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Supplementary Material

This supplementary material contains proofs for Theorem 3.4 and some propositions stated in
the main paper (Sections S1 and S2). It also includes a description of a method used to estimate

the covariance of quadratic variations (Section S3).

S1 Convergence study

S1.1 A multivariate Breuer Major Theorem

The original Breuer-Major theorem was shown for stationary processes in Breuer and Major
(1983), and extended to multivariate fields by Arcones (1994). Another formulation of the
Breuer-Major Theorem is demonstrated by Biermé et al. (2011, Theorem 3.2) using the Malli-
avin calculus. We state a specific version of this theorem which is sufficient for the proof of
Theorem 3.4.

Theorem 1 (Breuer-Major theorem). Let d,l € N*, and Xy = (Xn[k])yeza be centered Gaus-
sian stationary fields with values in R'. Assume that there exist functions gé\{b mn L2([07 27r}d)
(spectral densities) such that, for all a,b € [1,1] and k € Z%,

1 i N
Cov(XX k], X2 [0]) = 7/ R gN () dw.
[ ] b [ ]) (27’l’)d (0,27] ,b( )

Further assume that, for all a,b € [1,1], gé\{b converges in L*([0,27]%) to a function gap as N
tends to +o00. Define

1 (w,
VkeZ?, raplk] = W/[OQ ]de ( k>ga,a(w)dw,

and assume that rqp[0] = 1. Then,

1

w2 (XY -1 -5 NOD),

N—+oo
ke[1,N]4

where 1 is the unit vector of size l and I is a | X l-matriz having terms

2
Pao =2 3 Caslbl)’ = ooy [ loaotw)de

kezd
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S1.2 Proof of Theorem 3.4

In a first part, we prove the asymptotic normality of the random vector

uN = (]E(V;’é;))aef (S1.1)

defined with quadratic variations W' of Equation (23) (main paper). Then, we deduce the
asymptotic normality (26) (main paper) of Y~ = (YV),cx. In a second part, we further

specify terms of this convergence.

Part 1. For establishing the asymptotic normality of UY, we use a multivariate version of
the Breuer-Major theorem recalled above. For that, let us first notice that

d
-0 =103 (WP-1) o = S (1),

da
N—+o0 bl
N> ke[1,N]4

d
2

N

meEN

with XY [m] = V¥ [m]//E(VN[m])?). So, if the Breuer-Major theorem could be applied to
the vector-valued random field X~ = (X2 [m))acr, m € Z%), it would follow that

o —1) -4 N0, D), (S1.2)

N—+oco

d
2

N

where 1 is the unit vector of the same size as U, and ¥ is a covariance matrix. But, using

Proposition 3.3 (main paper), the spectral density of X can be specified as

fé\,fb(w)
VE(VN M) VE((VN [m])?)

where E((V¥[m])?) = ﬁ f[o 2m]d fY.(w)dw. Thus, it suffices to show the convergence in

Gap(w) =

L?([0,27]%) of g2,. This convergence results from the next lemma whose proof is postponed at

the end of the section.

Lemma 1. Take the same conditions as in Theorem 8.4 (main paper). Consider the multivari-
ate spectral density fi’b of VN given by Equation (22) of Proposition 3.8 (main paper). Then,
for any a,b € F, as N tends to +oo, NQHfé\jb converges in LQ([0,27T]d) to the function fa
defined by Equation (28) (main paper).

Due to Lemma 1, N?7 £V, tends to fa, in L*([0,27]%) and, a fortiori in L'([0,27]%).
Hence, for a € F, N> E((V¥[m])?) converges to

1
Co = @y /{072#]0[ Ja,a(w)dw. (S1.3)

Therefore, g2, tends in L*([0,27]%) t0 ga,p = fa,b/v/CaCb.
Consequently, the Breuer-Major theorem yields the asymptotic normality (26) (main pa-

per) for a covariance matrix 3 whose terms are defined by Equation (27) (main paper).
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Now, let G be the differentiable function mapping (R} )"/ into R™f defined by G(y). =
log(ya) for a € F. Since N¥/2(UN —1) N%) N(0,3), we have
— o0

N72(GUN) - G(1) -% VGA)N(O,D).

