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This supplement contains additional results concerning variable selection accuracy from

the simulation studies of Section 5 as well as proofs of Proposition 1 and Theorems 1 and 2.

Variable selection accuracy: Simulation results

Section 5 focused on estimation accuracy, while this supplement contains results concerning

variable selection accuracy, as measured in three ways. Let S1, S0, and S denote the number

of true, false, and total selections by a given estimator:

S1 = #{j : β̂j 6= 0 and βj 6= 0}

S0 = #{j : β̂j 6= 0 and βj = 0}

S = S1 + S0.

For the simulations described in Sections 5.1 and 5.2, we report here the power (proba-

bility of correctly selecting a nonzero coefficient), false discovery rate (FDR, the probability

of incorrectly selecting a zero coefficient), and misclassification error (MC, the number of

incorrect selections), which we define as follows:
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Power =
S1

do

FDR =
S0

S

MC = S0 + 3(do − S1),

where, as in the manuscript, do denotes the number of nonzero coefficients. Note that

our definition of misclassification error gives three times more weight to failing to select a

truly important variable than incorrectly selecting an unimportant variable. This is entirely

subjective. Our main reason for choosing this weighting is that it seemed to provide a

reasonable balance between the two types of incorrect selections in the settings considered

here. All methods incorrectly selected unimportant variables much more often than they

failed to select important variables (as would be expected by the use of prediction accuracy

to choose the tuning parameters), so a 1:1 weighting of the two types of incorrect selection

closely resembles FDR as an outcome.

Fixed α and γ

Supplemental Figure 1 displays the power, FDR, and misclassification error for the fixed-α

Mnet estimator, as compared with the lasso and variable-α Mnet estimator.

Because the methods select different numbers of variables, focusing exclusively on power

or FDR can be misleading: models that select many variables will have greater power, while

highly parsimonious models will have lower FDR. Thus, the lasso appears more “powerful”

than the fixed-α Mnet methods, but this is only because it selects a larger number of variables

(and consequently has a high FDR). For this reason, our discussion concentrates on MC error,

which does not inherently favor larger or smaller models.

For the most part, the results in terms of variable selection accuracy are broadly similar

to the estimation accuracy results from Section 5.1: (1) the Mnet methods are much more

accurate than the lasso when the signal is reasonable strong; (2) the methods are all

relatively similar when the signal is weak; and (3) there seems to be a benefit to selecting

α, in that the variable-α Mnet method generally outperforms any individual fixed-α Mnet

method, although this is not as dramatic in terms of variable selection as it was when we

considered estimation accuracy.

Select α, fixed γ

Supplemental Figure 2 displays the power, FDR, and misclassification error for the lasso,

mcp, elastic net (Enet), and Mnet estimators. As in Section 5.2, external validation was
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Supplemental Figure 1: Relative (to the lasso) selection performance for the variable-α

Mnet (with α selected by external validation) and various fixed-α Mnet estimators. Power,

FDR, and misclassification (MC) error are averaged over 100 independently generated data

sets.
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used to select the α parameter for Enet and Mnet.

Overall, the main conclusion we would draw from Supplemental Figure 2 is that both

lasso and the elastic net select far more variables than mcp and Mnet. This increases power

somewhat, but at the cost of substantially increasing FDR. In terms of MC error, Mnet and

mcp are typically substantially more accurate than Enet and lasso, although this advantage

is diminished in low-signal and high-correlation settings. Comparing Mnet and mcp, the two

methods perform similarly, although there seems to be a modest advantage to using Mnet

when the predictors are moderately to strongly correlated.

Proofs

In the Appendix, we prove Proposition 1 and Theorems 1 and 2.

Proof of Proposition 1 The jth estimated coefficient β̂j must satisfy the KKT conditions,− 1
n
x′j(y −Xβ̂) + λ1(1− |β̂j|/(γλ1))+sgn(β̂j) + λ2β̂j = 0, β̂j 6= 0

|x′j(y −Xβ̂)| ≤ λ1, β̂j = 0.

Let r̂ = y −Xβ̂ and ẑj = n−1x′j r̂. After some calculation, we have, if γλ2 > 1,

β̂j =


0, if |ẑj| ≤ λ1,

sgn(ẑj)
∣∣∣γ(|z̃j |−λ1)γλ2−1

∣∣∣ , if λ1 < |ẑj| < γλ1λ2,

λ−12 ẑj, if |ẑj| ≥ γλ1λ2;

and if γλ2 ≤ 1,

β̂j =

0 if |ẑj| ≤ λ1,

λ−12 ẑj if |ẑj| > λ1.

