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Abstract: An important issue in the design of experiments is the question of identifi-

ability of models. This paper deals with a modelling process, where linear modeling

goes beyond the simple relationship between input and output variables. Obser-

vations or predictions from the chosen experimental design are themselves input

variables for an eventual output. Tools developed to analyze designs from alge-

braic statistics are extended to noisy, irregular designs. They enable an advanced

study of model identifiability. Model building is opened towards higher order in-

teractions rather than restricting the class of considered models to main effects

or two-way interactions only. The new approach is compared to classical model

building strategies in an application to a thermal spraying process.
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1. Introduction

In this article we develop methods to determine polynomial models that are

identifiable from non-standard, noisy experimental designs. In algebraic statistics

an experimental design, defined as a finite set of distinct experimental settings, is

expressed as solution of a system of polynomial equations. Thereby the design is

described by a polynomial ideal and features and properties of the ideal provide

insight into the structures of models identifiable by the design (Pistone, Ricco-

magno, and Wynn (2001)). Holliday et al. (1999) apply these ideas to a problem

from the automotive industry with an incomplete standard factorial design.

Our work is motivated by a thermal spraying process used to produce a

particle coating on a surface. Controllable process parameters (X variables) are

varied according to standard experimental designs. Properties of the coating

particles in flight (Y variables) are measured during the process. The observed

values y or their predictions ŷ are inputs in models describing coating properties

(Z variables) as final output. The left diagram in Figure 1 summarises this.

The coating properties are very time-consuming and expensive to measure

as the specimen has to be destroyed. It is thus desirable to predict coating
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Figure 1. Left: occurence of noisy design points as observed y or predicted
input values ŷ for a final output z. Right: modelling approaches.

properties on the basis of particle properties. The present article treats the

question of identifiable models from the Y to the Z variables. Basic tools from

algebraic statistics for the analysis and design of experiments can be used to

determine classes of identifiable models. However, some of the models returned

from this basic theory are identifiable only due to small deviations of the design

from more regular points. This leads to unwanted unstable models. As data

or predictions on the Y variables are noisy, the analysis is very much affected

by this problem. We extend existing theory by switching from symbolic, exact

computations to numerical computations. Specifically, instead of polynomials

whose corresponding polynomial equations have as solutions the design points,

we identify a design with a set of polynomials which “almost vanish“ at the design

points. We do so using theoretical results and algorithms from Fassino (2010).

Section 2 reviews the notions of statistical and algebraic fans. In Section 3 the

question of identifiable models from the designs occurring in the thermal spraying

application is discussed and algorithms are developed to derive numerical fans for

noisy designs in Section 4. In Section 5 theoretical properties and relationships

between models potentially identifiable from the designs are analysed. Section 6

is the case study itself.

2. Background of Algebraic and Statistical Fans

A design or a set of observations can be seen as the zeros of a system of

polynomial equations. This simple observation is the entry key for algebraic

geometry to the design and analysis of experiments. For a generalization to

designs with replicated points see Notari and Riccomagno (2010). A model with

support [f1(x), . . . , fr(x)] is identified by the design with distinct points d1, . . . , ds
if the design matrix [fj(di)]i=1,...,s;j=1,...,r is full rank. It is saturated if the rank

is r = s. The order ideal (or hierarchical) property states that any lower order

term of an interaction term in the model is in the model as well.

Example 1. The design D = {(±1,±1), (0, 0)} is the solution set of p1 = p2 =

p3 = 0 where p1 = x31 − x1, p2 = x32 − x2 and p3 = (x2 − x1)(x1 + x2). From
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classical theory we know that only two saturated polynomial models with the hi-

erarchical property are identifiable by D. They have support {1, x1, x2, x1x2, x21}
or {1, x1, x2, x1x2, x22}. The corresponding design matrices coincide and are

X =



1 x1 x2 x1x2 x21/x
2
2

1 1 1 1 1

1 1 −1 −1 1

1 −1 1 −1 1

1 −1 −1 1 1

1 0 0 0 0


. (2.1)

Clearly X is invertible and hence the two models are identifiable. The power

product x21 and x22 cannot be part of the same models because they are aliased,

indeed p3 = (x2 − x1)(x1 + x2) = 0 is equivalent to x21 = x22. Statistically

this means that both effects are not distinguishable by data observed from D.

Substitution of x22 = x21 into p2 gives a new polynomial p4 = x2x
2
1 − x2 and the

solution set of p1 = p4 = p3 = 0 is still D.

