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Summary

This supplementary file contains 4 sections. The first section describes the algorithm for the
estimation method. The second section illustrates the detailed bandwidth selection and the
empirical bias bandwidth selection (EBBS) methods. Some additional simulations about the
estimation and further details about case study are given in Section 3. The detailed proofs of

Lemmas and Theorems are given in Section 4.

S1 Algorithm

The following describes the detailed algorithm of the estimation method in Section 2.

e Step 0. Choose initial values for 3;, denoted by ,BI(OM), 1=0,1.
e Step 1. Calculate u; = X,Bl("ld), and B, (), 1 =0,1.
e Step 2. Use ordinary least squares estimation to obtain &, and X(ﬂ) by (3) in the paper.

e Step 3. Estimate 8<% by

8" = argmin R((@",8")", \(9),
Be®g
then update B;Old) by ,Bl(om) = ,Bl(new)/||,8l("ew)||27 = 0,1. The Newton-Raphson algo-

rithm is used to calculate 3 here.

e Step 4. Repeat Steps 1-3 until convergence. This gives the whole parametric estimator
0= (aT,BT)T and Xl(g), which results in ﬁu(BITX, B), l=0,1.

e Step 5. Given the parametric estimator 9 in Step 4, calculate the pseudo responses,
~ e - ~T ~ e
Yio = Yi — & Zi — 7 (B Xi, B)Gi — & ZiGi,

Yi =Y —ag Zi — ﬁ”Lo(BoTXuB) —- a1 ZGi.
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e Step 6. Compute ﬁ%l(uha) by (5) in the paper based on new data {Yi1, X, Zi, Gi 71,
and Mo (uo, B) based on new data {Yio, X;, Zi, G }1-q.

Remark S1: Unlike the algorithms proposed by Carroll et al. (1997) and Cui et al. (2011)
which estimate the parametric parameters and nonparametric functions iteratively, we do not
need to iterate the two steps for the kernel estimator. Thus, it is faster than their algorithm.

Remark S2: In Step 3, we need to calculate the first derivative of B,(w;). Denote by
B, ()7 the first derivative of B(u;). According to de Boor (2001), Bl.(u;) = Br—1(u)T Wi,
where Br_1(u;) = (Bs,r—1(w) : 2 < s < Jn)T, and

—1 1
Er41—82  &ryp1—82 0 0
0 =t  _ 1 0
Ery2—E Ery2—E
Wi =(r—1) e e
0 0 =1 1
ENt+2r—1—EN+r  EN42r—1—EN4r (Jn—1)%Jn

(A1)

In Wy, &5, j=1,---,N, +r are defined in Section 2.2 in our paper.

S2 Bandwidth selection

S2.1 The EBBS algorithm

~

The BSBK estimator 71, (u;, 3) is sensitive to the choice of bandwidth h;, I = 0, 1. Fortunately,
the bandwidth selection is not related to the parametric estimators as well as the B-spline
function estimators mo (BO) and ml(ﬁl). Thus, the bandwidths are chosen based on 8 and new
data Y;o and 1721, i=1,---,n, defined in Section 2.3. Bandwidth selection has been intensively
studied in nonparametric literature, see Sepanski et al. (1994) and Ruppert et al. (1995) for
good discussions. In fact, the bandwidth A can be chosen by any bandwidth selector that
minimizes the mean squared error (MSE) of the estimator, for example, the cross-validation.
Here we employ a bandwidth selection method called empirical bias bandwidth selection (EBBS)
(Ruppert et al. 1995; Carroll and Ruppert 1998; Liu et al. 2014).

The basic idea behind EBBS is as follows. To facilitate, we only consider the choice of ho,
and denote it by h by omitting the subscript in current section. Give parametric estimator 0
and new data (ﬁ-o, Xi, Z;,G;) and u; = XZT/@O, i =1,---,n, which is used for the local linear
estimator ﬁzo(uo7,§). Fix h* and uo, we can assume that ((h", T) is a known form of the bias
function of mo(uo) by Theorem 4, such as linear form ((h,vy) = bt + oo+ AT where
t > 1, s is the degree of polynomial kernel regression used, and 7 = (74, - - - ,Tt)T is unknown.
In this work, we take s = 1 because the linear kernel regression is used. Let 77A”1J()(uo7,a7 h) be
the BSBK estimator of mo(uo), where mo(uo, ,57 h) is mo(uo, ,B) in Theorem 4 emphasizing that
it relates to bandwidth h. According to Theorem 4, the BSBK estimator ﬁzg(u(),/@, h) can be

well approximated by a function of h, 79 + ((h, T) + 0,(h*T"), where 70 = mo(uo) is the limit.
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Denote by {h1,---,hk} a grid of bandwidths in a neighborhood Ho of h*, where K >t + 1.
Let (7o, 7) minimize Zle{ﬁzo(uo“a hi) — 70 — C(hs,7)}?. Then by Theorem 4, the bias of
mo(uo) could be estimated at h* by ((h*,T) if Ho is small enough.

Noting that the MSE of g (uo, B, h) is a function of bandwidth h, the data-driven optimal

bandwidth is selected to minimize the following MSE function,
MSE(h, ug) = bias® (ﬁzo(uoﬂa h)) + var (ﬁ%o(uoﬂa h)) .

By Section 2.4 and the previous discussion, it is easy to estimate MSE(hg,uo) at each hy,
k=1,---,K. The two quantities ¢ and J need to be determined in practice. As discussed
by Carroll and Ruppert (1998), we do a grid search for bandwidth H1 = {h1, -, ha}. Given
(K1, K2) such that K7 + K2 > t, we use above method to calculate MSE(hg, uo) for each hg,
ke{Ki+1,--- M — Ko} with Ho = {h;,j =k — K1, -+ ,k+ K2}. In our simulation and real
data analysis, we select (¢, M, K1, K2) following Carroll and Ruppert (1998).

S2.2 Bandwidth selection in simulation studies

Here we demonstrate how to select the bandwidth for the simulation study in Section 4.1.

Initializing a bandwidth h} = G,, - n~'/°

, where @, is the sample standard deviation of the
estimator u; = BITX, [l =0,1, we give a grid of bandwidths H; = h* x R in which R is chosen
from the interval [0.1,2.1] by 0.1 increment. Here we choose (¢, K1, K2) = (1,2,2). One can
choose other combinations and more details are referred to Ruppert et al. (1995), Carroll and

Ruppert (1998) and Liu et al. (2014).

S3 Simulation and Case Studies

S3.1 Performance of estimation

Consider the PLVMICM model
Y =mo(Be X) + af Z + mi (8] X)G + a ZG + ¢, (A.2)

where the setup is the same as that in Section 4.1 in the paper. Table S1 reports the Bias, SD,
SE and CP, which are defined in Section 4.1 of the paper. In this Table, the results for n = 1000
are added. For easy comparison, we repeat the results listed in the main context for n = 200
and n = 500. It is clear that the performance improves as the sample size n increases.

The estimation for function mo(-) under different MAFs and sample sizes is shown in
Figure S1. Overall, the function can be reasonably estimated with high accuracy indicated with
narrow confidence bands under different simulation combinations. In Figure S2 we added the
estimation for function m;i(-) under n = 1000. The result is consistent with what we observed
in the main context.