N—+oco

using the multivariate A-method. But, for a € F,
G(UM)a = G(1)a = Y +1og(N*") —log(Ca) + Ry,

where RY = log(C.) — log(N**E(W.L)) and C, is defined by Equation (S1.3). Moreover, due

to Lemma 1, Nlirﬂ RY = 0. Hence, the asymptotic normality (26) (main paper) follows for
—+00

¢ = (log(Cy,) — log(N*7))ser and ¥ defined by Equation (27) (main paper).

Part 2. Let us notice that

1 ot w+ 2 —2H—
= G e Lo P50 0P8 (G e i

where dA(z) = Zkezd d2k=(2) is a counting measure on RY. But, C, < +o00. Hence, by

application of the Lebesgue-Fubini theorem, we obtain

1 R w + 2k —2H—d
Cy = —— / 0 T(; w + 2k7))|?6 (7> w + 2km dw.
on)? Z o P NP8 (G ot )| |

After a variable change ( = w + 2k7 in each integral, we further get

_ 1 ot 2s [ 6 —2H—d
Co= oy [ 10T0Rs (1 ) 16724,

Next, using the variable change w = |uq|¢, we have Cy = |uq|* Crr(arg(ua), v), where arg(uq)

is the angle of the rotation % and Cp(arg(uq),v) is defined by Equation (31) (main paper).

Then, the expression of ¢ given by Equations (29) and (30) of the main paper follows.
Furthermore, let us notice that, when the texture of Z is isotropic, the function § = 79 €

R;. Hence, in this case, we obtain
T N — —
Corlarg(ua). ) = 55 [ [o() P,

by applying the variable change w = %C. Therefore, in this case, C (arg(ua), v) only depends

on v.

Proof of Lemma 1. Let us define

G () = N (V) = 5 (2 )l 21,
and, for L € N*, consider S (w) = 2o<lkl<L G" (w + 2km). Since f satisfies Condition (3)
(main paper), we have
F(N(w -+ 2k)) < O[22,
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for k # 0, w € [0,2n]%, and N sufficiently large. Hence, Eo<|k\ F(N(w + 2km)) is normally

convergent, and, as L tends to +00, S¥ tends uniformly to

N2+ Z F(N(w + 2km)) Z 4 ( w + 2km ) |w + 2k7r|_2H_d.

0<|k| 0<|k| |w + 2k
Let us now consider
2
Uy = / [o(Tiw)o(Thw)]? (8Y (w) + G (w)) d,
[0,27]d

and show that U” tends to 0 as N tends to +cc.
First, let us quote that, for all w € [0, 27]%, SV (w) is bounded by

+oo
IN:/ |a™ |dw—/ / ~tdpds,
R\ B(0,A) gd—1

where B(0, A) denotes a ball of R? centered at 0 of radius 0 < A < 27. Further notice that

|GY (ps)| < GY (ps) + G2 (ps), (S1.4)
where GY(ps) = N |f(Nps) = (s)(Np) 2P0~ (SL5)
and G2 (ps) = ’NQ(H_ﬁ(S))T(s)p_w(S)_d - 5(s)p_2H_d’. (S1.6)

Hence, IV < I + I}V with IJN = fsdfl f;w G;-V(ps)pdfldpds.

Since f satisfies Condition (3) (main paper) and 7 is bounded, we have
IV <egN=Y472H=7

for some ¢; > 0, and large N. So, hm 11 =0.
Besides, for n > 0, let us deﬁne sets

E,={se S " H < fB(s) <H+n} and F, = {s € S*' B(s) > H +1}. (S1.7)

When s € E,UF,, §(s) = 0, so that GY (ps) < cN2H =D ,=26()=d_ \When s € Ey, 7(s) = 8(s)
and B(s) = H, so that G (ps) = 0. Hence,