The set of hierarchical models identified by a design D with as many terms

as distinct points in D is called the statistical fan of D. It is finite and each of

its elements, called leaves, is formed by as many power products (or monomials)

as distinct points in D. Each leaf is an order ideal, and hence it contains 1,

and the design matrix for each leaf of the fan is invertible. The intersection of

all leaves satisfies the hierarchical property and forms the support of polynomial

models identifiable by D. Subsets of the fan provide lists of saturated hierarchical

models each of which can be input to a selection procedure for determination of

a well-fitting parsimonious submodel.

In designs with a less regular structure, the statistical fan might not be

easy to determine. We provide a systematic method to investigate at least an

interesting part of it. The technical tools at the basis of the computation are a

term order τ on the set of power products and the associated reduced Gröbner

basis. A good reference for these algebraic notions is Cox, Little, and O-Shea

(1996). Generally, the set of polynomials in the variables x1, . . . , xn and with real

coefficients is indicated by R[x1, . . . , xn] and the set of power products by Tn.

A power product xα = xα1
1 . . . xαn

n is represented by the vector of its exponents

α = (α1, . . . , αn) ∈ Zn
≥0. Hence ordering power products corresponds to ordering

vectors with non-negative integer entries, more precisely a term order τ on Tn

is a well-order relation on Zn
≥0. A saturated hierarchical model identifiable by

the design is determined from a τ -Gröbner basis G as those power products

in Tn which are not divisible by any of the leading terms with respect to

τ of the elements of G. The obtained set, called a quotient basis or Oτ (D)
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(Pistone, Riccomagno, and Wynn (2001)), is an element of the statistical fan of

D and hence the design matrix

X = [dα]d∈D,α∈Oτ (D)

for D and Oτ (D) is invertible. The set we are interested in is FD = {Oτ (D) : τ},
called the algebraic fan of D.

Example 2 (Example 1 contd.). The design D is solution to p1 = p2 = p3 = 0.

However, its points satisfy also the equation s1(x
3
1−x1)+s2(x

2
1x2−x2)+s3(x2−

x1)(x1 + x2) = 0 for any polynomials s1, s2, s3. These polynomials are elements

of the polynomial ideal generated by p1, p2 and p3, written as

I(D) =
{
s1(x

3
1 − x1) + s2(x

3
2 − x2) + s3(x2 − x1)(x1 + x2) : s1, s2, s3 ∈ R[x1, x2]

}
and referred to as the design ideal of D or the vanishing ideal at D. For any term

order τ for which x1 is smaller than x2, the three polynomials p1 = x31−x1, p4 =

x21x2 − x2, p3 = (x2 − x1)(x1 + x2) = x22 − x21 form a Gröbner basis. The leading

terms are underlined. In this example there is only one other possible Gröbner

basis of the ideal. It is obtained for term orders in which x2 is smaller than x1.

By a symmetry argument it is seen to be {x32−x2, x
2
2x1−x1, (x1−x2)(x1+x2)}.

The full algebraic fan of D is thus
{
{1, x1, x2, x22, x1x2}, {1, x1, x2, x21, x1x2}

}
.

Generally, the necessary computations to obtain the algebraic fan cannot be

done by hand even for designs whose points exhibit regular geometric configu-

ration. Usually, the algebraic fan is very large and can be much smaller than

the statistical fan (Maruri-Aguilar (2007)). By Theorem 30 in Pistone, Ricco-

magno, and Wynn (2001) for a design whose points are chosen at random (with

respect to any Lebesgue absolute continuous measure) the algebraic fan equals

the statistical fan with probability one. Berstein et al. (2010) compare algebraic

and statistical fans for some classes of designs, including Latin hypercube and

orthogonal fractions, and derive a notion of design aberration. But for practical

purposes it might not be desirable to compute the full algebraic or statistical

fans. We argue this here with special reference to the case study driving our

work.

3. Motivation for a Numerical Fan of a Design

With the thermal spraying process in mind we are interested in a comparison

of different models for the final response Z, which are either based on the initial

inputs X, the intermediate outcomes Y or a prediction Ŷ . See the right diagram

of Figure 1. To fix notation assume that X has q components, Y has p compo-

nents, and Z has m components. Model building is based on an initial design
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Figure 2. Settings of the controllable X variables Lambda versus Kerosene
and the resulting observed values for the Y variables Temperature versus
Velocity.