We also considered the PLVMICM model given in model (9) in the main context with

two genetic components and tested if both m1(-) and m2(-) are simultaneously linear following
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Table S1: Simulation results under p4 = 0.1,0.3,0.5 and sample size n = 200, 500, 1000.

pa=0.1 pa=0.3 pa =05

n  Param True Bias SD SE CP Bias SD SE CP Bias SD SE CP
200 a1 0.500 4.4E-04 0.016 0.016 95.2 3.1E-04 0.020 0.020 95.2 9.9E-04 0.026 0.026 95.1
ap2  0.500 -1.6E-04 0.016 0.016 95.3 4.1E-04 0.020 0.020 95.3 5.6E-04 0.026 0.026 95.8

a1 0.300 9.4E-05 0.040 0.039 94.1 6.0E-04 0.024 0.024 94.1 6.7E-05 0.022 0.022 95.2

a2 0.300 -1.1E-03 0.040 0.039 95.0 -1.1E-03 0.023 0.024 95.9 -4.4E-04 0.021 0.022 96.3

Bor  0.620 -3.7E-04 0.011 0.011 94.7 -1.7E-03 0.012 0.013 94.8 -2.1E-03 0.014 0.014 94.5

Bo2  0.555 3.3E-04 0.012 0.012 95.3 1.0E-03 0.013 0.013 96.4 1.5E-03 0.014 0.015 96.6

Bos  0.555  -2.7E-04 0.012 0.012 94.0 4.2E-04 0.013 0.013 95.3 3.1E-04 0.015 0.015 95.4

P11 0.577 1.4E-03 0.028 0.027 92,9 -4.0E-04 0.015 0.015 95.5 -7.5E-05 0.012 0.012 95.1

B12  0.577  -3.4E-04 0.029 0.028 93.5 9.5E-05 0.015 0.015 95.3 2.9E-04 0.011 0.012 96.2

Bi1z  0.577  -3.2E-03 0.028 0.027 94.3 -2.6E-04 0.015 0.015 96.1 -5.7E-04 0.012 0.012 96.0

500 apr 0.500 -3.2E-04 0.010 0.010 95.8 -5.5E-04 0.012 0.012 95.2 -4.0E-04 0.016 0.016 96.1
ap2  0.500 1.9E-04 0.010 0.010 94.1 2.0E-04 0.013 0.012 94.2 3.8E-04 0.016 0.016 94.6

a1 0.300 5.6E-04 0.023 0.022 93.7 9.9E-04 0.015 0.014 93.8 6.5E-04 0.013 0.013 94.5

ai2  0.300 1.2E-05 0.023 0.022 94.0 2.6E-04 0.015 0.014 93.8 2.0E-04 0.013 0.013 94.1

Bo1  0.620 -4.6E-04 0.007 0.007 95.2 -1.0E-03 0.008 0.008 95.7 -1.2E-03 0.009 0.009 94.9

Boz  0.555 1.2E-04 0.007 0.007 95.5 4.3E-04 0.008 0.008 95.1 5.5E-04 0.009 0.009 95.1

Bos  0.555 2.6E-04 0.007 0.007 94.2 5.2E-04 0.008 0.008 94.1 5.2E-04 0.009 0.009 94.4

B11 0.577 5.2E-04 0.015 0.016 95.0 3.0E-05 0.009 0.009 96.6 -8.5E-06 0.007 0.007 95.9

Bi12  0.577  -3.4E-04 0.016 0.016 94.0 -8.0E-06 0.009 0.009 95.6 1.0E-04 0.007 0.007 96.3

B1s 0.577  -8.3E-04 0.016 0.016 94.5 -2.3E-04 0.009 0.009 95.2 -2.3E-04 0.007 0.007 94.8

1000 «ap1 0.500 -5.1E-05 0.007 0.007 95.1 8.4E-05 0.009 0.009 95.4 2.3E-04 0.011 0.011 96.6
ap2  0.500 -2.3E-04 0.007 0.007 95.2 -2.2E-04 0.009 0.009 95.2 6.1E-05 0.011 0.011 96.3

a1 0.300 1.2E-04 0.015 0.015 95.6 1.5E-04 0.010 0.010 95.3 1.3E-04 0.009 0.009 94.8

ai2  0.300 1.1E-03 0.015 0.015 96.0 6.1E-04 0.010 0.010 96.5 2.8E-04 0.009 0.009 94.6

Bor  0.620 -3.6E-04 0.005 0.005 94.4 -7.1E-04 0.005 0.005 95.1 -8.3E-04 0.006 0.006 95.2

Bo2  0.555 1.7E-04 0.005 0.005 94.4 3.5E-04 0.006 0.006 93.2 4.3E-04 0.007 0.006 95.1

Boz  0.555 1.6E-04 0.005 0.005 95.0 3.6E-04 0.006 0.006 95.4 3.8E-04 0.007 0.006 94.4

B11 0.577 3.9E-04 0.011 0.011 94.5 1.4E-05 0.006 0.006 94.9 5.2E-05 0.005 0.005 94.7

Bi12  0.577  -7.8E-04 0.011 0.011 95.2 -1.9E-04 0.006 0.006 96.1 -1.2E-04 0.005 0.005 96.1

Bz 0.577 8.6E-05 0.011 0.011 95.6 7.3E-05 0.006 0.006 95.6 2.5E-06 0.005 0.005 94.4

Theorem 6. The results are depicted in Figure S3 which are quite similar to the results of the

one component test.

S3.2 Case Study

Table S2 lists the results for testing the index loading parameters, where pg;,j = 1, 2, 3 refers to

the p-value for testing Ho : 8j1 = 0 and pg;, refers to the p-value for testing Ho : 81 = Br1 = 0.

The plots of the other 4 SNPs showing statistical significance are given in Figure S4 along
with their 95% confidence bands.
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Figure S1: The estimation of function mo(-) under different MAFs and sample sizes.

The estimated and true functions are denoted by the solid and dashed lines, respectively.
The 95% confidence band is denoted by the dotted-dash line.

Table S2: List of p-values for testing the index loading parameters.

SNP ID Pss PBe PBs PBiz PBis PBas

rs16884481 2.93E-07 6.04E-08 2.39E-02 7.27E-07 1.18E-07 6.64E-02
rs10946428 6.41E-09 3.91E-09 2.32E-04 4.47E-08 3.17E-09 5.12E-03
rs6904348  1.86E-08 7.28E-09 5.80E-04 6.30E-08 7.75E-09 7.04E-03
rs10806925 2.79E-10 1.58E-11 6.17E-03 3.89E-08 7.63E-10 3.85E-05
rs9465873  4.73E-13 2.73E-12 1.20E-04 2.34E-12 3.77E-11 6.76E-06
rs12662218 2.22E-08 2.53E-09 6.37E-02 8.32E-08 1.50E-08 3.24E-05
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Figure S2: The estimation of function mq(-) under different MAFs and sample sizes.
The estimated and true functions are denoted by the solid and dashed lines, respectively.

The 95% confidence band is denoted by the dotted-dash line.

S4 Proofs

In this section, we provide the technical details for the proofs of lemmas and theorems.

Let m(Vi, B) = mo(Vi, Bg)+m1(Vi, 8,)Gi and m = (m(V1,8),--- ,m(Vy, 3))T. Denote
Yoi=Yi—Zlag—Z]a8Gi, Y. = (Yon, -, Yan) €= (e1, &)’ X = (X, -+, X0)7,
Z=(Zi, ,Zn)", G = (G1, - ,G)T, G = (1, G) and A(6) = (@",A(8)7)”. Then A(6)
can be decomposed into A(8) = A,,(8) + A (8) by (3) in the paper with

Am(0) = (D(Z,8)"D(Z,8)) 'D(Z,8)" (m + Za),

~ ~ ~ ~ (A.3)
A.(6) = (D(Z,8)"'D(Z,B8)) 'D(Z,8)"e,

where Z = (Zy,--- ,Zn)" with Z; = (ZT,ZTG;)T, defined in Section 2.2. Let ® be the
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n = 1000

Figure S3: The empirical size and power function of testing nonparametric functions

m1(-) and ma(-) simultaneously under different sample sizes and MAF's.

parametric space of 8. Define
U(B) = EID:(B)Di(B)"], T(6) = ~D(8)"D(B), "
U(Z.B) = E|Di(Z.8)Di(Z.8)"], U(Z.B) = ~D(Z.5)"D(Z.B)
where D;(8) = (D;,«1(8))Gi,1 < 5 < Jn, 1 =0,1)" and D(B) = (D1(B),--- ,Dn(B))", which

is a n X 2J, matrix.