N < 62/ N2(H=B(s) 4=26(5) g
EnUFn

Thus, I3 < &(u(E,) + N™27), where u(E,) is the Lebesgue measure of E, over the sphere
5471 Let us show that lim+,u(E,7) = 0. Assume it is not the case. Then, there exists co > 0
n—0
and a decreasing sequence (1, )nen such that hrf N = 0 and p(Ey,,) > co. Since E, C E;
n—-+oo

when 1 < 7, the sequence u(E,) decreases, and admits a positive limit as 7 decreases to 0.
This implies that u( N o E,) > 0. So, take s € N E,. It satisfies H < B(s) < H + n for all
n

n<no
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n > 0. This yields 8(s) = H, which is contradictory.
Now, for 0 < a < 1, let us set ny = log(N)~%/2. We then obtain

1—a
I < G ((Brog(ny—a) + ¢~ 20, (S1.8)

and lim I = 0. Therefore, lim I = 0. Thus, on [0,27]¢, SV converges uniformly to 0,
N—+o0o N—+oo

as N tends to 0.
Consequently, the integral U” is bounded by c1(Sup,e(o,27)d IS (w)])? + c2 N, where

N = / [o(Thw)(Thw) P (G (w))* + G (w))du
[0,27]¢

Let us then decompose JV into a sum of two integrals J = fB(O A dw and J& = f[ -dw,

0,274\ B(0,4) "’
and study separately these integrals.

Notice that o(y) = Qu(e™*,---,e"?) where Q, is the characteristic polynomial of v.
Hence, using Proposition 3.2 and Taylor expansions of ), in the neighborhood of 0, we obtain
[o(y)|> < C|y[*$+2 for some C > 0. Therefore, J{¥ is bounded by

eaNAHHEDF [ Tl D (P2 (w) + f () w] 277 w472 dw
N
FeaN2H2KD) [ D (£ (1) + ] 2 ) du,
N
for some c3,cs > 0. In this upper bound, integrals of the form fB(O o |w|® f(w)dw are finite for

both u = 4(K +1) —2H — d and u = 4(K + 1), since Z is a M-IRF and K > M/2 + d/4.

Moreover, sup |w]?5T3f(w) < ¢ < +oo0, since Z is a M-IRF and K, > M. Therefore,
weB(0,€e)

/ | * D £ (w)dw < C/ w1 f(w)dw < +o0,
B(0,¢) B(0,¢)

since K > M+1. Besides, integrals of the form fB(o 9 |w|*dw are finite for u = 4(K+1)—2H—d

and v =4(K + 1) — 4H — 2d, since K > d/4. Consequently,
JN < ey NAH-K=D+d | 5 \2(H-2K-2)

)

and lim Ji¥ =0, since K > d/4.
N—+oco

Besides, using the bound (S1.4), we obtain

“+ oo
i [ G (os) G (ps) s
sd-1.J4
Then, using previous bounds on G and GY', we get

Jy s (N7 4+ N2+ u(E,)) T,

with es >0 and I'y = Xoo p74H7d71dp < 4o00. Setting again ny = log(N)™*/2 with 0 < a <
1, we obtain lim J2' = 0. Therefore, lim J~ =0.
N—+oco N—+oo
Consequently, limy_, 1o UY = 0. This implies the convergence of N2Hfé\jb to fap in

LA([0,27]%).
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S2 Proofs of Propositions

Proof of Proposition 3.1. By definition, the kernel v leads to K-order increments of Z if and
only if >, 1o, rga vIk](m — k)Y =0,vm ez Vi € [0,K]%|l| < K, which is also equivalent to

> vkl =0,V € [0, K] |l < K.

keL
Besides, we have
8”|Q Ly Lg 11—1 lg—1 -
9. )= S > k] [] (k1 —gn) - [T (ke = da)2" 7,
k1=l ka=lq Jj1=0 Ja=0

;-1

using the convention that [[:_,(ki — js) = 1 if [ = 0. From that, we deduce the recurrence

Ji=0
equations
I L l1]—1
88 ?v (z) = Z olklkiz Z lﬂil%(z)’
z kefo,L]d jelt,dl,l;>1 % 7

where e; is the jth vector of the canonical basis of R?. In particular,

. ollg, ol-1g, .
vjvlv Y (1771)+ Z (l]_l)W(1771): Z U[k]k
JjE1,d],l;>1 kefo,L]¢
We conclude the proof by recurrence on the order of the partial derivatives of Q. O