Dx for X and observed values Dy from Y and Dz from Z are available. To build

models from Y to Z it is not immediately obvious which effects are identifiable,

because compared to the controllable design parameters X the observed particle

properties in Dy scatter strongly, see Figure 2 whose caption has to be read in

the light of Section 6. In particular we are interested in finding out if informa-

tion is lost or models are missed by considering any of the possible input types.

For the model selection procedure the knowledge of possible maximal models is

extremely useful as an all-subset selection is usually not feasible.

In polynomial models the intercept is given by the zero vector (0, . . . , 0) = 0q,

and a main effect model by
∑

α∈L θαx
α with θα real numbers and

L = {0q, (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}.

A generic linear model is of the form
∑

α∈L θαx
α with θα ∈ Rq and L a finite

subset of Zq
≥0. In this notation a statistical linear model of Z given X might be

expressed as

E(Z|X = x) = xTz γ
∗ =

∑
α∈L

γ∗αx
α,

where E(·|X = x) indicates expected conditional mean to X = x. The support

of the model is indicated with xz = [xα]α∈L and is identified with the exponents

of the power products in the set L. The parameter vector is γ∗ = [γ∗α]α∈L.

The initial design Dx in the case study in Section 6 is a full factorial design

with central point in four factors k, l, d, f . By generalization of Example 1 to

four dimensions we deduce that its algebraic fan has four leaves obtained by

permutation of the four factors. Each leaf has seventeen elements as there are
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seventeen distinct points inDx. For any term order τ on the set of power products
based on the letters f, d, l, k and for which f is lowest, the saturated model is

Oτ (Dx) =
{
1, f, f2, d, l, k, df, lf, ld, kf, kd, kl, ldf, kdf, klf, kld, kldf

}
.

The Oτ (Dx) above includes f2 and all square free terms of total degree at
most four. As for its two dimensional analogue, this is a special case where the
algebraic fan equals the statistical fan, providing all four hierarchical models with
17 power products and for which the design matrix is invertible. This statement
follows by observing that (1) a power product in Oτ (Dx) cannot have degree
three or more in any variable because the four factors have three levels each
and (2) d2, k2 and l2 are aliased with f2, indeed the two vectors of evaluations
[f2(d)]d∈D and [l2(d)]d∈D are equal. Hence as f2 is in the model, d2, k2 and l2

cannot be. The intersection of the four models in the fan gives a hierarchical
model with all 16 square free interactions up to order four.

The design in the X variables has a nice regular structure and we easily
computed its fans. However, the “designs” Dy and Dŷ in the thermal spraying
application look, although are not, random and have a fairly complex geometrical
structure. The complexity of Dy and Dŷ carries over to their ideals and to their
fans. Standard statistical techniques go only so far in their analysis and do not
provide information on the aliasing structure imposed by the designs on the space
of polynomial models for the final output variables Z. This is where, we believe,
the algebraic method adopted in this paper becomes especially worthwhile.

Example 3 below shows another reason why it might be desirable to consider
only a subset of the fans by excluding numerically unstable leaves. It shows some
of the issues we encounter and overcome by using an approximated version of
the design ideal and of its algebraic fan. A measure of stability of a system of
linear equations Ax = b with A ∈ Rn×n, x ∈ Rn, b ∈ Rn is the condition number
||A|| · ||A−1|| of a matrix A where the symbol || · || indicates matrix norm. The
condition number is at least 1 and if it is much larger (depending on matrix size)
than 1 then the matrix is ill-conditioned. In case of an ill-conditioned matrix,
the solution of Ax = b will be particularly sensitive to errors in A or in b.

Example 3. Let D be the 22 full factorial design with levels ±1. The algebraic
and statistical fans have only one leaf {1, x1, x2, x1x2}. If we substitute the point
(1,−1) with (1,−1.001), the algebraic and statistical fans are equal and are
given by the two leaves {1, x1, x2, x1x2} and {1, x1, x2, x22} with corresponding
design matrices X1 and X2 given below. The condition number of X1 is almost
1.000707180 and of X2 is 4 · 103.

X1 =


1 1 1 1

1 1 −1.001 −1.001

1 −1 1 −1

1 −1 −1 1

 and X2 =


1 1 1 1

1 1 −1.001 1.002001

1 −1 1 1

1 −1 −1 1

 .
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The X1 matrix is well-conditioned and so are problems relying on it, e.g. the

stability of commonly used algorithms in statistical analysis is ensured. But no

statistician will be comfortable with the results of an analysis based on X2. A

switch is required from symbolic, exact computations to numerical computations.