Lemma S.1. Let assumptions (A1) and (A4) be satisfied. For any vector ¢ = (¢F,¢T)T with
¢ =1(C:1<s<J)" and |[¢]| =1, 1= 0,1, there exists constants 0 < cy < Cu < 00, such
that for any @ € © and for large enough n,

codyt <¢TUB < Culdyt, and Cpld, <¢TUB) ¢ < e, (A.5)

712D’L sl IBL Lé’l(ﬂl)_E[Di’Sl(IBl)Di,Sll(ﬂl)]

1<s .s’<Jn,0<l<l

:O< J{1n*110gn>7 a.s., (A.6)

n! Z Di s1(8))Ds, o1 (B;) — E[D;,s1(8,) Di a1 (8y)]
=0 (J;lx/n*1 logn) ,a.s., (AT)

1<s 5/<Jn £l

and with probability approaching 1,

co it <CTUBE < Cudyt, and Cptun < CTUB)E < et dn. (A.8)
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Figure S4: Plot of the estimate (solid curve) of nonparametric function mq(uy) for the
4 SNPs along with their 95% confidence bands (dash-dotted lines).

Proof of Lemma S.1: By Theorem 5.4.2 of DeVore and Lorentz (1993) and assumption
(A1), for any vector ¢; with ||¢;|| = 1 and for large enough n, there exist constants 0 < ¢; <
C; < 00,1=0,1, for any 3 € ©g, such that

i < G [BLBTXBLBT X ¢, < O

Let m; = Z‘S]; Csles,q(ﬂlTXi) and m; = (7TZ‘077TZ‘1)T. By assumptions (Al) and (A4), for large

enough n, we have

¢"E[U(B)]¢ =E [mio + 7 Gi)?
<CeE[n} m
~Ce Y ¢/ B [B.(BX)B.(B/X)"| ¢
1=0,1

<2Ccmin(Cy, Ca)Jy; .

As the same way, we have ¢* F [U(8)] ¢ > 2cgmax(c1,c2)J, t. The second result in (A.5) can
be shown directly from the first inequalities. Similarly it is easy to prove that (A.8) holds. (A.6)
and (A.7) can be shown by Bernstein’s inequality as Bosq (1998).

O
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Lemma S.2. Let assumptions (A1), (A3) and (A4) be satisfied. For any® € ©, |[n~'D(B)"el|> =
Op(n=12).

Proof of Lemma S.2: By the law of large numbers, with probability approaching 1, we
have

2

D@ = Y [”1 > Bra(B{X)Bue
i=1

1<s<Jp,1=0,1

=n"" Z E [Bsyq(ﬁzTXi)Gu&r +o0p(n")

1<5< T ,1=0,1

:Op(nil)‘

O

Lemma S.3. Let assumptions (Al) and (A4) be satisfied. There exists a constant 0 < c¢p < oo,
such that for any @ € ©® and for large enough n,

In~"0(Z,8)"'D(Z, B)1nlle < Cb.
Proof of Lemma S.3: Let S, = U(Z, 3) with
g - S Sz
" So1 Sa)’
where S11 = n ‘2" Z, S12 = S5, = n'Z"D(B) and So» = U(B). Denote Saz1 = So» —
5215;11512. For any ¢ as given in Lemma S.1, we have
¢"822.1¢ =¢"U(B)¢ — n *¢"D(B)" 251, 2 D(B)C
=¢"U(B)¢ - e:"TPB)¢ = (1 - )" TR,
which is also followed by 4*1552%14 = cSCTIAJ(ﬁ)*lC, where c. and cs are constants. Thus, we
have
In~* (027, x24, 122, U(Z, 8) ' D(Z, 8)" Lo
lln " (5518050 Sl ) D(Z,8) Ll
_ _ 15T _
=[n 1(—5221.15215111Z +522141D(5)T)1n”oo
1o ~ 15T 1o
<[ln 1522%1D(18)TZ5111Z 1nlleo +[Im 1522%1D(/3)T1n||oo
<ci|ln ' T(B) ' D(B) 1|
<1 |[T(B) lsolln™ ' D(B) L]l

where ¢; is a constant. By Bernstein’s inequality in Bosq (1998), it can be shown that
I 20 Di(B) oo = Op(J ). We have [[n" (024, x2q, 2, ) U(Z,8) ' D(Z, B) 1n oo <
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c2, where ¢z is a constant. As the proof above, we have

" (124, 0242, ) U(Z, B) "' D(Z, B)" 1n]|o

=ln~t (S5t + S5 $12851 5055 —55' S5 ) DIEZ, ) a

ln " (S'Z" + 1512851 S S 2 — S 51255, D(B)”) Lallee

< S 2 Lo + 07?852 D(B)S5 D(8) 2552 La oo
+n"255'2" D(B)S54D(8) L oo

<es|ln 'S0 2 1alle

<cu,

combining with above proof, which arrives at the second part of Lemma S.3, where c3 and ¢4
are constants.
a

The following Lemma states the convergence rate of the nonparametric estimators m; (uz, ﬁo)7
1 =0,1 and their first derivatives 7} (u;, 3°).

Lemma S.4. Let assumptions (Al)-(A4) be satisfied. We have

(a) under N — oo and nN~' — 0o, as n — oo,

7 (ur, B°) — mu(w)| = Op(v/N/n+ N~")

uniformly for any w; € [a, bi], and
Ha — a0H2 =Op(vV/N/n+N7");

(b) under N — oo and nN~> — 00, as n — oo,
i (uz, B°) — mi(w)| = Op (/N3 /n + N'77)
uniformly for any w; € [ai, bi].

Proof of Lemma S.4: According to the result of de Boor (2001), for m(-) satisfying

assumption (A2), there is a function m{ (u;) = By (u;)* \;, such that

sup |my(ur) — mu(ur)| = O(J; ") (A.9)

uy€lag;by]

Let B, (u) = (Br(uo)”, By (u1)”)7, Br(u) = (12,,B.(w)7)7. and A = (Ao, \)7, where 1o is
2g-vector with all elements 1 and u = (ug,u1)”. Let A(8) = (o, \T)T. Thus by Lemma S.3
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and (A.9), for each u € [ao, bo] x [a1, b1],
Bo(w) (R (6°) — A(6")| = [n7'B, (0] T(Z,8") 7' D(Z,8")" (m + Za" — D(Z,6°)))|
—[n "B (w7 0(Z,8°) ' D(Z,8")" (m ~ D(E))|
< |20+ By ()12, |10 O(Z,8) 7' D(Z,8°) 1a O )

—0,(J;").
(A.10)

Furthermore, for each u € [ao, bo] X [a1, b1], by Lemma S.3 and (A.3) and (A.8) and assumption
(A3), with probability approaching 1, we have

B [B.(w)73.(6%] X, Z, Gr

T~ ~ 2
<E [Cblgq(zTZ)*lzTe‘ X, z,G]

+E Hch*BT(u)Tﬁ(ﬁ )"'D(B Hx z G]
=0,(1/n) + CLE [n*lﬂar(u)TU(ﬁ )"'D(3 ‘x z G] (A.11)
:n’QC%Br(U)Tﬁ(,BO)”D(ﬁO)TE[emIXyZyG] D(B°)U(B°) "B, (u) + O,(1/n)
=n"'CHCoB, (1) T(B%) 'Br(u) + Op(1/n)
=0p(Jn/n),
which implies by the law of large numbers that for each u € [ao, bo] x [a1,b1], ||Br(u)A. =

Op(y/Jn/n). Thus, combining (A.10) and (A.11), we have, uniformly for each u € [ao, bo] X
[a17b1]7

By () "R(6°) — By (w)"A0°)| = Op(V/Tu /i + 1)

which, by (A.9), leads to Lemma S.5 (a). Noting that |[W1||cc = O(Jn) where W1 is defined
n (A.1), one can show similarly that the second part of Lemma S.4 holds.
O