First, suppose that xj and xk are positively correlated. Based on the above expressions, we

can show that

|β̂j − β̂k| ≤ ξ|ẑj − ẑk|,

where ξ is given in (2.8). By the Cauchy-Schwarz inequality, |ẑj − ẑk| = n−1|(xj − xk)′r̂| ≤
n−1‖xj − xk‖‖r̂‖ = n−1/2

√
2(1− ρjk)‖r̂‖. Since M(β̂;λ) ≤ M(0;λ) by the definition of β̂,

we have ‖r̂‖ ≤ ‖y‖. Therefore

|β̂j − β̂k| ≤ ξ|ẑj − ẑk| ≤ ξn−1/2
√

2(1− ρjk)‖y‖.

For negative ρjk, we only need to change the sign of zk and use the same argument. �
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Supplemental Figure 2: Relative (to the lasso) selection performance for for the mcp,

elastic net (Enet) and Mnet estimator. Power, FDR, and misclassification (MC) error are

averaged over 100 independently generated data sets.
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To prove Theorems 1 and 2, we first need the lemma below. Let ψα(x) = exp(xα) − 1

for α ≥ 1. For any random variable X its ψα-Orlicz norm ‖X‖ψα is defined as ‖X‖ψα =

inf{C > 0 : Eψα(|X|/C) ≤ 1}.

Lemma 1. Suppose that ε1, . . . , εn are independent and identically distributed random vari-

ables with Eεi = 0 and Var(εi) = 1. Furthermore, suppose that P (|εi| > x) ≤ K exp(−Cxα), i =

1, . . . , n for constants C and K, and 1 ≤ α ≤ 2. Let c1, . . . , cn be constants satisfying∑n
i=1 c

2
i = 1. Let X =

∑n
i=1 ciεi.

(i) ‖X‖ψα ≤ Kα

{
1 + (1 +K)1/αC−1/ααn

}
, where Kα is a constant only depending on α,C

and K.

(ii) Let X1, . . . , Xm be any random variables whose Orlicz norms satisfy the inequality in (i).

For any bn > 0,

P

(
max
1≤j≤m

|Xj| ≥ bn

)
≤ K1αn(log(m+ 1))1/α

bn

for a positive constant K1 only depending on α,C and K.

This lemma follows from Lemma 2.2.1 and Proposition A.1.6 of Van der Vaart and

Wellner (1996). We omit the proof.

Proof of Theorem 1. Since β̂o is the oracle ridge regression estimator, we have β̂oj = 0 for

j 6∈ O and

− 1

n
x′j(y −Xβ̂o) + λ2β̂

o
j = 0, ∀j ∈ O. (1)

If |β̂oj | ≥ γλ1, then ρ′(|β̂oj |;λ1) = 0. Since cmin + λ2 > 1/γ, the criterion (2.4) is strictly

convex. By the KKT conditions, β̂ = β̂o and sgn(β̂) = sgn(βo) in the intersection of the

events

Ω1(λ) =
{

max
j 6∈O

∣∣n−1x′j(y −Xβ̂o)∣∣ < λ1
}

and Ω2(λ) =
{

min
j∈O

sgn(βoj )β̂
o
j ≥ γλ1

}
. (2)

We first bound 1 − P(Ω1(λ)). Let β̂O = (β̂j, j ∈ O)′ and Z = n−1/2X. Let ΣO(λ2) =

ΣO + λ2IO. By (1) and using y = XOβ
o
O + ε,

β̂oO =
1

n
Σ−1O (λ2)X

′
Oy = Σ−1O (λ2)ΣOβ

o
O +

1√
n

Σ−1O (λ2)Z
′
Oε. (3)

Thus

β̂oO − βoO =
1√
n

Σ−1O (λ2)Z
′
Oε+ {Σ−1O (λ2)ΣO − IO}βoO. (4)

It follows that

1

n
x′j(y −Xβ̂o) =

1

n
x′j{In − ZOΣ−1O (λ2)Z

′
O}ε−

1√
n
x′jZO{Σ−1O (λ2)ΣO − IO}βoO.
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Denote

Tj1 =
1

n
x′j{In − ZOΣ−1O (λ2)Z

′
O}ε, Tj2 = − 1√

n
x′jZO{Σ−1O (λ2)ΣO − IO}βoO.

First consider Tj1. Write Tj1 = n−1/2σ‖aj‖(aj/‖aj‖)′(ε/σ), where aj = n−1/2{In−ZOΣ−1O (λ2)Z
′
O}xj.