4. NBM Algorithm and Numerical Fan

We next consider designs whose points’ coordinates are known up to a cer-

tain precision. We might think that there are measurement errors for Dy and

prediction errors in Dŷ. We seek a set of polynomials which almost vanish at

the design points, namely evaluated at the design points they are close enough

to zero. To do that, we use the numerical Buchberger-Möller (NBM) algorithm

presented in Fassino (2010). It is based on a least square approximation and is a

variant of the purely symbolic Buchberger-Möller algorithm (Möller and Buch-

berger (1982)) which is the computational tool at the basis of the application of

algebraic geometry to design of experiments as described in Section 2.

The inputs to the NBM algorithm are a finite set of distinct points in n

dimensions, say D ⊂ Rn, a term order τ and a precision vector ϵ = (ϵ1, . . . , ϵn) ∈
Rn
≥0, where ϵi, i = 1, . . . , n, gives allowed perturbation for the ith component.

The outputs are a set of polynomials G and a hierarchical set of power products

O. It also includes a flag stating whether O has the same number of elements

as there are points in D. By construction, the matrix X whose columns are the

evaluations of the power products in O at D is well-conditioned. Furthermore,

X is full rank for all admissible perturbations of D, although it might not be

well-conditioned for all such perturbations.

We recall the basic notions from Fassino (2010). A point d̄ = (d̄1, . . . , d̄n) ∈
Rn is an ϵ-(admissible) perturbation of d = (d1, . . . , dn) ∈ Rn if |di − d̄i| < ϵi
for i = 1, . . . , n. Let Dϵ be the set of all ϵ-perturbed points of D. Without loss

of generality assume D ⊂ [−1, 1]n. A polynomial g, with coefficient vector c,

is almost vanishing at D if ||X||2/||c||2 < O(ϵM ), where X = [g(d)]d∈D is the

evaluation vector of g at D, || · ||2 the Euclidean norm, and ϵM = max{ϵi : i =
1, . . . , n}. The set of polynomials almost vanishing atD is called the approximated

ideal of tolerance ϵ.

A polynomial with small enough coefficients almost vanishes at many points

and the zero set of a polynomial does not change when multiplied by a constant.

Hence, when needed, we consider the unitary version of the approximating sets

obtained by multiplying each polynomial in the generating sets of the approxi-

mated ideals with the inverse of the Euclidean norm of its coefficient vector.

The tail of the first polynomial returned by NBM is a linear combination of

the smallest power products with respect to τ whose design matrix is full-rank for

every ϵ-perturbed design. This can be interpreted as a high-dimensional surface
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of a shape which is as simple as possible in τ and to which D is close in a least

square sense. Indeed the NBM algorithm returns an implicit representation of D
depending on the term order τ as input.

The polynomials returned by the NBM algorithm usually do not generate

a proper polynomial ideal because they might have non-common zeros, unless

ϵM = 0. However, their role for our application, both when giving interpretation

in terms of aliasing and when discussing identifiable models, is the same as that

of a generating set of the exact design ideal.

The key technical step in the NBM algorithm is to start constructing (almost)

vanishing polynomials by adding the lowest possible power product in τ . In short

it is as follows: 1. start with M := {1}, 2. consider the smallest w.r.t. τ power

product not in M , say xα, 3. solve the least square problem for D, M and xα,

4. check if the obtained polynomial is zero for all d ∈ D (in the exact case) or

small enough in some norm, e.g. Euclidean, 5. if yes, the obtained polynomial is

almost vanishing while if not, add xα to M and repeat from Step 2. The main

computational cost at each iteration is the cost of computing the pseudo-inverse

of an evaluation matrix in Step 3, involved in the solution of the least square

problem, and of the estimation of the termination criterion in Step 4. Efficient

algorithms are available for both.

To fully adapt this to the construction of a (numerical) fan, in Step 2 one

needs to consider each possible xα that preserves the order ideal structure. The

fan is finite because the underlying variety is zero-dimensional and the procedure

stops when no power product can be added. It returns the (numerical) statistical

fan. In high dimension computing it is no trivial task, indeed it has not been

implemented efficiently yet. In Section 6 we choose to approximate the numerical

fan by computing a subset of the algebraic fan by running the NBM algorithm

for some significant term orders.