Let Xy = (X1x, -+ , Xnx)” and

~X n 2
¢, = argmin Z HXZ;C — Di(,BO)CfH .
¢Xer2In i1 2
; ; = —177(30)~1 0\T < : =X =X X
It is obvious that ¢, = n~"U(B") "D(B”)" Xy, by ordinary least squares. Let ¢ = ({; ,-++,¢, )
be a 2J, >< P matrlx and Pn(Xl) = i(ﬂO)TEX. As the same way, we can define P, (Z;) =
Di(B")T C , where C (C1 o ,CqZ) is a 2J, X ¢ matrix and

~Z X O\ o2 2
& = argmin - |2 - D.(8")¢Z]
¢FER?In 2
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Introduce the shorthand notations

Xomi =(mo(X] Bg)X] ,mi (X! B)G:X])T,

X =(BH(X] Bo) No(0)X],B(X] B,) Xi(0)G: X)),
X =(Xi15 -+ Xonn)
Xp =(XF1 o X5 )T

(P ()GP())T,

Let Py, (X:) = (m}(XI B0)Pn(Xa)", mi(X] BY)GiPn(X:)")", Pu(Z:) =
= (P(Z)",GiP(Z:)")"

P(X;) = (mi(XIB0)P(X:)", mi(X]B))GiP(X:)")" and P(Z;)

Lemma S.5. Let assumptions (A1)-(A4) be satisfied, and nN~* — co and nN™*"72 — 0, as
n — oo. We have

Di(B%)"{A(B) — A} ="' Dy(8°)"T(B°) ' D(B%) e
-PX)"(B-B") - P(Z) (& - (A.12)
+0p([18B = B°ll2) + 0p([l& — °[|2) + 0p (n~/?),
where \ is defined in Lemma S.4.

Proof of Lemma S.5: The estimate of A(6) solves equation

B n o PN
0=n""Y (Vi — Z; & — Di(B)"X(B))D:(B).

i=1
Recalling ﬁ(ﬁo) = 0,(J7') and nN~2"2 — 0, via Taylor series, we have

—n! ZDl MY — ZiTa— Di(IBO)T)\}
n ZD NTLAB) = A) + 0p(VN/n+ N"")}
”ZDz BY)XE AB—B°) + 0, (I8 — B°l12)}

0 YD DUENZ (@~ ) + 0,1 — o))

=n""D(B%) e+ U(B")(A(B) — \) + 0, (v/N/n+ N")
+n7'D(B%) X {(B — B°) + 0p (1B — B°||2}
+n'D(B) Z{(a — &) + op(|@ — a°||2)} + 0p(n"1?).

Thus, we have

Di(B%)"{X(B) — A}
=n"'D;(8°)7 T(Lj) D(B°) eT . (A13)
+n7'Di(B°)"U(B%) 'D(B°) Xa{(B — B°) + 0p(I18B — 8]}

+n7'Di(B°) 0B 'D(B°) Z{(@ — &) + op([|& — &°[|2} + op(n”?).
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Along the same arguments of Ma and Song (2015), we have

T Di(8°)O(8%)TD(B) (KT BYX = mi(X{ B P(Xi) + Op (i),
n 'D;(B°)TU(B°) 'D(BY) T (XTBNXG = mi(XTBNGP.(Xi)+ Op(JLT),

which result in
Di(B")"U(B") ' D(B°) X = Pu(Xi) + 05 (Jn ")
Similarly, we have
Di(B°)"U(B°) ' D(B)Z = Po(Z:) + Op(Jy").

Similar as Lemma S.4, we can show that |P,(X;) — P(Xi)[|oc = Op(y/N/n + N™") and
[P (Z:) — P(Z:)||w = Op(y/N/n + N~") which implies that P, (X;) = P(X;) + Op(/N/n +
N~") and Py, (Z;) = P(Zi) + Op(/N/n + N77). Together with (A.13), this leads to the result
of Lemma S.5.

]

Lemma S.6. Let assumptions (A1)-(A5) be satisfied, and nN~* — co and nN™*"72 — 0, as

n — o0o. We have

0 —6° = {E[p(V,B°)%*]} In~/? i: Ti(X, Z)ei(1+ Op(Jn ")) +0p(n” /%) (A.14)

i=1

where ¢(V,B°) is defined in Section 2.4 and

Proof of Lemma S.6: Let 70 and 71 be the Lagrange multipliers, the estimates of 3 solve

the following equation

0= <7'Og()> 4+t f: {YI — ZlTaO — DZ(B)T}:(ﬁ)} < ;A 3TA0( )X, > |
. = i X
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By Taylor expansion, we obtain

7'11

0:<TA> ”Z{Y@—Z a’ — i(ﬁO)T/\(OO)}Xm,i

—n ' XEXn{(B — B°) + 0, (1B - B°II2)}
—n'XEZ{(@ - a°) + op(lla — a°|]2)}

Y X DB (AB) — N@) + 0, (VN + N )

- <T°9°> n"'Xhe - n ' XEXn{(B - B°) + 0, (I8 - Bll2)}
18,

—n 'XRZ{(@ o) +o,(|a —a’|2)}

—n? Z Xa.:D:(8°)0(8°) ' D(8") e
1ZXWP {(B— 8" +0p(1IB—BII2)}

+n? Zx,ﬁ,iﬁ(zi)T{(a —a’) +op(lla—a’|l2)}

i=1

) <g> 3 X [Xon = BOG)] (B =8 (1B - Bl1))
—n Y X | Zi - P(Z»]T {(@—a®) +o,(lla—a’l2)}

—&—n*lX;{ie—n*QZEjDJ ZDl Tsz-i-op( 71/2)7

= (“‘:30) Y X [Xi —PX)] (B~ 8%+ 0p(IB ~ 8°]12)}
Y X [ B(2)] (& af) + opl& - o)
07 Y [ X = PX0)] eid1 4+ Op(J2 )} + 0p(n 7).
Similarly, the estimates of « solve the following equation

- zn: {m ~Za-— Di(B)Ti(B)} Z:.
i=1
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Then by Taylor expansion, we obtain

0=n" zn: {m 7l al - Di(ﬂo)T)\(Bo)} Z:
i=1

—n 2 X {(B - B°) + 0, (1B — B°||2)}

_ n*lsz{(a —a®) +op(]|la — a[|2)}
_ n*l ZZzDz(,BO)T{X(B) — A+ Op(\/N—/n + Nfr-)}

—n"'Z" e —n"'Z" Xa{(B - B°) + 0p(B — B°l2)}
—n'Z Z{(@ - °) + op(|& — °||2)}

—n7? Y ZiDi() U T D(E") e
+n7! Y DZPX) (B~ 8°) + 0p(1B — B°)2)}

+n7 Y ZiP(Z) (@ - o) +op(a - a’[l2)}

i=1
n T

=0 Y Z X - PXO]{B - )+ 0p(1B - B7]12))

i=1

—n Y Z[Z- (2] (@ - o) +o(la - allla)

+n7'2 e —n 50,8 T(B) flei(ﬂO)TZ +op(n”1?),
=0 Y2 X = PX)] B~ B") + 0,18~ 81}

~n Y Z (2 P(2)] (@ o) +o(a - a”ll)

0y [Z - f’(Zi)] e{1 4 0p(JE)} + 0p(n?),

i=1

which leads to
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Let
I 0 0 0 0 I
~ ~T
Ps=10 1-3,8, 0 =10 I-858)" 0 + 0p(1).
~ ~T
0 0 1-B,8, 0 0 I=BY8N"

According to the constraints ||3y]|2 = 1 and [|3, |2 = 1, we have

- 3 % Z ~(Zl) ’ ) 0 5 0
' PEZ<X ><sz ls(Xi)> {(6—67) +0p(10 —67]]2)}

i=1
_ n Zi — ].S(Zl) B .
-1 Z - o
- P ei{l +0 Jn + op(n .

