . . , k}. Then

U1|0(S) ⊂ U1|1(S).

2.1.1. Relationship with unimodal densities

Given a probability mass function p with support on S = Z, one can define

a density function f on R by

f(x) = p(z) for x ∈ (z − 1, z], z ∈ Z.

The mass function p is unimodal iff the (piecewise constant) density f is uni-

modal.

Given a general unimodal density with support on R, one can also define a

unimodal pmf p via
p(z) =

∫ z

z−1
f(x)dx, z ∈ Z.

Here, the choice of the discretization on [z−1, z) is arbitrary. Indeed, any choice

of a ∈ R, with [z + a− 1, z + a) is possible. One could also consider intervals of

length other than one, as long as the length is fixed.

In this sense, discrete distributions provide a useful way to analyze data that

have been “discretized” in such a manner. One such example is considered in

Section 7. This relationship with unimodal densities is particularly noteworthy,

since, although the MLE of a unimodal density does not exist, the MLE of its

discretized version does.

2.1.2. When the true support is unknown

The discussion above relating unimodal densities and pmfs implies that one

natural assumption on the support S is that it is a connected subset of a+δZ, for
some a ∈ R and δ > 0. However, we believe that in certain instances additional

generality may be required. For this reason, the only assumption we make about

the support S is that it is an ordered subset of R. This provides flexibility to our

approach: unimodality of a pmf is preserved under scalar transformations and

under removal of elements of the support.

We therefore do not assume that the true support is known a priori. Instead,

we estimate both the unimodal pmf and its support from the collected observa-

tions. Were the true support known a priori, more efficiency would be gained by

using this information in the estimation procedure. Some simulations studying

this appear in Section 3.1.
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Figure 1. The same empirical observations (shown in grey) yield two different
solutions maximizing the likelihood.

Our consistency and asymptotic results apply to both versions of the MLE;

support known or unknown. All results are proved and stated for the unknown

support version; they are only simplified when the support is known.

2.2. The unimodal maximum likelihood estimator

Let X1, . . . , Xn be independent observations from a discrete pmf p0. Let

pn(z) = n−1
∑n

j=1 I{z}(Xi) and Fn(z) = n−1
∑n

j=1 I{(−∞,z]}(Xi) denote their

empirical pmf and empirical cumulative distribution function (cdf), respectively.

Let Sn denote the observed support of pn, Sn = {z0, . . . , zJ−1} is the set of

distinct values in the sample {X1, . . . , Xn}.We assume that z0 < z1 < . . . < zJ−1.

2.2.1. Definition

As the support S is unknown we define the maximum likelihood estimator

(MLE) as

p̂n = argmax
p∈U1(Sn)

Ln(p),

where the log-likelihood is given by
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Ln(p) =

∫
log p(z) dFn(z) =

J−1∑
j=0

log(p(zj)) pn(zj).

This maximization is done in two steps: we maximize Ln over the space U1|κ(Sn)

for each κ, and we find κ̂n and the corresponding estimator at which the overall

maximum is attained.

2.2.2. The shape operators iso, anti, and uni

It is convenient to define several shape operators. For any z ∈ Rd, we let zs:t
be the sub-vector (zs, . . . , zt), 1 ≤ s ≤ t ≤ d. Consider the sets of constrained

vectors

Id =
{
u = (u1, . . . , ud) ∈ Rd : u1 ≤ · · · ≤ ud

}
,

Dd =
{
w = (w1, . . . , wd) ∈ Rd : w1 ≥ · · · ≥ wd

}
,

and, for κ ∈ {1, . . . , d}, let

Ud|κ =
{
z = (z1, . . . , zd) ∈ Rd : z1:(κ−1) ∈ Iκ−1 and zκ:d ∈ Dd−κ+1

}
,

and

Ud =

d∪
κ=1

Ud|κ.

We denote the ℓ2 distance by ∥v − u∥22 =
∑d

j=1(vj − uj)
2.

We define the operators iso : Rd → Id and anti : Rd → Dd as

iso[v] = argmin
u∈Id

∥v − u∥2,

anti[v] = argmin
w∈Dd

∥w − u∥2.

Here, iso[v] and anti[v] = −iso[−v] are the least squares projections of v on the

spaces Id and Dd respectively; cf., Barlow et al. (1972); Sen and Meyer (2013).

The operator anti is the same as the gren operator discussed in Jankowski and

Wellner (2009) and Jankowski (2014).

For κ ∈ {1, . . . , d}, define the operators uniκ : Rd → Ud|κ and uni : Rd → Ud

as

uniκ[v] = (iso[v1:(κ−1)], anti[vκ:d]) = argmin
u∈Ud|κ

∥v − u∥2,

uni[v] = argmin
u∈Ud

∥v − u∥2.