Since n−1/2‖xj‖ = 1, we have ‖aj‖ ≤ 1. By Lemma 1,

P(max
j 6∈O
|Tj1| ≥ λ1/2) ≤ P(n−1/2σmax

j 6∈O
|(aj/‖aj‖)′(ε/σ)| ≥ λ1/2)

≤ 2K1αn
σ log1/α(p− do + 1)√

nλ1
, (5)

where αn is given in (4.2).

For Tj2, we have Tj2 = n−1/2λ2x
′
jZOΣ−1O (λ2)β

o
O. Since

n−1/2λ2|x′jZOΣ−1O (λ2)β
o
O| ≤ λ2(c1 + λ2)

−1√c2‖βo‖,

we have |Tj2| < λ1/2 for every j if

λ1/2 > λ2(c1 + λ2)
−1√c2‖βo‖. (6)

Thus by (5), when (6) holds, 1− P(Ω1(λ)) ≤ π1.

Now consider the event Ω2. Let ej be the jth unit vector of length do. By (4),

β̂oj − βoj = Sj1 + Sj2, j ∈ O,

where Sj1 = n−1e′j(ΣO+λ2I)−1X ′Oε and Sj2 = −λ2e′j(ΣO+λ2I)−1βoO. Therefore, sgn(βoj )β̂
o
j ≥

γλ1 if |βoj |+ sgn(βoj )(Sj1 + Sj2) ≥ γλ1, which in turn is implied by

|Sj1 + Sj2| ≤ βo∗ − γλ1, ∀j.

It follows that 1−P(Ω2(λ)) ≤ P(maxj∈O(|Sj1 +Sj2| > βo∗−γλ1). Since |Sj2| ≤ λ2‖βo‖/(c1 +

λ2), we have |Sj2| < (βo∗ − γλ1)/2 if βo∗ > γλ1 + 2λ2‖βo‖/(c1 + λ2). Similarly to (5), by

Lemma 1, when βo∗ > γλ1 + 2λ2‖βo‖/(c1 + λ2),

P(max
j∈O

(|Sj1 + Sj2| > βo∗ − γλ1) ≤ 2K1αn
σ
√
c2 log1/α(do + 1)√

n(βo∗ − γλ1)(c1 + λ2)
. (7)

By (7) and the restrictions on λ1 and βo∗ , 1− P (Ω2(λ)) ≤ π2. �

Proof of Theorem 2. Let

ỹ =

(
y

0p

)
, X̃ =

(
X

√
nλ2 Ip

)
,
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where 0p is a p-dimensional vector of zeros. We have

β̂(λ) = argmin
b
{ 1

2n
‖ỹ − X̃b‖22 +

p∑
j=1

ρ(|bj|, λ1)}.

Thus the Mnet estimator can be considered an mcp estimator based on (ỹ, X̃).

Denote P̃B = X̃B(X̃ ′BX̃B)−1X̃ ′B. For m ≥ 1 and u ∈ IRn, define

ζ̃(u;m,O, λ2) = max

{
‖(P̃B − P̃O)v‖2

(mn)1/2
: v = (u′, 0′p)

′,O ⊆ B ⊆ {1, . . . p}, |B| = m+ |O|

}
.

Here ζ̃ depends on λ2 through P̃ . We make this dependence explicit in the notation. By

Lemma 1 of ?, in the event

λ1 ≥ 2
√
c∗ ζ̃(y;m,O, λ2) (8)

for m = d∗ − do, we have

#{j : β̂j 6= 0} ≤ (K∗ + 1)do ≡ p∗.

Thus in the event (8), the original p-dimensional problem reduces to a p∗-dimensional prob-

lem. Since p∗ ≤ d∗, the conditions of Theorem 2 implies that the conditions of Theorem 1

are satisfied for p = p∗. So the result follows from Theorem 1.

Specifically, let τn be as in (4.2) and λ∗n as in (4.7). Let π2 be as in (4.4). Denote

π∗1 = K1λ
∗
1/λ1.

We show that if λ1 > 2λ2
√
c2‖βo‖/(c1 + λ2), then

P
(
2
√
c∗ ζ̃(y;m,O, λ2) > λ1

)
≤ π∗1 + π3. (9)

Therefore, by Theorem 1, we have

P(sgn(β̂) 6= sgn(βo) or β̂(λ) 6= β̂o(λ2)) ≤ π1 + π∗1 + π2 + π3. (10)

Then Theorem 2 follows from this inequality.