5. Direct, Indirect and Composite Models

We next go back to the considered models in the right diagram of Figure 1

and compare them on a theoretical level. The direct model approach assumes

Z = h(X) + δ with E(δ|X) = E(δ) = 0 and V ar(δ|X) = V ar(δ) constant.

Hence it holds that E(Z|X = x) = h(x). For η, ϵ, and η̃ satisfying the same

distributional assumptions of δ, the composite model is based on the assumptions

Z = g(f(X)) + η and Y = f(X) + ϵ, thus E(Z|X = x) = g(E(Y |X = x)); while

the indirect model takes Z = g(Y ) + η̃ and Y = f(X) + ϵ, hence E(Z|X = x) =

E(g(f(X) + ϵ)|X = x). If g is a linear function then the indirect model becomes

E(Z|X) = g(f(x)) by linearity of expectation, and the indirect and composite

models coincide.
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A straightforward full theoretical comparison of the three approaches is pos-

sible for the special case of linear models and main effects in going from Y to Z,

and also for models beyond main effects in the direct strategy as well as from X

to Y for the other two strategies. Without loss of generality set m = 1, hence

Z ∈ R. The direct model becomes

Z = h(X) + δ =︸︷︷︸
linear model

XT
z γ

∗ + δ

with γ∗ an unknown parameter vector and Xz a vector of power products of

the original X-variables to model intercept, main effects, interactions, quadratic

terms and so on, as required. It follows from these assumptions that

E(Z|X = x) = XT
z γ

∗. (5.1)

For a main effect linear model between Y and Z, the composite model sim-

plifies to

E(Z|X = x) = E(γ0 + f(X)Tγ + η|X = x) = γ0 + f(x)Tγ (5.2)

with γ0 ∈ R and γ ∈ Rp unknown parameters, for some suitable p ∈ Z≥0.

Similarly when g gives a main effect linear model the indirect model reads

E(Z|X = x) = E(γ̃0 + (f(X) + ϵ)T γ̃ + η̃|X) = γ̃0 + f(x)T γ̃, (5.3)

with γ̃0 ∈ R and γ̃ ∈ Rq for some integer q. From (5.2) and (5.3) we can conclude

that the indirect and composite strategies are structurally the same if and only

if γ = γ̃ and γ0 = γ̃0.

Next, we replace each component of f(x) in (5.2) and (5.3) by a multivariate

linear model. So for i = 1, . . . , p let the i-th component of f be written as

f(x)i =
∑
α∈Li

xαβi
α = xTy,iβ

i,

where Li identifies the support vector xy,i = [xα]α∈Li for the X to Yi regression

model and βi = [βi
α]α∈Li gives the unknown parameter vector. Hence (5.2)

becomes

E(Z|X = x) = γ0 + f(x)Tγ = γ0 +

[ ∑
α∈Li

xαβi
α

]T
i=1,...,p

γ = γ0 +

p∑
i=1

∑
α∈Li

xαβi
αγi.

(5.4)

By assuming equality of E(Z|X = x) in all modeling approaches, from (5.1)

and (5.4) we obtain an equality of polynomials in the xα’s,∑
α∈L

γ∗αx
α = γ0 +

p∑
i=1

∑
α∈Li

xαβi
αγi.
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Table 1. Controllable and measured variables in the spraying process.

process parameters X particles in-flight properties Y coating properties Z
Kerosene (k) Temperature (t)
Lambda (l) Velocity (v) Hardness (Ha)
Stand-off Distance (d) Flame width (w) Deposition rate (Dr)
Feeder Disc Velocity (f) Flame intensity (i)

This holds true if and only if coefficients of the same power product on the

left hand side and right hand side are equal. To expand on this we further

assume that all X-to-Y models admit an intercept, so that a vector of suitable

dimension and with all entries equal to zero belongs to Li for all i from 1 to p.

We also define L∗
i to be the set Li without the zero vector. The above becomes

γ∗0q +
∑

α∈L∗ γ∗αx
α = γ0+

∑p
i=1 β

i
0qγi+

∑p
i=1

∑
α∈Li

xαβi
αγi. Equating coefficients

of the intercept gives γ∗0q = γ0 +
∑p

i=1 β
i
0qγi. Similarly for each α ∈ L∗ we have

γ∗α =
∑p

i=1 β
i
αγi where βi

α is zero if α is not in Li. Finally for α ̸∈ L∗ we

have 0 =
∑p

i=1 β
i
αγi. This can be understood as theoretical aliasing relationships

among the parameters for the indirect/composite case and the direct case.