As before, we have

uni[v] = uniκ=κ̃[v], where κ̃ ∈ argmin
κ

∥v − uniκ[v]∥2.
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The operators iso and anti are unique, but, the operator uni may yield more

than one solution, much like the operator yielding the MLE. Properties of these

operators are discussed in detail in Appendix C.3 of the supplementary material.

2.2.3. Existence and characterization of the MLE

Proposition 2. The restricted MLE p̂n|κ exists, is unique, and is characterized

by
p̂n|κ = uniκ[pn].

The (unrestricted) unimodal MLE p̂n exists, but need not be unique. For {κ̂n} =

argmax 1≤κ≤J−1 Ln(p̂n|κ), the (finite) collection of solutions to the maximization

problem, {p̂n}, is characterized as

{p̂n} = {p̂n|κ;κ ∈ {κ̂n}}. (2.5)

The MLE is not defined in terms of the operator uni though the operator

does show up in its limiting distribution.

Remark 2. The size of the set {p̂n} may be greater than one (see, for example,

Figure 1). If non-unique, we take the MLE to be the maximizer with the smallest

mode. If κ̂n is the smallest integer κ such that

Ln(p̂n|κ) = max
1≤l≤J−1

Ln(p̂n|l),

then p̂n = p̂n|κ̂n
. Note the slight abuse of notation: we denote κ̂n as the smallest

element of {κ̂n}. In order to find κ̂n we can search over 1 ≤ κ ≤ J − 1 using

Remark 1.

To compute p̂n. we first find the restricted MLE p̂n|κ as the right slopes of

the greatest convex minorant of {(0, 0), (zj ,Fn(zj), 0 ≤ j ≤ κ − 1} and the left

slopes of the least concave majorant of {(0, 0), (zj ,Fn(zj)), κ ≤ j ≤ J − 1}. The
MLE p̂n is then taken to be the p̂n|κ that maximizes the overall likelihood for

the smallest integer κ. Proposition 2 follows immediately from the more general

result of Theorem 2 and Lemma C.3 in Appendix C of the online supplementary

material.

3. Finite Sample Performance of the MLE

Here we compare three maximum likelihood estimators for small and medium

samples sizes. They are as follows:

(1) the MLE under no assumption on the pmf; i.e., the empirical MLE,

(2) the MLE assuming the pmf is unimodal (p̂n as defined in this work),

(3) the log-concave MLE assuming the pmf is log-concave. Theoretical and com-

putational aspects of this estimator have been studied in Balabdaoui et al.

(2013).
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Figure 2. Boxplots of the ℓ2 distance of the estimated pmf from the true
pmf under each of three estimators: the empirical MLE (1), the unimodal
MLE (2), the log-concave MLE (3). Each boxplot is the result of B =1,000
simulations. Properties of these distributions are summarized in Table 1.
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Figure 3. Boxplots for the six distributions of Figure 2 of the ℓ2 distance of
the estimated pmf from the true pmf for the unimodal MLE when the sup-
port is known (a) and unknown (b). Each boxplot is the result of B =1,000
simulations.
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In our simulations, we considered six distributions; as follows:

– The negative binomial distribution with parameters r = 6, p = 0.3; it is both

strictly unimodal and strictly log-concave.

– The double logarithmic distribution with S = Z, and

p(z) =


p|z|

2|z|(p−log(1−p)) , z ≤ −1,

p
p−log(1−p) , z = 0,

pz

2z(p−log(1−p)) , z ≥ 1.

(3.1)

This distribution is strictly unimodal but not log-concave. In the simulations,

we took p = 0.9.

– The uniform pmf with S = {0, . . . , 9}; it is neither strictly unimodal nor

strictly log-concave.

– The mixture of uniform distributions with support on {0, . . . , 49}, with pmf

given by taking S = Z, κ = 0 and

q(z) =

{
1
3 , z = 9, 39, 49,

0, otherwise.
(3.2)

in decomposition (2.4). This distribution is unimodal, though not strictly,

and is not log-concave.

– The Poisson with rate λ = 2, a strictly log-concave and unimodal distribution.

– A mixture of Poisson distributions: Let pλ denote the Poisson pmf with rate

λ, we consider ed the mixture (1/4) · p1(·) + (1/8) · p3(·) + (5/8) · p8(·). This
distribution is (strictly) bimodal, and is therefore neither unimodal nor log-

concave.

Properties of the six distributions are summarized in Table 1 for convenience.

