
Heteroscedastic semiparametric

transformation models: estimation and

testing for validity

Natalie Neumeyer∗ Hohsuk Noh† Ingrid Van Keilegom
‡

November 28, 2015

Supplementary Material

Abstract

This supplementary file provides the proof of Theorem 2.1 and the proof of some

auxiliary results used to prove Theorem 3.1.

∗Department of Mathematics, University of Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany,

E-mail: neumeyer@math.uni-hamburg.de
†Department of Statistics, Sookmyung Women’s University, 100 Cheongpa-ro 47-gil, Yongsan-gu,

Seoul, South Korea 140-742, E-mail: word5810@gmail.com
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S1 Proof of Theorem 2.1

We follow the different steps of the proof of Theorem 4.1 in Linton et al. (2008), which

shows the asymptotic normality of ϑ̂ in the homoscedastic case. However, for brevity we

focus on the differences with respect to that proof. The proof in Linton et al. (2008) con-

sists of 11 lemmas from which the result follows. The lemmas that need closer attention

are Lemmas A.1, A.2, A.3 and A.11. The other lemmas can be extended to the het-

eroscedastic case in a straightforward way. We start with the extension of Lemma A.1 to

the heteroscedastic case. This lemma develops an i.i.d. expansion for f̂ε̂(ϑ0)(y)− fε(ϑ0)(y).

For this, first note that

m̂ϑ0
(x) =

1

nhd

n∑

i=1

Wx,n

(x−Xi

h

)
Λϑ0

(Yi), (S1.1)

where Wx,n(u) = K∗(u)/fX(x)(1 + oP (1)) uniformly in u ∈ [−1, 1]d and x ∈ RX , and

(nhd)−1
∑n

i=1 Wx,n((x − Xi)/h) = 1. The kernel K∗(·) is the so-called equivalent kernel

and is a linear combination of functions of the form
∏d

i=1 k(ui)u
ji
i with (j1, . . . , jd) ∈ N

d
0,

0 ≤
∑d

i=1 ji ≤ p. This can be deduced from representation (3.25) in combination with

(3.30), (3.9) and (3.19) in Gu, Li and Yang (2014); see also Masry (1996a, 1996b) and

Fan and Gijbels (1996), p. 63–64, for the case d = 1. In a similar way we can also write

σ̂ϑ0
(x)− σϑ0

(x) =
1

2σϑ0
(x)

1

nhd

n∑

i=1

Wx,n

(x−Xi

h

)[
(Λϑ0

(Yi)−mϑ0
(x))2 − σ2

ϑ0
(x)

]

+oP (n
−1/2). (S1.2)

It follows that we can write

f̂ε̂(ϑ0)(y)− fε(ϑ0)(y)

=
1

ng

n∑

i=1

ℓ′g(εi − y)(ε̂i(ϑ0)− εi) +
1

n

n∑

i=1

ℓg(εi − y)− fε(y) + oP (n
−1/2)

= −
1

ng

n∑

i=1

ℓ′g(εi − y)

σ(Xi)

{
[m̂ϑ0

(Xi)−mϑ0
(Xi)] + εi[σ̂ϑ0

(Xi)− σϑ0
(Xi)]

}

+
1

n

n∑

i=1

ℓg(εi − y)− fε(y) + oP (n
−1/2)

= (T1 + T2)(y) + oP (n
−1/2) (say).
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Using decompositions (S1.1) and (S1.2), we have

T1(y) = −
1

ng

n∑

i=1

ℓ′g(εi − y)

σ(Xi)

1

nhd

n∑

j=1

WXi,n

(Xi −Xj

h

)
(Λϑ0

(Yj)−mϑ0
(Xi))

−
1

ng

n∑

i=1

ℓ′g(εi − y)

σ2(Xi)

εi
2nhd

n∑

j=1

WXi,n

(Xi −Xj

h

)(
(Λϑ0

(Yj)−mϑ0
(Xi))

2 − σ2
ϑ0
(Xi)

)

+oP (n
−1/2)

=
1

n2

n∑

i=1

n∑

j=1

Anij(εj +
εi
2
(ε2j − 1)) + oP (n

−1/2),

where Anij = −(ghd)−1ℓ′g(εi−y)WXi,n((Xi−Xj)/h). Using similar arguments as in Linton

et al. (2008) and Colling and Van Keilegom (2015), the last expression can be written as

f ′
ε(ϑ0)

(y)
1

n

n∑

i=1

εi +
(
yf ′

ε(ϑ0)
(y) + fε(ϑ0)(y)

) 1

2n

n∑

i=1

(ε2i − 1) + oP (n
−1/2).

In a similar way i.i.d. expansions for
˙̂
fε̂(ϑ0)(y) − ḟε(ϑ0)(y) and f̂ ′

ε̂(ϑ0)
(y) − f ′

ε(ϑ0)
(y) can

be obtained, which then extend Lemmas A.2 and A.3 in Linton et al. (2008) to the

heteroscedastic case.