6. Application to a HVOF Experiment

In the considered High Velocity Oxygen Fuel Flame (HVOF) spraying pro-

cess considered, a spraying gun acts as a source of heat and spray material in

powder form is fed to the gun from outside. Inside the gun the spray material is

melted by the flame partly or completely and a gas stream accelerates the heated

particles towards the substrate. The particles deposit as a coating after cooling

down. The final coating can be analyzed but only at a cost of destroying it. A

problem with this technology is a lack of reproducibility of the coatings caused

by non-controllable effects which are, however, presumably visible in the particle

properties. Our aim is to predict a coating with desired properties Z by means

of controllable design parameters X on the spraying gun using information from

observed particle properties Y .

In Table 1 the design parameters, particle properties, and coating properties

identified by previous experiments (e.g., Tillmann et al. (2010)) are summarized.

Experiments based on a full factorial design for the X variables with a center

point (see Table 2) were carried out and particle properties together with coating

properties measured.

Models for the Y variables depending on the X variables were obtained with

an all-subset selection based on the AIC criterion. The maximal model for the

submodel selection procedure is the intersection of the four leaves in the fans of
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Table 2. Coded design parameters.

Coded values -1 0 1

Kerosene level in l
h (k) 17.5 20 22.5

Lambda (l) 1.075 1.15 1.225
Stand-off distance in mm (d) 225 250 275
Feeder disc velocity in g

min (f) 7.5 10 12.5

Dx. The fitted regression models, with estimates rounded to two digits, are

Temperature: t = 1581.36− 20.09 l + 32.76 k − 17.93 d+ 9.46 f + 2.63 lf

+12.95 kf − 3.44 df − 2.63 lkd+ 8.64 lkf + 10.53 ldf

+7.40 kdf + 3.89 lkd,

Velocity: v = 713.75 + 13.53 l + 41.08 k − 14.59 d− 3.44 f − 3.58 tlk

−2.69 ld− 6.16 kd+ 8.56 kf + 5.65 df,

Flame Width: w = 7.95− 0.19 l + 0.09 k + 0.21 d+ 0.56 f − 0.12 lk + 0.15 ld

−0.20 lf − 0.18 kd+ 0.08 kf + 0.10 df + 0.19 ldf

−0.14kdf − 0.05 lkdf,

Flame Intensity: i = 21.41−1.94 l+2.58 k−1.20 d+5.16 f+0.50 lk+0.45 ld

+2.23 kf−0.90 df−0.56lkd+1.40 lkf+1.70 ldf+0.86 kdf.

The predicted values at Dx give 17 distinct points in R4 collected in Dŷ. The

generating process of the designs Dŷ and Dy destroys the symmetries of the Dx

design (e.g., Figure 2). Their irregularity comes from different sources, traceable

back to the measurement errors of the observed Y -values, to an inherent com-

plexity of the generating process, and to modeling approximation. The adjusted

R2 values, namely 0.92 for Temperature, 0.97 for Velocity, 0.86 Flame Width,

and 0.96 for Flame Intensity are a measure of this.

6.1. Approximated vanishing ideals for the Y -designs

The polynomials in the exact design ideals I(Dy) and I(Dŷ) vanish at the

points of the design Dy and Dŷ by definition. Even when Dŷ is an ϵ-perturbation

of Dy, their exact ideals may be very different. More informative is to consider ap-

proximated versions of the design ideals and compare them. Let G(Dy) and G(Dŷ)

be the output of the NBM algorithm for Dy and Dŷ, τ = degrevlex(t, v, w, i) and

ϵ = (5, 2, 0.01, 0.01), where ϵ is chosen together with engineers. The first compo-

nent of ϵ refers to temperature, the second one to velocity, the third one to flame

width, and the last one to flame intensity.
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Figure 3. Implicit Residuals.

The number of polynomials in G(Dy) is 17 and 15 in G(Dŷ), this is a simple

indication of the difference between the two almost vanishing ideals of, Dy and

Dŷ. However the polynomials of the almost vanishing sets of Dŷ have to almost

vanish at the observed values Dy when Dŷ is a good approximation of Dy, even

though the two designs are not an ϵ-perturbation of each other. A measure of

this are the adjusted R2 values.