In Figure 2, we can see that the unimodal MLE performs better than the

empirical MLE for all six distributions. It is, however, outperformed by the log-

concave MLE for the distributions that are log-concave, although they appear to

Table 1. Properties of distributions considered.

unimodal log-concave finite support

negative binomial yes (strict) yes (strict) no
double logarithmic yes (strict) no no
uniform yes yes yes
uniform mixture yes no yes
Poisson yes (strict) yes (strict) no
Poisson mixture no no no
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have comparable errors in the case of the Poisson distribution with rate λ = 2.

The unimodal MLE outperforms the log-concave MLE when the distribution is

not log-concave, at least for sample sizes that are “large enough”. Our simula-

tions show that this sample size is related to how far away the true pmf is from

the set of log-concave distributions. In Figure 2, the ℓ2 distance to the corre-

sponding log-concave Kullback-Leibler projection (cf., Balabdaoui et al. (2013))

is approximatively 0.363 for the double logarithmic and 0.050 for the uniform

mixture. Overall, we expect that when log-concavity fails to hold, the unimodal

MLE is the better estimator for larger sample sizes. Moreover, this behavior

also holds for smaller sample sizes for pmfs that are further from the log-concave

class. The bimodal Poisson mixture model is the only example in which neither

the log-concave nor unimodal classes are correct. Notably, although the empiri-

cal pmf is the only well-specified MLE in this case, it outperforms the other two

estimators only for the largest sample size.

3.1. Comparison of known versus unknown support

Some efficiency may be lost by assuming that the support is unknown, and

we briefly consider the question of “how much?” via simulations. When the

support is known, the MLE is defined as

argmax
p∈U1(S)

Ln(p),

unlike in the definition of p̂n, where S is replaced by its estimate Sn. In order

to avoid existence issues, the class U1(S) should be viewed as the set of proba-

bility mass functions p with support contained in S. Our simulations show that

although some difference is seen for small sample sizes, the cost is not great, and

the difference disappears with increased sample size. As mentioned previously,

our consistency and asymptotic results developed later apply to both versions of

the MLE.

Figure 4 gives an example of the two estimators, with known and unknown

support, for a sample from the negative binomial distribution for n = 50. Both

unimodal MLE approaches provide considerable “smoothing” to the empirical

pmf. However, when the support is unknown, the MLE only places mass on

Sn, whereas the MLE with known support places mass on the entire range

{X(1), . . . , X(n)}. This is clearly seen in Figure 4. The potential loss of efficiency

most likely occurs in the tails of the true distribution, and this is particularly

true for distributions with a fatter tail.

We compared the two approaches via simulations, the results of which are

shown in Figure 3. The distributions considered are those described on page 1070.

The loss is small for the uniform distribution that has support on ten points, and
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Figure 4. Example comparing the unimodal MLE when the support is known
vs. unknown. The true distribution is the negative binomial with sample
size n = 50.

also for both Poisson distributions, where the tails converge to zero quickly. For

the other distributions, with slower rate of decay in the tails, some efficiency

is lost for the small sample size (n = 50). However, the loss appears almost

negligible for the medium sample size (n = 200).

Remark 3. When S = Sn, the known and unknown support MLEs are the

same. When |S| is finite, the probability that this does not happen for a given n

decreases exponentially with n. Furthermore, with probability one, there exists

an n0, such that for all n ≥ n0, S = Sn.

4. The Kullback-Leibler Projection and Consistency of the Unimodal

MLE

Let p0 denote a fixed probability mass function on S0 with distribution func-

tion P0 and let
ρ(p|p0) =

∫
log

p0
p
dP0,

denote the Kullback-Leibler (KL) divergence. In this section, we seek the KL

projection p̂0 ∈ U1(S0) of a given pmf p0. The KL projection has been considered

extensively for the log-concave shape constraint for densities on Rd in Cule and

Samworth (2010) and Dümbgen, Samworth, and Schuhmacher (2011), and for

probability mass functions in Balabdaoui et al. (2013). As in Cule and Samworth

(2010) and Cule, Samworth and Stewart (2010) and Balabdaoui et al. (2013), we

take

p̂0 = argmin
p∈U1(S0)

∫
S0

log
p0
p
dP0 = argmin

p∈U1(S0)

ρ(p|p0), (4.1)
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the element of U1(S0) closest to the unknown pmf p0 in the sense of Kullback-

Leibler divergence. From a practical point of view, this allows us to view the

shape constrained estimator as the closest approximation within a class of dis-

tributions.

Alternatively, Patilea (2001) uses the definition∫
log

p̂0
p
dP0 ≥ 0, for all p ∈ U1(S0), (4.2)

and refers to the pmf p̂0 satisfying (4.2) as the pseudo-true pmf. If the integrals

involved are finite, one can re-arrange (4.2) into (4.1) and vice versa. In partic-

ular, if infq∈U1(S0) ρ(q|p0) = ρ(p̂0|p0) < ∞ for some p̂0 then (4.1) is equivalent to

(4.2), since then

0 ≤
∫

log
p0
p̂0

dP0 ≤
∫

log
p0
p
dP0 =

∫
log

p0
p̂0

p̂0
p
dP0

=

∫
log

p0
p̂0

dP0 +

∫
log

p̂0
p
dP0.