? i=1 <X7n,i — P(Xz)> { P( )} p( )

By Lemma S.4, it can be shown that || Xz, — Xom.i|| = Op(v/N3/n+ N*=7). Thus, by the law

of large numbers, we have
7 > = T
_ n Z; Z; — P(Zz) . )
nt B =F v, 3921 4 0 N3 n 4+ N 40, (n2).
;::1 X Xomi — P(X4) {¢( B8Y) } p(\/—/ ) X )

This completes the proof of Lemma S.6.
|
Proof of Theorem 1: Because the observations Vi, --- , V,, are independent, by Lindeberg-

Feller central limit theorem, it is easy to prove that

n Zz B
nt/? E _ _ e 5 N(0,%),
= \Xmi — P(Xi) = P(Z)

where & = F [0(V)?¢p(V,3°)¥?]. Then combining Lemma S.6, the proof of Theorem 1 can be
completed by Slusky’s theorem.
(]

Proof of Theorem 2: Because Bs;(w) (s = 1,---,Jn,l = 0,1) have the banded first
derivatives for any w; € [a;, bi], by (A.13), (A.11) and Theorem 1, we have, for any w; € [a;, bi],

7 (ur, B) — (i, B°)| =|D(B)"N(B) — D(B°)"A(6°)]
<ID(B°)"{NB) — A(6°)} + [{D(B) — D(B)}"N(B)|
<|In"'D(B°)"T(B°) ' D(B%) "e| + Op(n~?)

=0,(v/N/n).

Then, combining Lemma S.4, we have

sup | (ur, B) — mu(w)| < sup | (w, B) — i (w, )+ sup  |mu(ur, B°) — mu(w)|
up€lag,by] upElay,b] up€[ag,b]

=0,(v/Njn+ N™")

This completes the proof of Theorem 2.
a
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Lemma S.7. Let assumptions (A1)-(A6) be satisfied, and nN~* — 0o and nN~2""2 = 0, as
n — oo. We have

sup
up€[ag,by]

2 (w1, B) = ma(ur)| = Op(n™*/° logm)
and for any w; € [ar, bi],

vk {f (ur, B) = mu(w) = bu(w)hi § 5 N0, vi(w),
where
bi(w) =pamy' (ur) /2,
u(w) ={E[G}|w]} | K3 B[GTo® (v)|u] fi(w) ™"
and éo =1 and él =d.
Proof of Lemma S.7: Noting that ||§ —8°|| = Op(n"'/?) by Theorem 1, it is not hard
to see that, for any w; € [a;, bi], [ = 0,1,
Y7 (6) =Y (6") + Op(n”1?),
W (u, B) =W (ui, 8°) + Op(n~/?)
X (ur, B) =X (ur, 8°) + Op(n~"/?),

which implies that

sup M (u, B) — M (ur, B°)| = Op(n~1/?). (A.15)

up€lag,b]

For [ = 1, given the true parameter 8° and true function mo(+), the estimator
my (ur, 8%) = (1,0){X(ur, 87)" W (ur, B7)X (ur, )} X (ur, 8Y) W (us, B7) YT (8")

which is in fact the Nadaraya-Watson estimator based on model E{Y\°(6°)|V,X" 3% = u;} =
mi(u1), the same as m{ (u;, B°). By Theorem 2.5 and 2.6 in Li and Racine (2007), we have

~ O -~
sup | (ur, B) i (w)| < sup
uy€lay,b] uy€lag,b]

—0,(n2) + 0, (n~*/*\/log )
=0p (n72/5 Vlogn),

which leads to the first part of Lemma S.7, and

i (ur, B%) — ma(w)

nf (w, B) = (w, 8°)| +  sup
u€lag,b]

Vi {inf (u, 8°) = mu(w) = bi(w)ht } 5 N (O, v(w)).

The second part can be shown by combining (A.15) and the asymptotic normality of m (u1, 3°).
|
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To prove Theorem 3, we need additional nations and two more Lemmas. Define

o (w,0) =n" X (u, 8)" W (w, B){th,.(X"8,,8) — m (X))},
o (w,0) =n""X(u, 3)" W(u, By (X8, 8),
m; (X" 8)) =(mu(XTB) -+, (X5 3))"

1y (X7 B, B) =(1u,m (X181, 8), -+, 1um (X0 8, 8)7,

1y, (X7 By, B) =(mu,e(XT By, B), -+ 1o (X5 8, 8)) 7,

where M, (X7 B;,8) and 7y (X7 3,,8) are defined by
M, (ur, B) = Bg(w) " Am(B) and  mue(u, B) = By(u) N.e(B).
Note that ﬁzl(uhﬂ) = ﬁll,m(ul“ﬂ) + ﬁzl,e(uhﬂ% [=0,1.

Lemma S.8. Let assumptions (A1)-(A6) be satisfied, and N — oo, h — 0, nN~' — oo and

nh — oo, as n — oo. We have, forl =0,1,

sup @) ()] + sup |2, (8] = 0,77,

up€lag,by] up€lag,by]

where @) (u1,8°) = (1,0)@1,m (w, 8°) and @), (u1, 8°) = (0,1)@1,1m (i, B°).

Proof of Lemma S.8: We first prove the case for the varying-index function (i.e., [ = 1).
The case for | = 0 can be proved similarly. By (A.9) and (A.10), we have max;—1,... . |[f,m (X7 87, 8°)—
m(XTBY) = 0,(J;7), 1 =0,1. Tt is easy to show by Lemma A.2 in Xia and Li (1999) that

nTt Y GiKn, (X7 B) —w)

i=1

sup
uy€lay,bi]

= 0,(1).

By the definition of ®; ,,(us, 3%), we have

n
sup |®1), (u1, 8° )\ < sup InThYGiKw, (XA —w)| max |, (XT B, 8%) —mu(XT 8
u1€la,by] u1€lay,;by] i—1 t=len
=0p(Jn").
and,
sup |, (u1, 8)| = O ").
uy€lay,b1]

This completes the proof of Lemma S.8.
O

Lemma S.9. Let assumptions (A1)-(A6) be satisfied, and N — oo, h — 0 and /N?logn/(nh) —
0, as n — oco. We have, forl =0,1,

sup <I>l(le) (uhﬂo)‘ +  sup
uy€lag,by] i €lag,by]

where @) (uy, B°) = (1,0)®1.(ur, 8°) and @) (ur, 8°) = (0,1)@1,c (w1, B°).
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Proof of Lemma S.9: We first prove the case for the varying-index function (i.e., [ = 1).

The case for | = 0 can be proved similarly. Let n(u1) = (93 (u1),n1 (v1))” with

m(u1) = 120 Ky (X7 8 — w1) By(X{8)),1 =0, 1.

i=1

By Lemma A.2 in Xia and Li (1999), we have

sup |lm(w1) = E{m(w)}oo = O(V1ogn/(nh)).

uy €lay,b]

By de Boor (2001), we have, for any w1 € [a1, b1],

I E{m (u1) Hloo = E{Kn, (X] B — w1)E[G:i Bo(X] 83)|1X] B} oo
=po0f1(u1)|[B{Gi|XT B = ut }| E{Bq(X] B5) oo + Op(h3)Op (|| E{Bq (X B7)}|s0)
:Op(Jrjl)‘

similarly, ||E{m (u1)}||cc = Op(J') holds. Thus, it can be show that

sup [l (u1)lle = O(J5 ).

uy €lay,b]

By the definition of <I>lye(ul7ﬂ0)7 we have
@) (ur,8%) =" > GiKn, (XT B) — ua)ima o (XT 37, B%)
=n" (07, m (w)")"O(B") 'D(B°) e
Therefore, we have

2
sup E(@;lg(uh 0)|X7Z7G)

uy€lay,by]
= s[upb]n”(OTml(ul)T)TU(B) 'D(B°)" E{ee” X, 2,GID(B°)U(B%) (07, mi(u1)")
uyp€lay,by
< sup 0 Collm(u)[31T(8%) s
uy €lay,by]
:O(nfl),

which implies that

op |80, = 0,07
u1€la,b1]
By the same way, we also have
sup <I>§22 (u1, B ‘ = 71/2
u1€la,b1]

This completes the proof of Lemma S.9.
a
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Proof of Theorem 3: By the estimators in (2.5) and (2.6), we have, for [ = 2,

i (ur, B°) — mf (u1, B°)
=(1,0){X(u1, B))" W (u1, B) X (u1, 8Y)} ' X(u1, 8)) W (ur, B){Y1(68°) — YT (6°)}
— (L,0){n ' X(u1, 8Y) W(ur, 8))X(u1, 8Y)} " {®1m(u1,8%) + ®1.c(u1, B°)}.