In order to check this further and in order to check whether the first poly-

nomials of the almost vanishing ideals are sufficiently informative to compute

the fans, in Figures 3 we show what we call the implicit residuals. They are

obtained by substituting Dy and Dŷ in the first and second polynomials of G(Dy)

and G(Dŷ). As expected, the implicit residuals are very small with absolute

maximal value smaller than 10−3.

6.2. Computation of the algebraic fan

In the previous section we considered one possible O set for Dŷ and one O set

for Dy; thus for each design we computed one set of power products from which

to start a model search. Here, we consider many O sets by varying the term

order according to the strategy indicated in Section 4. We used the StableB-

BasisNBM5 function of CoCoA4.7.5 (CoCoATeam (2009)), which implements

the numerical Buchberger-Möller algorithm. Ideally one would like to compute

the full algebraic fan of the approximated ideals but this is not implemented in

CoCoA4 or elsewhere, yet. Therefore, we chose three standard term orders: lex-

icographical, degree lexicographical, and reverse degree lexicographical ordering,

and all possible permutations of the variables. These are quite extreme term

orders: lexicographic orderings tend to include in O all powers of the smallest
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Table 3. PRESS statistic values for different model building strategies.

Hardness Deposition rate
algebraic approach 169268.96 164.75
classical approach 172747.90 466.59

direct 198472.99 461.50

variable first; degree compatible term orders favor the inclusion of the first suit-

able power products with lowest total degree (sum of exponents). Thus, to each

design there is associated a subset of its fan comprising 72 leaves a.k.a. as O
sets. To compare the leaves within each subfan we counted the number of the 20

most frequent power products. Unsurprisingly they coincide, as Dŷ is generated

by the best fitting models of Dy.

6.3. Comparison based on PRESS residuals

As the prediction of Z based on X is of major interest for the application,

we compared the goodness of fit of the composite and the direct model. For a

further comparison see (Rudak, Kuhnt, and Riccomagno (2013)). For reaching

a good trade-off between parsimonious models and goodness of fit, the final

model may be not hierarchical, even if the search spaces are hierarchical sets.

For the direct model, a combination of backward and forward selection where

the saturated model contains all main effects and interactions, led to 1370.45 +

78.15 k−46.82 l−134.35 l2−30.47 k for Hardness and 47.12+2.75 d for Deposition

rate.

For composite models, we compared two model building methods. The new

algebraic approach employs results from the algebraic analysis of Dŷ, whereas the

classical approach relies on a common statistical model selection approach. For

both approaches, particle properties were coded to values within [−2, 2] (Temper-

ature [1,300, 1,700], Velocity [375, 825], Flame width [5, 20], Intensity [10, 30]).

In the algebraic approach, each leaf of the fan of Dŷ is scope for a forward back-

ward selection based on the AIC criterion. Models returned for different leaves

are discriminated by AIC again resulted in 988.41 + 206.82 t− 20.4 v5 + 148.85 v

for Hardness and in 63.42+58.34 t2v− 34.11 t2− 5.38 t3− 16.38 v− 18.64 t2v2 for

Deposition rate. In the classical approach, a forward-backward selection based

on the AIC criterion and with maximal model all main effects and interactions,

returned simpler models whose supports have only linear terms. For Hardness it

returned 1094.71 + 183.5 t and for Deposition rate 51.37− 5.23 t.

To compare the approaches further we performed a leave-one-out cross vali-

dation analysis. Table 3 contains the PRESS statistic values (see Myers, Mont-

gomery, and Anderson-Cook (2009)) defined as PRESS =
∑17

i=1(zi− ẑ−i)
2 where
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ẑ−i is the predicted value for zi based on the whole dataset except the i-th ob-

servation. The PRESS statistic values were smaller in the algebraic approach,

up to the ratio of 1 : 3 for Deposition rate.

This shows the worthwhileness of the computational effort required to com-

pute (a part of) the fan of a design for model search. The final models for

Deposition rate and Hardness obtained with the algebraic approach would not

have been easily devised without the semi-automatic algebraic methods presented

here. This is mainly because they include higher order terms and because of the

very scattered configurations of design points for which they are computed. As

often occurs, there is no pretence nor need to give an interpretation to the vari-

ous terms in those models: they are models for the second part of the two stage

modelling process and the engineering and physical knowledge on the Y -to-Z

process is at the moment very limited.