Proof of Proposition 3.2. Let P be a polynomial of degree | < K. We notice

S olklP (m_TT"k) =Y wkPo T, (m; k) ,with m/ = T, 'm.

k k

But, any rescaling or rotation PoT,, of a polynomial P remains a polynomial of the same de-

gree. Hence, >°, v[k]P (2=Iuk) = 0 for all P of degree I < K if and only if 3°, v[k]P (m;\,’k> =

0 for all P of degree I < K. According to Proposition 3.1, this only holds if an and only if

Condition (17) (main paper) is satistied. O

Proof of Proposition 8.3. Since, for a € F and m € Z¢, VN [m] is an increment of Z of order

> M, it has zero mean. Moreover, for any a,b € F and m,n € Z%, Theorem 2.3 yields

E(V, [m]Vi¥[n]) = Y vlklu[lKz

(meak _n—Tyl
k,lezd

N N )<—|—oo,

where Kz is a generalized covariance of the form (8). But, for any even polynomial P of degree
2M, we can write P(x —y) = Zfﬁ:o a(y)zt + Zf\ﬁ:o q(z)y' where g; are polynomials of degree

up to 2M. Hence, since V" [m] and V¥ [n] are increments of order K > M,

S il (M - 2 —o

k,lczd
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for any even polynomial P of degree 2M, including Py and @ of Equation (8). Therefore,

BV Il ) = gy [ otk cos (M - P 0 ) s,

k,lezd

and, since f is even,

T

E(VN [m]Vi™ [n)) Kollle' %" = R £ () dw

d
R k,lezd

From this, we deduce

B il ) = oy [0 (5 ) 8 () €7 pwpaw

Since this expression exclusively depends on m—n, and not on m and n, V¥ is stationary. Using

a variable change ( = w/N, and a decomposition of the integral domain, we further obtain

B ) = g 3 [ amORmOe T fvO N

kezd

After a variable change ( = w + 2k7 in each integral, we then get

E(V;" [m]V;" [n 277 /Rd/wﬂ gy (w, 2)dwdA(z),

where dA(u) = Y, ;4 O2kr (1) is a counting measure on R? and g, (w, z) = N*(T,w)o O(Tyw)e ™) f(N (w4
z)). Since E(V,¥[m]V;¥[n]) < 400, the Lebesgue Fubini theorem implies that f.,(w) =
Jpa 95y (w, 2)dA(z) is almost everywhere defined, and that f[o,zw]d I (w)dw < +oo. O

S3 Covariance estimation

In this section, we construct an estimate of the covariance matrix 3V of log-variations YV
involved in the linear model (29) (main paper). According to the proof in Section S1, the
random vector YV has the same asymptotical covariance 3 as the random vector U” defined
by Equation (S1.1). Hence, we approximate £ by an estimate of the covariance matrix of U” .

‘We have
1

NZE(W)E(W,Y)

E(ULUY) = > BV ) (Ve [a)?)-

PaEEN

But (VaN [p], VN [q]) are centered Gaussian vectors. Thus, E((VaN [p])z(VaN [q])Q) = Z(E(VaN [p] VN [qD)2

Moreover,

BBV d) = S olblolies (TR,

k,l

where Kz is the generalized covariance of the IRF Z. Let H be an estimate of the Holder irreg-
ularity of Z (e.g. an OLS estimate of H in the linear model (29) (main paper). Approximating
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the generalized covariance Kz by the one of a fractional Brownian field of order H, it follows
that
E(V [V [a) > Cg Y vlklollllp — Tuk — q + Tl
kL

Using the same approximation, we also have

EW.Y) = E((VN0)?) = > olklo[l)|Tu(l — k)7
k,l

Hence, we get

DAY Ns (Zk,z ”[klv[lllf — T,k + Tbl\mf -~
seney N2 (Zkl vlklo[l]|Ta(l - k)|2H) (Zkl v[k)o[l]|Ty (I — k)|2H)

where AEy = {6 = p— ¢,p,q € Ex} and Ns is the number of couples (p,q) € £% for which
d=p—q.
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