Alternatively, as in Dümbgen, Samworth, and Schuhmacher (2011), one

could also consider∫
log p̂0 dP0 ≥

∫
log p dP0, for all p ∈ U1(S0), (4.3)

which is akin to maximizing the likelihood. If p0 admits a finite entropy,
∫
log p0

dP0 > −∞, then (4.3) is equivalent to (4.1). Furthermore, (4.2) is equivalent to

(4.3) whenever supp∈U1(S0)

∫
log pdP0 > −∞ and is attained.

In what follows, we work with the formulation of Patilea (2001) in (4.2),

although we continue to refer to it as the KL projection. Recall that U1|κ(S0) is

the space of unimodal pmfs with support S0 and mode at either sκ−1 or sκ.

Theorem 1. Let p0 be a discrete pmf with support S0. Let P̂0|κ denote the greatest

convex majorant of the cumulative sum of p0(si), i ≤ κ− 1 and the least concave

minorant of the cumulative sum of p0(si), i ≥ κ, and let p̂0|κ denote the pmf

corresponding to P̂0|κ. Then∫
log

p̂0|κ
p

dP0 ≥ 0, for all p ∈ U1|κ(S0). (4.4)

Furthermore, when p0 ∈ U1|κ(S0), or when
∑

j ̸=0 log |j|p0(sj) < ∞, q = p̂0|κ is

the unique pmf which satisfies
∫
log(q/p)dP0 ≥ 0 for all p ∈ U1|κ(S0).

Theorem 2. Let p0 be a discrete pmf with support S0.
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1. If p0 ∈ U1(S0), then p̂0 = p0 is the unique unimodal pmf satisfying∫
log

p̂0
p
dP0 ≥ 0 for all p ∈ U1(S0).

2. If p0 /∈ U1(S0) and
∑

j ̸=0 log |j|p0(sj) < ∞, then there exists a p̂0 ∈ U1(S0)

such that ∫
log

p̂0
p
dP0 ≥ 0 for all p ∈ U1(S0).

When p̂0 is not unique, we denote by {p̂0} the (finite) collection of all such

projections.

Thus when the model is well-specified, the KL projection of p0 is unique and

is the true pmf itself under no additional assumptions. However, if the model

is misspecified, there may exist several different KL projections; these make-up

the (finite) set {p̂0}. Examples of such non-uniqueness are given in Figure 5. We

believe that this lack of uniqueness is due to the fact that the space of unimodal

densities is not convex. Although the condition
∑

j ̸=0 log |j|p0(sj) < ∞may seem

a bit unnatural at first, one can express it in a more transparent form.

Proposition 3. Let p0 be a discrete pmf with support S0. Then∑
j ̸=0

log |j| p0(sj) < ∞ if and only if sup
p∈U1(S0)

∫
log p dP0 ∈ (−∞, 0].

Under this condition, (4.2) is equivalent to (4.3). If we assume in addition

that

0 < δ1 ≤ inf(sj+1 − sj) ≤ sup(sj+1 − sj) ≤ δ2 < ∞,

then one can show that the condition
∑

j ̸=0 log |j|p0(sj) < ∞ is equivalent to∫
log |x− a|dP0(x) ∈ R for some a /∈ S0. Therefore, this condition gives a bound

on the speed of decay of p0. Also, it is weaker than the assumption of having

a finite mean required by Cule and Samworth (2010) and Dümbgen, Samworth,

and Schuhmacher (2011). Our assumption is also weaker than that made by

Patilea (2001, Corollary 5.6), although the latter is a condition for deriving rates

of convergence. In our setting, Patilea’s assumption boils down to existence of

an ϵ > 0 such that ∫
p̂−ϵ
0 dP0 < ∞,

where P0 is the cumulative distribution function of p0. Since log(x) ≤ xϵ/ϵ for

x ∈ (0,∞), ∫
log

1

p̂0
dP0 ≤

1

ϵ

∫
p̂−ϵ
0 dP0 < ∞,
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implying our condition in Proposition 3 (since then
∫
log p̂0dP0 > −∞).

4.1. Consistency

For two pmfs p and q defined on S, the ℓk and Hellinger distances between

p and q are respectively,

ℓk(p, q) =


(∑

x∈S
|p(x)− q(x)|k

)1/k
, if 1 ≤ k < ∞,

sup
x∈S

|p(x)− q(x)|, if k = ∞,

h(p, q) =
1

2

∑
k∈S

(√
p(x)−

√
q(x)

)2
.