It is obvious by Cai et al (2000) that

sup  [[{n™" X (u1, 87)" W (u1, 87) X (u1, 81)} '[l2 = Op(1).

ui €lay,b]

Combining Lemma S.8 and Lemma S.9, this gives

sup [ (u, B%) = MY (ur, B%)] = Op(n ™%+ J.7). (A.16)

ui€la,b]

Because B, (u;), I = 0,1, have bounded first derivatives, we have D(X?Bl) = D(X{B)) +
0,(n~"/?) and U(B) = U(B°) + O, (n"/?) by |8 — 6°||2 = O,(n~"/?), which followed by

(XY By, B) = mu(X] B, 6°) + Op(n”1/?).
Similar to (A.15), we have, for [ =0, 1,

sup
uy€lag;by]

~ 2 71 2
ml(uhﬁ ml ulv ’_ /

which combining (A.15) and (A.16) implies that

sup | (ur, B) — mf (u1, B)] < sup g (u1, B) — m (u1, B°)

uy €lay,by] uy€lay,b1]

+ sup |7’T\11(U17ﬁ0) _mlo(ulvﬁ()”

ui€la,by]

=0,(n 7+ J,7).

i (wn, B) = i (wn, 8°)| +  sup
up€lag,b]

This completes Theorem 3. [J
Proof of Theorem 4: Due to nh® = O(1), we have v/nhyn~?/®> = 0,(1). By Theorem 3,

we have

Vit {iiu(ur, B) = mu(w) = bi(u)h § = /by {@f (ur, B) = mu(w) = bi(u)hi } +0,(1):

Thus Theorem 4 can be shown straightforwardly by Lemma S.7. [J

Lemma S.10. Let assumptions (A1)-(A6) be satisfied, and h — 0 and nh® — co, as n — co.
We have, for any 0 € ©,

2

{Haxigﬂ“‘” (X7 B)(X — P(X))

} = Op(h* +n7'h7%),

2

where O 1is the parameter space for 6.
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Proof of Lemma S.10: This Lemma can be completed along the lines of Proposition 1
(iii) in Cui et al. (2011). O

To prove Theorem 5, we need the following Lemma. Similar to Ma and Song (2015), as-
suming that the nonparametric function mo(uo) is known, we can construct a GLR statistic
based on the new data (Ylo7 X, Z,@q) given in Section 2.3 of the main paper and show its asymp-
totic property. Then our interested GLR statistic based on ()7'17 X, Z,G) can be constructed by
plugging in the BSBK estimators of the nonparametric functions. Its asymptotic distribution
can be shown in Theorem 3.

Consider hypothesis test (7) in the main context. Let 0 be the BSBK estimate of 6
proposed in Section 2.2 of the paper. Assuming mo(uo) be known, similar to Ma and Song
(2015), let MYy, (u1) and M$ g, (u1) be the estimates based on new data (Y:°,X,Z,G) under
Ho and H,, respectively. The resulting residual sums of squares under Hy and H; in hypothesis
test (7) are

" . ~ ~ 2
RSSY (Ho) = 3 {m —&"Zi — mo(By Xi) — ml(ﬁfxi)Gi} :
i=1

" T ~T . ~T 2
RSSY (Hi) = > {Yi —&"Z — mo(By Xs) — S, (B, Xi)Gi} .
i=1

The following GLR statistic can be used to test the hypothesis in (7) in the main context when

mo(uo) is known,

n RSS{ (Ho) — RSSY (Hi1)

T =
D) RSSY (H))

(A.17)

Let ax = {K(0) — 1/2 [ K?(u)du}[[{K (u) — 1/2K * K (u)}du] ', where K * K (u) denotes the
convolution of K. Denote by €2; the support of ,BlTx, and by || the length of ;, 1 =0, 1.

The following Lemma states the asymptotic distribution of T:C.

Lemma S.11. Suppose that assumptions (A.1)-(A.6) in the Appendiz hold, and nN~* — oo
and nN~2""2 — 0, then under Ho in (7) in the main context, when mo(uo) is known, and

m{(u1) is a linear function of u1,

o1 (T = juin) 5 N(0,1),
where o1, = 2| | [ {K(u) — 1/2K * K2(u)}2 du/hy and pin = Q| {K(0) — 3 [ K*(u)du} /hy.
Furthermore, the scaled TC follows an asymptotic x>-distribution with d degrees of freedom,
that 1is,

O a 2
aKTl NXdlv

where di = aK fin.-
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Proof of Lemma S.11: Define
* - 5T 0o T 20 T 20 2
RSS? (Ho) :Z{m — 770" — mo(XTBY) — ma (X! ,Bl)Gi} ,
i=1

* . 5T ~ 2
RSSi(H) =Y {¥i — Z{ @’ — mo(X{ B)) — {w, (X B},

i=1
T n RSS7(Ho) — RSST (H1)
) RSST (H1)

We can rewrite n ' {RSS}(Ho) — RSS? (Ho)} as
{RSS}(Ho) — RSSY (Ho)}

fz (2] (@~ o) + mo(XBy) — mo(XTBE) + (my (XTB,) — mi(XT B}

+2 Z {Z )+ mo(XT By) — mo(XE8Y) + (mi(X!'B,) — ml(X;-Tﬂ(lj))Gi}
x {m &' Zi — mo(By Xo) ¥, (By X)G }
= OP(1)7

and similarly

{RSS; (H:1) — RSSY (H1)}

—Z{ %)+ mo(XBy) — mo(XT B2) + (s, (XTBy) — L, (X AD)C )

+2Z (2] (@ a®) +mo(XTBy) — mo(XI8Y) + (1, (XI By) — 7, (XT BY))G: |
. N AT

X {Yi — @7 % —mo(By Xi) — i, (B, Xi)Gi}

= OP(1)7
which implies that

RSSY (Ho) — RSSY (H1) = RSS} (Ho) — RSS; (Hi) + O,(1).
Along the lines of the proof of Theorem 7, we have
~1 o _ 2 -1 * _ 2
n~ RSSY (Hi) =0 +0p(1), and n RSS{(Hi)=0" 4 o0p(1).
Therefore, it can be show that T = T7 4 O,(1). It remains to show that
—1 * L
LA (T = ) S N(O, 1),

This can be shown along the lines of Fan et al. (2001).
O
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Proof of Theorem 5: It is easy to see that

{RSS? (Ho) — RSS1(Ho)}

= { Moo (XIBy) = mo(XT Bo) + (a,sig (XT By) = ma (KT BL))Gi |
i=1

2" {010 (XI Bo) = mo(XT By) + (g (XT By) — ma (XTI By))G |
i=1
x { i = @72 — o,y (By Xo) = o (B X0) G |
=J31 + J32,

and similarly

{RSSY (H1) — RSS:1(H1)}

=" {01, (XTBy) — mo(XT Bo) + (1, (XTBy) — S, (XT B}
i=1

+2 3 {0, (XIBo) = mo(XT Bo) + (i, (XI By) — i, (XTBL))G: |
=1

e N ~T N ~T
X {Yz‘ —a"Zi — o, (By Xi) — am, (By Xz‘)Gz‘}
=Ja1 + Jao.