We now prove (9). By the definition of P̃ ,

‖(P̃B − P̃O)ỹ‖22 = y′{ZB(ΣB + λ2IB)−1Z ′B − ZO(ΣO + λ2IO)−1Z ′O}y, (11)

where ZB = n−1/2XB. Let PB(λ2) = ZB(ΣB + λ2IB)−1Z ′B and write PB = PB(0). We have

‖(P̃B − P̃O)ỹ‖22 = ‖(PB − PO)y‖22 + y′(PB(λ2)− PB)y − y′(PO(λ2)− PO)y. (12)
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Let TB1 = ‖(PB − PO)y‖22 and TB2 = y′(PB(λ2) − PB)y − y′(PO(λ2) − PO)y. Let η =

λ1/(2
√
c∗). Note that (PB−PO)y = (PB−PO)ε, since y = XOβ

o+ε and O ⊆ B. Therefore,

TB1 = ‖(PB − PO)ε‖2.
Consider TB2. Since y = XBβ

o
B + ε, some algebra shows that

y′(PB(λ2)−PB)y = nβo′BZ
′
B(PB(λ2)−PB)ZBβ

o
B+2
√
nβo′BZ

′
B(PB(λ2)−PB)ε+ε′(PB(λ2)−PB)ε,

and nβo′BZ
′
B(PB(λ2)−PB)ZBβ

o
B = −nλ2‖βoB‖2 +nλ22β

o′
BΣ−1B (λ2)β

o
B. These two equations and

the identity ‖βoB‖2 − ‖βO‖2 = 0 imply that TB2 = SB1 + S2 + SB3 + SB4, where

SB1 = 2
√
n{βo′BZ ′B(PB(λ2)− PB)− βo′OZ ′O(PO(λ2)− PO)}ε,

S2 = ε′{PO − PO(λ2)}ε,

SB3 = ε′{PB(λ2)− PB}ε,

SB4 = nλ22{βo′BΣ−1B (λ2)β
o
B − βo′OΣ−1O (λ2)β

o
O}.

Using the singular value decomposition, it can be verified that SB3 ≤ 0. Also, since βoB =

(βo′O, 0
′
|B|−do)

′ and by the formula of the block matrix inverse, it can be verified that SB4 ≤ 0.

Therefore,

TB1 + TB2 ≤ TB1 + |SB1|+ S2. (13)

Note that S2 ≥ 0. When α = 2, by Lemma 2 and Proposition 3 of ?,

P( max
B:|B|=m+do

TB1 > mnλ21/(4c
∗)) ≤ K1

2
√
c∗
√
m{m log(p− do) + 1}1/α√

m
√
nλ1

.

When 1 ≤ α < 2, since PB − PO is a rank m projection matrix and there are
(
p−do
m

)
ways to

choose B from {1, . . . , p}, by Lemma 1,

P( max
B:|B|=m+do

TB1 > mnλ21/(4c
∗)) ≤ K1

αn2
√
c∗
√
m log1/α

(
m
(
p−do
m

))
√
m
√
nλ1

= K1

αn2
√
c∗ log1/α

(
m
(
p−do
m

))
√
nλ1

,

≤ K1
αn2
√
c∗{m log(p− do + 1)}1/α√

nλ1
,

where K1 is a constant that only depends on the tail probability of the error distribution in

(A2b). Here we used the inequality log
((
p−do
m

))
≤ m log(e(p− do)/m).

Let µo =
√
nZOβ

o
O. Since ZBβ

o
B = ZOβ

o
O = µo/

√
n, we have SB1 = 2µo′(PB(λ2) − PB −

(PO(λ2)− PO)}ε. Write SB1 = 2‖aB‖(aB/‖aB‖)′ε, where

‖aB‖ = ‖{PB(λ2)− PB − (PO(λ2)− PO)}µo‖ ≤ 2λ2‖µo‖
c∗ + λ2

.
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Therefore,

P( max
B:|B|=m+do

SB1 > mnλ21/(8c
∗)) ≤ P

(4λ2‖µo‖
c∗ + λ2

max
B:|B|=m+do

|(aB/‖aB‖)′ε| >
mnλ21

8c∗

)
≤ K1αn

32c∗‖µo‖λ2 log1/α(
(
p−do
m

)
)

mnλ21(c∗ + λ2)
,

≤ K1αn
32c∗‖µo‖λ2m1/α{log(p− do + 1)}1/α

mnλ21(c∗ + λ2)
.

By assumption, λ2‖µo‖ ≤ λ1/2(c1 + λ2) ≤ λ1/2(c∗ + λ2), thus

P( max
B:|B|=m+do

SB1 > mnλ21/(8c
∗)) ≤ K1αn

16c∗m1/α{log(p− do + 1)}1/α

mnλ1(c∗ + λ2)2
. (14)

For S2, by Lemma 1,

P(S2 > mnλ21/(8c
∗)) ≤ K1αn

8c∗σλ2
√
do log1/α(do + 1)

mn(c∗ + λ2)
. (15)

Inequality (10) follows from (13) to (15). �
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