These three i.i.d. expansions all come together when we develop the i.i.d. expansion

for ϑ̂ − ϑ0. For the homoscedastic case this is done in Lemma A.11 in Linton et al.

(2008), and it is shown there that all terms that come from the estimation of m, ṁ, fε,

f ′
ε and ḟε cancel and one therefore obtains the same expansion as in the case where all

these functions would be known. In our heteroscedastic model a similar development can

be done by using the above expansions for f̂ε̂(ϑ0),
˙̂
fε̂(ϑ0) and f̂ ′

ε̂(ϑ0)
. We find in a similar

way as in the homoscedastic case that all these expansions cancel out, and hence we get

asymptotically the same i.i.d. expansion as in the case where these functions would be

known. This shows the first part of Theorem 2.1. The second part follows immediately

from the central limit theorem, together with the fact that E[gϑ0
(X, Y )] = G(ϑ0) = 0. �

S2 Some auxiliary results

For k = (k1, . . . , kd) ∈ N
d
0, let k. =

∑d
j=1 kj, D

k = ∂k./∂xk1
1 . . . ∂xkd

d , and

‖f‖d+α = max
k.≤d

sup
x∈RX

|Dkf(x)|+max
k.=d

sup
x,x′∈RX

|Dkf(x)−Dkf(x′)|

‖x− x′‖α
,
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where ‖ · ‖ is the Euclidean norm on R
d. Further, let G1 = Cd+α

1 (RX) be the class of d

times differentiable functions f defined on RX such that ‖f‖d+α ≤ 1, and G2 = C̃d+α
2 (RX)

be the class of d times differentiable functions f defined on RX such that ‖f‖d+α ≤ 2 and

infx∈RX
f(x) ≥ 1/2.

Proposition S2.1 Let F = {ϕϑ,g1,g2,y | ϑ ∈ Θ, g1 ∈ G1, g2 ∈ G2, y ∈ R}, where

ϕϑ,g1,g2,y(X, Y ) = I
{Λϑ(Y )−m(X)

σ(X)
≤ yg2(X) + g1(X)

}
− I

{Λϑ0
(Y )−m(X)

σ(X)
≤ y

}

is a function from RX × R to R and G1, G2 are defined above. Then F is Donsker.

Proof of Proposition S2.1 In Lemma 1 in Heuchenne et al. (2015) the special case

of univariate X and σ ≡ 1 (i. e. homoscedasticity) is considered. For the subclass of F

obtained by setting g2 ≡ 1 the assertion is proved. On the other hand Lemma A.3 in

Neumeyer and Van Keilegom (2010) shows the assertion for the function class defined

analogously to F , but replacing Λϑ by the identity (for multivariate X). A detailed proof

combining the arguments of both proofs is omitted for the sake of brevity. �

Proposition S2.2 For the estimators m̂ and σ̂ defined in Section 2 and the function

classes G1, G2 defined above we have under the assumptions of Theorem 3.1 that P ((m̂−

m)/σ ∈ G1) → 1 and P (σ̂/σ ∈ G2) → 1 for n → ∞.

Proof of Proposition S2.2 Note that the assertion follows from ‖m̂ −m‖d+α = oP (1)

and ‖σ̂ − σ‖d+α = oP (1). Further note that

m̂−m = (m̂ϑ0
−m) + (m̂ϑ̂ − m̂ϑ0

), σ̂ − σ = (σ̂ϑ0
− σ) + (σ̂ϑ̂ − σ̂ϑ0

)

and that ‖m̂ϑ0
− m‖d+α = oP (1), ‖σ̂ϑ0

− σ‖d+α = oP (1) was shown in Lemma A.1 in

Neumeyer and Van Keilegom (2010) under assumptions (a1), (a2), (A1)–(A3). We will

apply Taylor expansions for the remainder terms. To this end due to ϑ̂ = ϑ0 + oP (1) (see

assumption (A5)) we may assume that ‖ϑ̂−ϑ0‖ ≤ η for η from assumption (A7). Denote

by ̂̃mϑ0
a local polynomial estimator defined analogously to m̂ϑ0

, but based on the sample

(Xi, Λ̇ϑ0
(Yi)), i = 1, . . . , n. Let, by slight abuse of notation,

dkVx,n(z) =
∂k.(Wx,n(

x−z
h
))

∂xk1
1 . . . ∂xkd

d
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for k = (k1, . . . , kd) ∈ N
d
0, with Wx,n from (S1.1). Then we obtain from (B.1) that

‖m̂ϑ̂ − m̂ϑ0
‖d+α

≤ ‖ϑ̂− ϑ0‖‖ ̂̃mϑ0
‖d+α (S2.1)

+
1

2
‖ϑ̂− ϑ0‖

2max
k.≤d

1

nhd

n∑

i=1

sup
x∈RX

|dkVx,n(Xi)| sup
‖ϑ−ϑ0‖≤η

‖Λ̈ϑ(Yi)‖ (S2.2)