In the following, we establish almost sure consistency of the unimodal MLE under

a mild condition on the true pmf p0. Fix a discrete pmf p0 with support S0, and

assume that we observe i.i.d. data X1, . . . , Xn ∼ p0. Here, we do not necessarily

assume that p0 is itself unimodal. Let p̂n denote again the unimodal MLE based

on the sample (X1, . . . , Xn). In the well-specified model, the KL projection p̂0
in the sense of (4.2) is p0 itself; when the model is misspecified and p0 satisfies∑

j log |j|p0(sj) < ∞, then the KL projection p̂0 exists in the sense of (4.3) but

may not be unique, with {p̂0} the set of all such KL projections.

Theorem 3. Suppose that
∑

i ̸=0 log |i|p0(si) < ∞, and let d ≡ ℓk or h. Then

d(p̂n, {p̂0}) ≡ inf
q̂∈{p̂0}

d(p̂n, q̂) → 0

almost surely. If p0 is unimodal, then d(p̂n, p0) → 0 almost surely.

Remark 4. Pointwise convergence and convergence in ℓk, 1 ≤ k ≤ ∞ and

Hellinger distance h are all equivalent for probability mass functions. This follows

for example from Lemma C.2 in the online supporting material of Balabdaoui

et al. (2013).

The fact that {p̂0} is not necessarily a singleton means that the MLE does

not necessarily converge to a particular element of {p̂0}. Rather, our proof shows
instead that the MLE is sequentially compact: there exists an element q̂ ∈ {p̂0}
and a subsequence nk such that d(p̂nk

, q̂) → 0. We illustrate this behaviour via

an example. Let S0 = {−2,−1, 0, 1, 2} and take

p0(si) =

{
1
6 , si = −2, 0, 2,

1
4 , si = −1, 1.

(4.5)
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Figure 5. Convergence of p̂n to {p̂0} for p0 as in (4.5). The boxplots show
the d = ℓ2 distance for B =1,000 Monte Carlo samples with a sample size
of n =1,000,000. The three columns give (a) d(p̂n, p̂

1
0), (b) d(p̂n, p̂

2
0), and (c)

d(p̂n, {p̂0}). The plot on the right differs from the plot on the left in that, on
the right, in (a) and (b) the boxplots have been split into large/small values
to show the bimodal nature of the data. For reference, the dashed horizontal
line gives d(p̂10, p̂

2
0).

Here {p̂0} has two elements, p̂10 and p̂20, say. Straightforward calculations show

that

p̂10(si) =


1
6 , si = −2, 2,

1
4 , si = −1,

5
24 , si = 0, 1,

with mode at −1 and p̂20(si) = p̂10(−si) (with mode at 1). Simulations for a very

large sample size are shown in Figure 5, where the convergence in set distance is

clearly visible.

On the other hand, if |{p̂0}| = 1, then the unimodal MLE converges to the

unique element of {p̂0}. For the restricted MLE p̂n|κ, a similar result holds. A

proof follows by using, for example, Marshall’s lemma as in Patilea (2001, Lemma

5.5, p.114), without any restrictions on p0.

Let M̂n be the modal region of the unimodal MLE p̂n, cf., (2.2). An im-

mediate corollary of the preceding theorem is the following statement about

convergence of M̂n. For simplicity, we assume that the KL projection is unique.

One can state the following with some additional generality, albeit in a less clear

manner.

Corollary 1. Assume
∑

i̸=0 log |i|p0(si) < ∞ and that |{p̂0}| = 1, and let M de-

note the modal region of p0. Then with probability one, there exists a sufficiently

large integer n0 such that for all n ≥ n0, M̂n ⊂ M.
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Thus, if |M| = 1, then, with probability one, there exists a sufficiently large

n0, such that the mode of the MLE coincides with the true mode. If |M| > 1,

this is no longer true, and all we can say is that eventually the estimated mode

will be in M.

Corollary 2. Assume
∑

i̸=0 log |i|p0(si) < ∞ and that |{p̂0}| = 1. Let F̂n and

F̂0 denote the cdfs of p̂n and p̂0 respectively. Then

lim
n→∞

sup
s∈S0

|F̂n(s)− F̂0(s)| = 0

almost surely.

5. Global Asymptotics

The results for the asymptotic behaviour of the unimodal MLE share many

similarities with those given in Jankowski and Wellner (2009) for the Grenander

estimator of a decreasing pmf on N. Our main interest here is to derive the weak

limit of the estimator when p0 is unimodal. We do not consider the misspecified

setting. One could, however, mimic the work in Jankowski (2014) to obtain the

asymptotic distributions in this case under some further restrictions on p0. De-

spite the similarity mentioned earlier with the monotone problem, some technical

details need special attention since the mode of the true pmf is unknown, and

we do not assume that the true support is known.