7. Conclusion

Motivated by a thermal spraying process, we treated the question of iden-

tifiable models from noisy, irregular designs. We used almost vanishing ideals

and an algorithm from Fassino (2010) for dealing with the instability in the ob-

served or predicted designs. Models for the final response were analysed on a

theoretical level with respect to their structural differences as well as aliasing

relationships. Comparison with standard linear models showed that the use of

algebraic statistics led to considering a wider choice of models and eventually

a better fit, and thus demonstrated the efficacy of the proposed method. We

introduced the notion of implicit residuals which measure the goodness-of-fit of

the predicted design points.

More elaborate models like generalized linear models, non-linear models,

or measurement error models might be more appropriate for the case study.

However, the algebraic treatment would be very much the same and thus we

chose the easier to handle linear models. The much improved model selection is

due to an enhanced knowledge of the space of identifiable models achieved thanks

to the proposed algebraic statistics method.

Acknowledgement

The financial support of the DFG (SFB 823: Project B1) and of the DAAD

is gratefully acknowledged.

References

Berstein, Y., Maruri-Aguilar, H., Onn, S., Riccomagno, E. and Wynn, H. (2010). Minimal

average degree aberration and the state polytope for experimental designs. Ann. Inst.

Stat. Math. 62, 673-698.



NUMERICAL ALGEBRAIC FAN 1035

CoCoATeam (2009). CoCoA: A System For Doing Computations in Commutative Algebra.

Available at http://cocoa.dima.unige.it.

Cox, D., Little, J. and O-Shea, D. (1996). Ideals, Varieties, and Algorithms. Springer-Verlag,

New York.

Fassino, C. (2010). Almost vanishing polynomials for sets of limited precision points. J. Symbolic

Comput. 45, 19-37.

Holliday, T., Pistone, G., Riccomagno, E. and Wynn, H. P. (1999). The application of compu-

tational algebraic geometry to the analysis of designed experiments: a case study. Comput.

Statist. 14, 213-231.

Maruri-Aguilar, H. (2007). Methods from computational commutative algebra in design and

analysis of experiments. Ph.D. Thesis Statistics, Warwick.

Möller, H. M. and Buchberger, B. (1982). The construction of multivariate polynomials with

preassigned zeros. Computer Algebra. Volume 144 of Lecture Notes in Comput. Sci., 24-31.

Springer, Berlin.

Myers, R. H., Montgomery, D. C. and Anderson-Cook, C. M. (2009). Response Surface Method-

ology. Wiley , New Jersey.

Notari, R. and Riccomagno, E. (2010). Replicated measurements and algebraic statistics. Alge-

braic and Geometric Methods in Statistics, 187-202. Cambridge Univ. Press, Cambridge.

Pistone, G., Riccomagno, E. and Wynn, H.P. (2001). Algebraic statistics. Volume 89 of Mono-

graphs on Statistics and Applied Probability. Chapman & Hall/CRC, Boca Raton.

Rudak, N., Kuhnt, S. and Riccomagno, E. (2013). Numerical algebraic fan of a design for

statistical model building. SFB 823 Discussion Paper 4/13, TU Dortmund University,

Dortmund, Germany.

Tillmann, W., Vogli, E., Hussong, B., Kuhnt, S. and Rudak, N. (2010). Relations between in

flight particle characteristics and coating properties by HVOF spraying. Proceedings of

ITSC 2010 Conference, 264 of DVS-Berichte.

Faculty of Statistics, TU Dortmund University, 44221 Dortmund, Germany.

E-mail: rudak@statistik.tu-dortmund.de

Dortmund University of Applied Sciences and Arts, 44227 Dortmund, Germany.

E-mail: sonja.kuhnt@fh-dortmund.de

Department of Mathematics, University of Genova, 16146 Genova, Italy.

E-mail: riccomagno@dima.unige.it

(Received July 2014; accepted September 2015)

http://cocoa.dima.unige.it
rudak@statistik.tu-dortmund.de
sonja.kuhnt@fh-dortmund.de
riccomagno@dima.unige.it

	1. Introduction
	2. Background of Algebraic and Statistical Fans
	3. Motivation for a Numerical Fan of a Design
	4. NBM Algorithm and Numerical Fan
	5. Direct, Indirect and Composite Models
	6. Application to a HVOF Experiment
	6.1. Approximated vanishing ideals for the Y-designs
	6.2. Computation of the algebraic fan
	6.3. Comparison based on PRESS residuals

	7. Conclusion