Furthermore, we can show that

Jo —=Ju =) {mo,Ho(XiTﬁo) — 0,1, (X] Bo) + (M, 11, (XT By) — ma (X B,)) Gl

i=1

2
(i (XTBY) = 0, (X &))Gi}
+23 {mo,Ho (XT By) — o, 11, (X By) + (i, (X7 By) — ma (X By)) G
=1

— (@, (X By) = 8, (KT B)G: |
x {0, (XT By) = mo(XT By) + (.o, (XI By) = e, (XI B)))G: |
=0,(1),
and similarly J12 — J22 = Op(1). As the same proof of Lemma S.11, 71 = Tlo + o(1) holds by
showing the following claims that
RSS: (Ho) — RSS1(H:) = RSSY (Ho) — RSST (H1) + O,(1),

n 'RSS1(H:1) = 0 + 0,(1), and n 'RSSY (H1) = o + 0,(1).

Thus, 71 and T have the same asymptotical distribution, which completes the proof of Theorem

5 by Lemma S.11.
d
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Proof of Theorem 6: Define
~ ~ ~ 2
RSSS (Ho) Z{m Z{ & —mo(XI By) = ma (X! B,)Gin — ma(XI By)Gia
~ ~ 2
RSSS (1) Z{m Z{ & — 8 (XI B) — M (XI By G — 8 (X[ Ba)Gua }

RSS; (Ho) Z{Y 2 0" — ma(XT8) — mi (XI A1) G — ma(XT B3)Giz}

2
RSS3(H1) = {Yl - Z a” —mo(X{ By) — my (X{ B])Gin — M3 (X By)Gi } ’
1=1
o _n RSSE (Hy) — RSSY (H1)
2 7y RSS? (H,) '
o _n RSS3(Ho) — RSS3(Ha)
2795 RSS3(H,) '

where Z; = (ZT,ZTG1,ZT Gi2)™. Along the lines of the proof of Lemma S.11, we have

RSSY (Ho) — RSSS (H1) = RSS3(Ho) — RSS3(Hy) + O,(1),
n"'RSSY (H1) = o + 0p(1), and n~"RSS5(H1) = 0” + 0,(1).

Therefore, it can be show that 75’ = T5 + 0,(1). Following the same way as the proof of

Theorem 5, we can show that Ty = T + o(1) following the claims below,

RSS2 (Ho) — RSS2 (H:) = RSSY (Ho) — RSSS (Hy) + 0,(1),
n 'RSS2(H1) = 0 + 0,p(1).

It remains to show that
—1 * L
Oan (TZ - N2n) — N(07 1)‘
Let Uy = XT,B XTBI and G; = (1, Gﬂ,Glg) . By Lemma S.7, we have
mp (u, 0°) = mu(w) = {an(w) + Ro(w)} (1+ 0p(1)),

where

1 n
aln(ul) :Edl(Ul) E EiGilK((Ul,i - ul)/hl)7
=1

n

Rin () :%dz(uz) > {mLO(Ul,i)Gl,i - Tz(Uz)TXu} GuiK((Ure — w) /),

i=1

and dl(ul) = {E[GﬂUl :ul]fl(ul)}il, Tl(ul) = (mlo(ul),hmfo(ul))T and Xu = Xi(ul) =
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(Git, Gy (Ui — wi)/h)T. Define

2

R = Z 2”: eiRin(U,i)Gys,

=1 i=1

2 n
RY = Z Z al,n(Ul,i)GlQ,iRl,n(Ul,i)7

=1 i=1

1 n 2 2

(3) _ ) )
Rn EZ{ZGIJRI,R(UI,Z)} .
i=1 Li=1
Thus, as the proof of Theorem 5 in Fan et al. (2001), we have
1 n n 2
—20°T5 =— =) & D di(Un)GrkGriKn, (Urk — Ul

] n;::lef {;&; l( l,) 1,651, hl( 1,k l)}

n n n 2
+ # ZZ ZEiEj {lz_;dl(Ul,k)Gl,kGl,iKhl(Ul,i - Ul,k)}

k=1i=1 j=1
2
X {Z di(U1,1)G1,xGy, Kn, (Ur,; — Ul,k)} ~ RV +RP +RY + Op(n71h72)
=1
=Tn + Sn — R+ R + R + 0y (n'h72).
By some direct but tedious calculations, we have

R, =—-RY + R? + RY = 0,(nh* +n'/?n?). (A.18)

It is obvious that

— T = 20" K(0) thlE{fL(Uz)fl}

=1
n 2
1 _
+ - ;Eiek ;dl(Ul,i)Gl,kGl,iKhl (Ui —Uii) + op(h 1/2). (A.19)

Let 2§n = Sn1 + Sh2, where

2
1 n n
Sn1 = Zézz {Z di(Uik)Gi G i Kny (Ui — Ul,k)} )

i=1 k=1 \i=1
1 n n
Shno =— ;sisj ; {lz; di(U1,k)Gi G, Ky (Ui — Ul,k)}
i#£] = =

2
X {Z dl(Ul,k)Gl,kGl,thl(Ul,j - Ul,k)} .

=1

It is easy to see that

St = 0n(1+ 0(1)) + Op(n™*/2h7%) + Oy (nh*) ™) + 0p(h ™),
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where

2
0_2 n 2

T d G K (U s — .
0 n(n—1) Z {; 1(Uik)GixGri Kny (Ure — Ur)

ik

Using Hoeffiding’s decomposition (Serfling 1980) for the variance of U-statistics, by tedious

calculations we can show that the variance of g, is
On = Op(nilhiz)'

It is straightforward to calculate the expectation of gn

Eon =0’ {Zhl Efi(U)~ }/K2 Ydt 4 op(h™ 1),

which implies that

Spmi=0"Y W E{fi(U)""} /Kz(t)dt—&- op(h™?). (A.20)

Sr2 can be further decomposed as Sp2 = Sn21 + Sn22, where
n 2
Sho1 = 25151 Z {Z di(U11)Gi,16Gy i Kny (Usi — Ul,k)}
i#] k#i,57 Ul=1

2
X {Zdl(Ul,k)Gl,kGl,thl(Ul,j - Ul,k)} )

=1

n 2
1
Snoz = o) Zfs‘zé‘g {Zdl (U1,5)G1,;G1i Kn, (Ui — Uty) } {Z dl(Ul,j)GlQ,thl (0)}

i#] =1 =1

2
Ze & {Zdl (U1,1)G1,5G1i K, (Ui — Uy j) }{Zdl (U1,))GE K, (0 )}

i#] =1 =1

It can be show by tedious calculation that
var(Sna2) = O(Tfofs)7
which implies that
Snoa = o(h ™). (A.21)

Let

2 2
Qijk = {Z (U1,£)G1,6G1i K, (Ui i Ul,k)} {Zdl(Ul,k)Gl,kGl,thl(Ul,j — Ul,k)} .

=1
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It can be shown that
n! Z Qisk — B[Quijk|(Uri, Urj)i=as] p <m”? Z EQ%j, = O((nh*)™),
k#i,j k#i,5

which results in that

EQijr|(Uii,Urj)i=o0,1] + Op(h71/2)
7 (A.22)

7L21 -

——Ze @Zhl di(U1,)Gy; G K (Ui — Ui ) /i) 4 op(h™2).

i#£] =1

y (A.18)-(A.22), we have

TV = pian + 5 I () VR = Bu + 0p (712,
where

2
=>"h'EAU) T,

=1

Lizn = {K(O) - %/K2(t)dt} ih;lEfl(Ul)*H

i€ = th di(U1,4)G, ;G {K (Uri — Usj)/h) = 1/2K ((Uri — Ui y)/ )}

1
T(n) = ng? B0 2 2

It remains to prove that

T(n) 5 N(0,v%)

with v = 2 [{K(t) — 2K (t)}?dt.
Let

2
1 -
Oy =cig; »_ di(U1,i)G1iGu {Khl((Ul,i = Uy)) — §Khl((Ul,i - Ul,j))}
=1

and

i<j
where T;; = W(@ij +®;;). Define 03, = Var (Y(n)). According to Proposition 3.2 in de