With M the modal region of p0 as defined in (2.2), write

D =
{
si : si /∈ M and p0(si) ≥ p0(si+1)

}
, and

I =
{
si : si /∈ M and p0(si−1) ≤ p0(si)

}
as the decreasing and increasing regions of S0 respectively. We write

M = {τ I0 , . . . , τD0 } (where τ I0 ≤ τD0 ), and let {τDi }i≥1 enumerate the points

in D such that p0(si) > p0(si+1), where τDi < τDi+1. Similarly, let {τ Ii }i≥1 enu-

merate the points in I such that p0(si−1) < p0(si), where τ Ii+1 < τ Ii . We write

Dj = {s ∈ S0, τ
D
j−1 < s ≤ τDj } for j ≥ 1, and Ij = {s ∈ S0, τ

I
j ≤ s < τ Ij−1}

for j ≥ 1. Notice that each of these regions is necessarily finite, and that p0 is

constant on each subset Ij , Dj and M. We therefore have that

I = ∪· Ij , D = ∪· Dj , and S0 = I ∪· M∪· D. (5.1)

We also denote the collection of knots as

T = {τ Ij , j ≥ 1} ∪ {τD0 , τ I0 } ∪ {τDj , j ≥ 1}. (5.2)
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Our definition of a knot, as well as the collection of knots, depends on the un-

derlying pmf p0. Let q be an element of ℓ2(S0) and, for a subset C ⊂ S0, write

the vector qC = {q(sj), sj ∈ C} to denote the sequence q restricted to C. Define

φ :

φ[q](s) =


iso[qIj ](s), s ∈ Ij ,

uni[qM](s), s ∈ M,

anti[qDj ](s), s ∈ Dj .

(5.3)

The definition of φ technically depends on p0, although we omit this dependence

in the notation. In addition, φ satisfies φ[p0] = p0.

Theorem 4. Suppose that p0 is unimodal and that
∑

i ̸=0 log |i|p0(si) < ∞. Let

W be the centered Gaussian process defined on S0 such that cov(W(si),W(sj)) =

p0(si)δi,j −p0(si)p0(sj). Then
√
n(p̂n−p0) ⇒ φ[W], in ℓk(S0), where 2 ≤ k ≤ ∞.

Thus if s is such that s ∈ C where C = Ij ,M, or Dj and |C| = 1, then√
n(p̂n(s) − p0(s)) ⇒ W(s), since in such cases φ[q](s) = q(s); in regions where

p0 is strictly unimodal, the asymptotics of p̂n are the same as those of pn. Similar

observations have been made in Jankowski and Wellner (2009) for the Grenander

estimator and Balabdaoui et al. (2013) for the log-concave MLE. Here ℓ2(S0) is

the smallest space, of those considered above, where one can prove the asymp-

totics; convergence in smaller spaces such as ℓ1(S0) cannot be considered without

additional assumptions on p0. We refer to Jankowski and Wellner (2009) for ad-

ditional details.

The next result follows from the definition of φ, as well as Jankowski and

Wellner (2009, Theorem 2.1).

Proposition 4. For 2 ≤ k ≤ ∞, we have that ∥φ[W]∥k ≤ ∥W∥k.

It is also possible to develop a Marshall’s lemma type result in our setting.

The (asymptotically negligible) error term not seen in the usual type of result

here is due to estimation of the support in our approach.

Proposition 5 (Marshall’s Lemma). Suppose that
∑

s∈S0
p
1/2
0 (s) < ∞ and that

the true pmf p0 is unimodal with associated cumulative distribution function F0.

Then, with probability one, there exists an n0 such that for all n ≥ n0

sup
s∈S0

|F̂n(s)− F0(s)| ≤ sup
s∈S0

|Fn(s)− F0(s)|+ op(n
−1/2).

6. Global Confidence Bands for p0

We consider the calculation of confidence bands for the true pmf p0, which we

assume to be unimodal. To this end, let q0,α be such that P (∥W∥∞ > q0,α) = α.
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Figure 6. 95% constant-width (β = 0) confidence bands for the true pmf
when sampling from the double logarithmic distribution p = 0.9. The sample
size is n = 100 on the top and n =1,000 on the bottom.

Then, it follows that

lim
n

P
(√

n∥p̂n − p0∥∞ ≤ q0,α
)
≥ 1− α,

since
√
n∥p̂n−p0∥∞ ⇒ ∥φ[W]∥∞ ≤ ∥W∥∞. If p0 is strictly monotone then φ[W] =

W, then the last inequality becomes an equality, resulting in an asymptotically
exact confidence band.