+
1

2
‖ϑ̂− ϑ0‖

2max
k.=d

1

nhd

n∑

i=1

sup
x,x′∈RX

|dkVx,n(Xi)− dkVx′,n(Xi)|

‖x− x′‖α
sup

‖ϑ−ϑ0‖≤η

‖Λ̈ϑ(Yi)‖. (S2.3)

Under assumptions (a1), (a2), (A1) and (A8) we have that ‖ ̂̃mϑ0
‖d+α converges to ‖m̃ϑ0

‖d+α

in probability, where m̃ϑ0
(·) = E[Λ̇ϑ0

(Y )|X = ·]. Thus (S2.1) is negligible since ‖ϑ̂ −

ϑ0‖ = OP (n
−1/2). Under assumptions (a1) and (a2), from the representations of the

multivariate local polynomial estimator in Masry (1996a, 1996b) one can deduce that

hd supx,z |d
kVx,n(z)| is bounded (for k. ≤ d). Thus applying the law of large numbers

to sup‖ϑ−ϑ0‖≤η ‖Λ̈ϑ(Yi)‖ (compare to assumption (A7)) for (S2.2) we obtain the order

OP (‖ϑ̂ − ϑ0‖
2h−2d) = oP (1) by assumption (a2). Further, by considering the cases

‖x− x′‖ ≥ h and ‖x− x′‖ < h one obtains

sup
x,x′∈RX

|dkVx,n(Xi)− dkVx′,n(Xi)|

‖x− x′‖α
≤ 2 sup

x,z
|dkVx,n(z)|

1

hα
+

d∑

j=1

sup
x,z

∣∣∣∂d
kVx,n(z)

∂xj

∣∣∣h1−α.

All partial derivatives of order one of hd+1dkVx,n(z) in x-direction are bounded in x, z.

Thus for (S2.3) one obtains the rate OP (‖ϑ̂− ϑ0‖
2(h−(2d+α) + h−(2d+1−(1−α))) = oP (1) by

assumption (a2). Similar arguments hold for σ̂ϑ̂ − σ̂ϑ0
. �

Proposition S2.3 With the definitions in Proposition S2.1 we have under the assump-

tions of Theorem 3.1 that E[(ϕϑ̂,(m̂−m)/σ,σ̂/σ,y(X, Y ) − ϕϑ0,0,1,y(X, Y ))2 | Yn] = oP (δ
2
n)

uniformly with respect to y ∈ R with some δn ց 0 for n → ∞, where Yn = {(Xi, Yi) : i =

1, . . . , n}.

Proof of Proposition S2.3 Note that ϕϑ0,0,1,y ≡ 0. The expectation in the assertion

can be bounded by the sum

2E[(ϕϑ̂,(m̂−m)/σ,σ̂/σ,y(X, Y )− ϕϑ0,(m̂−m)/σ,σ̂/σ,y(X, Y ))2 | Yn] (S2.4)

+ 2E[(ϕϑ0,(m̂−m)/σ,σ̂/σ,y(X, Y ))2 | Yn]. (S2.5)
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We first consider (S2.4) which equals

E[(I{Λϑ̂(Y ) ≤ yσ̂(X) + m̂(X)} − I{Λϑ0
(Y ) ≤ yσ̂(X) + m̂(X)})2 | Yn]

≤

∫
|FY |X(Vϑ̂(yσ̂(x) + m̂(x))|x)− FY |X(Vϑ0

(yσ̂(x) + m̂(x))|x)| dFX(x)

with the notations from the proof of Theorem 3.1. Note that this term is very similar to

An in that proof, only that an absolute value is added inside the integral. With the same

methods as there the rate OP (n
−1/2) can be shown.

Next we consider (S2.5) which equals

E
[(

I
{
ε ≤ y

σ̂(X)

σ(X)
+

m̂(X)−m(X)

σ(X)

}
− I{ε ≤ y}

)2

| Yn

]

≤

∫ ∣∣∣Fε

(
y
σ̂(x)

σ(x)
+

m̂(x)−m(x)

σ(x)

)
− Fε(y)

∣∣∣ dFX(x)

≤ sup
y∈R

|fε(ξn(y))|

∫ ∣∣∣m̂(x)−m(x)

σ(x)

∣∣∣ dFX(x) + sup
y∈R

|yfε(ξn(y))|

∫ ∣∣∣ σ̂(x)− σ(x)

σ(x)

∣∣∣ dFX(x)

where ξn(y) converges to y in probability. Hence the supremum terms are bounded

thanks to assumption (A3). Further, using the decomposition m̂ − m = (m̂ϑ0
− m) +

(m̂ϑ̂ − m̂ϑ0
) as in the proof of Proposition S2.2 (and similar for σ̂) one can show the rate

OP ((nh
d/ log n)−1/2) +OP (n

−1/2). This proves the assertion. �
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