Jong (1987), it suffices to check the following conditions:
(a) T(n) is clean [see de Jong (1987) for the definition],

(b) v = v?,

(c) ¢1 is of lower order than v,
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(d) ¢z is of lower order than v,

() C3 is of lower order than v,

where

Cl =K Z sz

1<i<j<n

G=E > {THTh+ Y55+ ThT5)

1<i<j<k<n

(3 =F Z {YiCir Y3 Con 4+ Lig Lar Loy Yoo + Tar La L i}

1<i<j<k<l<n

We check each of the conditions as follows. Condition (a) holds obviously. Then we calculate

the variance o2 as follows. (a) implies that o2 = EY(n)?. By de Jong (1987), we have
D S R
1<i<j<n i#]
It is easy to see that
BY@% =n'o'uh) [(K(0) - JR@)Y
i)

which implies that (b) holds. Noting that

E > {®} E Y {®}0;}=0 E Y {8595} =00*h?),

1<i<j<n 1<i<j<n 1<i<j<n
then we have (1 = O(h*n~H)O(n*h™®) = O(n™2h™"). Similarly conditions (d) can be shown
by noting that

E > {rirhl=hrnTtom’h ) =0,

1<i<j<k<n

which implies that (2 = O(nil). It is obvious by straightforward calculations that,

E Z {(I)ijq)ikq)qu)lk} :O(’I7,4=h71)7

1<i<j<k<l<n

FE Z {(I)jiq)ikq)qu)lk} :O(’I7,4=h71)7

1<i<j<k<i<n
E Z {(I)jiq)kiq)qu)lk} :O(’I7,4=h71)7

1<i<j<k<l<n

which results in

E Y ATy, Y} = Ok n )0 h ™) = O(h).

1<i<j<k<lI<n
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Therefore, we have (3 = O(h), which implies that condition (e) holds. This completes the proof
of Theorem 6.
O

Proof of Theorem 7: This proof is similar to Liang et al. (2010). Thus we only
provide a sketch of the proof here. We first prove n 'R(H:1) = E{o(V)} + op(1). Let
m(X, B) = mo(XT By, B) + Mm1(XTB,,B)G and correspondingly mP(X,8) = m$§ (XT,BO“B)
m?(X"B,,8)G. By Theorem 3 and (A.15), n~' R(H:) can be decomposed as following

n~'R(H:) {yz ~ m(xiﬁ)}2
== Z {yi _ Tl mO(Xiyﬁo)}2 + Op(nfz/S) + Op(n71/2)
=2 {e - 0068 =V ) 07

=0 +L+105+ -&-Op(rfz/s)7

where
1 — »
n <
i=1
Iy~ -0 0 0
Iy =—2— X, —m(Vy, i
2 = =2 DX ) = m(Vi, )

Z{ (X, 8~ m(V:, 8}

It is easy to see by the law of large numbers that Iy = E{o(V)} + O,(n~*/?). By Theorem
2.6 in Li and Racine (2007), we have max; |m°(X;,8°) — m(X;,8°)| = O,(y/logn/(nh)),
which results in To = O,(y/logn/(n2h)) and Is = O, (logn/(nh)). This leads to n ' R(H;) =
E{c(V)}+0p(1).

Let B, = AT',,' AT, where A is defined in Section 3.2 and

H_Z\IJ X,Z)W:(X,Z)", with ¥,;(X,Z) = | """ .
Zi — Pn(Zs;)

The difference of R(Hy) — R(H1) can be decomposed as
N . N ~ 2
R(Ho) — Z {2" @, — @n,) + ((Xi, 011,) = (X, By, ) |

+ 2_2 {2" @y — &) + (X0, 011,) = (Xi, By, ) |

x {yi AT m(xi,ﬁ,{l)}

=04 + I5.



Xu Liu, Yuehua Cui AND Runze Li

By Lemma S.5 and Lemma S.10, I can be rewritten as
n T R N . . R . 2
L= {2" @, — &) + @(Xi, B,) — (X, Bir,) }

i=1
n N R o N 0 N 2

=3 {2" @y — @) + (AO(Xi, Byy) — 0 (Xi, B, )} + (1)
i=1

= {27 @, @)+ D: B X" Gy Bisy) — o B, )
i=1

2
~T ~T ~ o~ ~ ~
+ (Di(By,Xi) — Di(ﬁHlxi)T)T)\Hl (Bu,) + 010, — Om, Hz))} +0(1)
=(Ou, — 0m,) Z O;(X,Z)%*On, — 0m,) + o(1).
As the estimators of € under the null and alternative hypotheses have the following relationship
Oy = Ou, +T;,'ATB (v — ABx,),
we have
—~ T LENSN ~
Li=(y—A8m) Bi'ATL S ®i(X,Z)°20 ' ATB (7 Aba, ) +o(1)
S NT N
- (y - AeHl) B; (’y - AeHl) +o(1)

Therefore, under the null hypothesis, o~ 2I4 A Xi and under the alternative hypothesis o214
asymptotically follows a noncentral Chi-square distribution with £ degrees of freedom and non-

centrality parameter ¢. It remains to show that Is = 0,(1). As above arguments, we have
n T R R R - R N
=23 {27 @n, - an) + ((Xi, Byy) — (X, Bar,) |
{yz "G, m(xiﬁHl)}
—22 {\1: (X, Z) (0, — 0m,) + Op(n/?) } {61 +0p(n *1/2)}
i=1

=op(1).

This completes the proof of Theorem 7. [J

Bibliography
BosQ, D. (1998). Nonparametric statistics for stochastic processes. Springer-Verlag, New York.

Cai, Z., Fan, J. and Li, R. (2000). Efficient estimation and inferences for varying-coefficient
models. J. Am. Stat. Assoc. 95, 888-902.



BIBLIOGRAPHY

Carroll, R. J., Fan, J., Gijbels, I. and Wand, M. P. (1997). Generalized partially linear single-
index models. J. Am. Stat. Assoc. 92, 477-489.

Carroll, R. J., Ruppert, D. and Welsh, A. H. (1998). Local estimating equations. J. Am. Stat.
Assoc. 93, 214-227.

Cui, X., Hardle, W. and Zhu, L. (2011). The EFM approach for single-index models. Ann. Stat.
39, 1658-1688.

de Boor, C. A practical guide to splines, Springer, New York.

de Jong, P. (1987). A central limit theorem for generalized quadratic forms. Prob. Theo. Relat.
Fiel. 75 262-277.

DeVore, R. A. and Lorentz, G. G. (1993). Constructive Approzimation. Springer, New York.

Fan, J., Zhang, C. and Zhang, J. (2001). Generalized likelihood ratio statistics and Wilks
phenomenon. Ann. stat 29, 153-193.

Li, Q. and Racine, R. S. (2007). Nonparametric Econometrics: Theory and practice. Princeton

University Press, Princeton, N. J.

Liang, H., Liu, X., Li, R. and Tsar1, C. L. (2010). Estimation and testing for partially linear
singleindex models. Ann. Stat. 38, 3811-3836.

Liu, X., Jiang, H. and Zhou, Y. (2014). Local empirical likelihood inference for varying-
coefficient density-ratio models based on case-control data. J. Am. Stat. Assoc. 109, 635-646.

Ma, S. and Song, P. X. (2015). Varying index coefficient models. J. Am. Stat. Assoc. in press.

Ruppert, D., Sheathers, S. J. and Wand, M. P. (1995). An effective bandwidth selector for local
least squares regression. J. Am. Stat. Assoc. 90, 1257-1270.

Sepanski, J. H., Knickerbocker, R. and Carroll, R. J. (1994). A semiparametric correction for
attenuation. J. Am. Stat. Assoc. 89, 1366-1373.

Serfling, R. J. (1980), Approzimation Theorems of Mathematical Statistics. John Wiley and

Sons Inc., New York.

Xia, Y. C. and Li, W. K. (1999). On single-index coefficient regression models,” J. Am. Stat.
Assoc. 94, 1275-1285.