To estimate q0,α, we use p̂n in place of p0. In Proposition B.7 of the online
supplementary material, we show that this yields an almost surely consistent
method of estimating q0,α. We estimate each quantile using Monte Carlo simu-
lations. Thus, if q̂0,α denotes a Monte Carlo estimate of the quantile of ∥W∥∞,
an asymptotically correct conservative confidence band is given by{[(

p̂n(si)−
q̂0,α√
n

)
∨ 0, p̂n(si) +

q̂0,α√
n

]
, si ∈ supp(p̂n)

}
, (6.1)
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where supp(p̂n) denotes the support of p̂n. When the support of p0 is estimated

from the data, supp(p̂n) = Sn, the support of the empirical distribution.

In Figure 6, we show an example of confidence bands thus constructed, when

the true pmf is the double logarithmic distribution with p = 0.9. We found the

constant width of the confidence bands, particularly for the smaller sample size,

somewhat visually jarring. For this reason, we created confidence bands which

are visually more appealing in that they do not have uniform width. Define, for

β ≥ 0,

Ŵβ
n(s) =


√
n(p̂n−p0)(s)

p̂βn(s)
, s ∈ supp(p̂n),

0, s /∈ supp(p̂n).

If β = 0, then Ŵβ
n =

√
n(p̂n − p0), and we are in the situation of constant-width

confidence bands.

Proposition 6. Fix β > 0 and assume that the support of p0 is finite. Then∣∣∣∣∣∣Ŵβ
n

∣∣∣∣∣∣
∞

⇒

∣∣∣∣∣
∣∣∣∣∣φ[W]

pβ0

∣∣∣∣∣
∣∣∣∣∣
∞

≤

∣∣∣∣∣
∣∣∣∣∣ Wpβ0

∣∣∣∣∣
∣∣∣∣∣
∞

.

In this case, an asymptotically correct conservative confidence band is given

by {[(
p̂n(s)− p̂βn(s)

q̂β,α√
n

)
∨ 0, p̂n(s) + p̂βn(s)

q̂β,α√
n

]
, s ∈ supp(p̂n)

}
,

where q̂β,α is an estimate of qβ,α where P
(∥∥∥p−β

0 W
∥∥∥
∞

> qβ,α

)
= α. Estimation

of this quantile can be done using a Monte Carlo approach, as before.

Remark 5. When p0 has an infinite support, the limiting distribution p−β
0 W

exists in ℓ2 provided
∑

i p
1−2β
0 < ∞, which adds the restriction that β < 1/2.

We conjecture that this continues to hold for distributions with infinite support

with the restriction that β ∈ [0, 1/2), although we do not pursue the proof here.

The assumption of finite support may be highly plausible in certain practical

situations, whereas the (weaker) assumption of
∑

i p
1−2β
0 < ∞, is not as easy to

motivate.

In Figure 7 we compare the constant-width confidence bands to the varying

width confidence bands (with β = 0.5) when the true distribution is the mixture

of uniforms, whose mixing distribution is given in (3.2). Visually, we find the

choice of β = 0.5 preferable in that the values, where p̂n is smaller, express

slightly more accuracy, as one would expect. In this particular example, the

difference is not great, but is still eye-pleasing. For β = 0, the width of the
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Figure 7. 95% confidence bands for the true pmf when sampling from the
mixture of uniforms distribution with mixing distribution given in (3.2). The
sample size is n = 100 and we chose β = 0 (left, constant width) and β = 0.5
(right, varying width).

Table 2. Empirical coverage probabilities for the proposed confidence bands
with α = 0.05.

β n = 100 n =1,000 n =5,000
mixture of uniforms 0 0.972 0.963 0.959

0.25 0.991 0.971 0.970
0.5 0.959 0.953 0.991

double logarithmic 0 0.956 0.949 0.949
0.25 0.970 0.950 0.948
0.5 0.980 0.989 0.989

confidence bands varies from 0.13 to 0.07 (median 0.08), while for β = 0.5, the

width of the confidence bands varies from 0.17 to 0.04 (median 0.06). Note that,

although for β = 0 the confidence bands have a constant width, we have to cut

off the lower bound at a maximum value of zero, and hence the bands end up

being non-constant in reality. Without this cutoff, the width would be constant

at 0.13.

In Table 2, we examine the empirical performance of the proposed confi-

dence bands. We considered two different unimodal distributions: the mixture of

uniforms as above, and the double logarithmic with p = 0.9 from (3.1). Our simu-

lations spanned various samples sizes and values of β. Note that when β = 0.5 and

the true pmf is double logarithmic, the conditions for convergence are violated

(see Proposition 6 and Remark 5), and we include this example for compari-

son only (seeing as the condition that
∑

i p
1−2β
0 < ∞ may be difficult to verify

without additional information about p0).
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For β ≥ 0 take

ĉn,u(s) = p̂n(s) + p̂βn(s)
q̂β,α√
n
, s ∈ supp(p̂n),

ĉn,l(s) = 0 ∨
(
p̂n(s)− p̂βn(s)

q̂β,α√
n

)
, s ∈ supp(p̂n),

ĉn,u(s) = ĉn,l(s) = 0, s /∈ supp(p̂n).

The results in Table 2 give the empirical coverage on the set Sn as indicated in

the third column, we report the proportion of times that

ĉn,l(s) ≤ p0(s) ≤ ĉn,l(s), for all s ∈ Sn (6.2)

was observed.

Overall, we find that the confidence bands perform rather well. For the dou-

ble logarithmic case β < 0.5 we expect to obtain asymptotically correct bands,

whereas in both uniform mixture scenarios, we expect an asymptotically con-

servative result. In Appendix A of the online supplementary material, we pro-

vide some additional results where we study the cost of defining the bands on

supp(p̂n) = Sn in the simulations.

7. Time-to-onset of the Ebola Virus

Breman and Johnson (2014) describe their experiences during the 1976 Ebola

virus outbreak in Zaire (currently, the Democratic Republic of the Congo). They

show histograms of the time of onset of the disease based on the transmission

route: patients became infected either with an unsterilized needle or through

person-to-person contact. This data was also published in Breman et al. (1978).

Here, we use the histograms in Breman and Johnson (2014) to transcribe the data

and perform a brief analysis. Transcribing the histograms resulted in samples

sizes of n = 57 and n = 108, which differs slightly from those presented in Breman

and Johnson (2014).

Figure 8 shows the empirical observations and the fitted unimodal MLEs

for the two types of transmission routes. The 95% asymptotic global confidence

bands are also included, where we used the version with constant width. The

time-to-onset is measured in days, and we assume that the support of the true

pmf is the natural numbers, or is a connected subset thereof. Thus, we use the

version of the likelihood maximization where the support is not estimated from

the data. Visually, there is no glaring reason that the assumption of unimodality

is not appropriate in these two cases. On the other hand, the fitted MLE provides

a slight smoothing to the empirical distribution, which is appealing.
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Figure 8. Time to onset of symptoms of the Ebola virus based on trans-
mission type. The sample size is n = 57 for those infected from unsterilized
needles and n = 108 for person to person contact.

The confidence bands in Figure 8 appear somewhat wide due to the small

sample sizes observed in both distributions. The average width for the injec-

tion infection was found to be 0.18, and 0.12 for infection from person-to-person

contact. As a crude benchmark, the average widths of 95% pointwise confi-

dence intervals were calculated for the true pmf p̂n ± 1.96
√
p̂n(1− p̂n), based

on Theorem 4 and under the (untested) assumption that the true pmf is strictly

unimodal. Here, the average width for the injection infection was found to be

0.12, and 0.08 for infection from person-to-person contact. These are also wide,

but less so than the global confidence bands, as expected.

It is interesting how different the two distributions appear to be. The stan-

dard Kolmogorov-Smirnov test does not yield exact p-values in this setting be-

cause the data is discretized, and hence we used a permutation test; see Jöckel
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Figure 9. Time to onset of symptoms of the Ebola virus based on transmis-
sion type: a comparison of cumulative distribution functions.

(1986). This modified approach yielded a p-value of 0.0014 for the hypothesis

that the two distributions are the same. This is in line with what we observe in

Figures 8 and 9. R (R Core Team (2014)) code for performing this analysis is

available online at www.math.yorku.ca/~hkj/Research.

A biological explanation for the difference between the two distributions was

provided to us by Jane Heffernan (2014, private communication): “Injection

gets the pathogen into the blood stream. Person-to-person contact provides

exposure to the mucosa (innate immunity) first, so the pathogens that ultimately

make it to the blood will be different in fitness distribution than the injection

method. Also, the amount of pathogen ultimately making it to the blood could

be smaller compared to the injection method. Both of these variables will affect

the incubation period.” In the data, we see this difference not only through

a mean comparison (the mean time-to-onset is 6.3 days for transmission via

injection and 9.4 days for person-to-person infections) but also in the stochastic

dominance observed via the fitted and empirical CDFs in Figure 9. The latter

suggest that Tinj ≤ Tptp stochastically, where Tinj and Tptp denote the times to

onset for injection and person-to-person infections, respectively. Repeating the

permutation test for the hypothesis that the two distributions are equal against

the alternative that Finj > Fptp yields a p-value of 0.0008.

Supplementary Material

In this supplement we present some additional proofs, and a further discus-

sion of our assumptions.

www.math.yorku.ca/~hkj/Research
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