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Supplementary Material

This supplementary material contains proofs for Theorem 3.4 and some propositions stated in

the main paper (Sections S1 and S2). It also includes a description of a method used to estimate

the covariance of quadratic variations (Section S3).

S1 Convergence study

S1.1 A multivariate Breuer Major Theorem

The original Breuer-Major theorem was shown for stationary processes in Breuer and Major

(1983), and extended to multivariate fields by Arcones (1994). Another formulation of the

Breuer-Major Theorem is demonstrated by Biermé et al. (2011, Theorem 3.2) using the Malli-

avin calculus. We state a specific version of this theorem which is sufficient for the proof of

Theorem 3.4.

Theorem 1 (Breuer-Major theorem). Let d, l ∈ N∗, and XN = (XN [k])k∈Zd be centered Gaus-

sian stationary fields with values in Rl. Assume that there exist functions gNa,b in L2([0, 2π]d)

(spectral densities) such that, for all a, b ∈ [[1, l]] and k ∈ Zd,

Cov(XN
a [k], XN

b [0]) =
1

(2π)d

∫
[0,2π]d

ei〈w,k〉gNa,b(w)dw.

Further assume that, for all a, b ∈ [[1, l]], gNa,b converges in L2([0, 2π]d) to a function ga,b as N

tends to +∞. Define

∀ k ∈ Z2, ra,b[k] =
1

(2π)d

∫
[0,2π]d

ei〈w,k〉ga,a(w)dw,

and assume that ra,b[0] = 1. Then,

1

Nd/2

∑
k∈[[1,N ]]d

((XN [k])2 − 1)
d−→

N→+∞
N (0,Σ),

where 1 is the unit vector of size l and Γ is a l × l-matrix having terms

Γa,b = 2
∑
k∈Zd

(ra,b[k])2 =
2

(2π)d

∫
[0,2π]d

|ga,b(w)|2dw.
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S1.2 Proof of Theorem 3.4

In a first part, we prove the asymptotic normality of the random vector

UN =

(
WN
a

E(WN
a )

)
a∈F

(S1.1)

defined with quadratic variations WN
a of Equation (23) (main paper). Then, we deduce the

asymptotic normality (26) (main paper) of Y N = (Y Na )a∈F . In a second part, we further

specify terms of this convergence.

Part 1. For establishing the asymptotic normality of UN , we use a multivariate version of

the Breuer-Major theorem recalled above. For that, let us first notice that

N
d
2 (UNa − 1) =

N
d
2

Ne

∑
m∈EN

(
(XN

a [k])2 − 1
)
∼

N→+∞

1

N
d
2

∑
k∈[[1,N ]]d

(
(XN

a [k])2 − 1
)
,

with XN
a [m] = V Na [m]/

√
E((V Na [m])2). So, if the Breuer-Major theorem could be applied to

the vector-valued random field XN = ((XN
a [m])a∈F ,m ∈ Zd), it would follow that

N
d
2 (UN − 1)

d−→
N→+∞

N (0,Σ), (S1.2)

where 1 is the unit vector of the same size as UN , and Σ is a covariance matrix. But, using

Proposition 3.3 (main paper), the spectral density of XN can be specified as

gNa,b(w) =
fNa,b(w)√

E((V Na [m])2)
√

E((V Nb [m])2)
,

where E((V Na [m])2) = 1
(2π)d

∫
[0,2π]d

fNa,a(w)dw. Thus, it suffices to show the convergence in

L2([0, 2π]d) of gNa,b. This convergence results from the next lemma whose proof is postponed at

the end of the section.

Lemma 1. Take the same conditions as in Theorem 3.4 (main paper). Consider the multivari-

ate spectral density fNa,b of V N given by Equation (22) of Proposition 3.3 (main paper). Then,

for any a, b ∈ F , as N tends to +∞, N2HfNa,b converges in L2([0, 2π]d) to the function fa,b

defined by Equation (28) (main paper).

Due to Lemma 1, N2HfNa,b tends to fa,b in L2([0, 2π]d) and, a fortiori in L1([0, 2π]d).

Hence, for a ∈ F , N2HE((V Na [m])2) converges to

Ca =
1

(2π)d

∫
[0,2π]d

fa,a(w)dw. (S1.3)

Therefore, gNa,b tends in L2([0, 2π]d) to ga,b = fa,b/
√
CaCb.

Consequently, the Breuer-Major theorem yields the asymptotic normality (26) (main pa-

per) for a covariance matrix Σ whose terms are defined by Equation (27) (main paper).
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Now, let G be the differentiable function mapping (R+
∗ )nf into Rnf defined by G(y)a =

log(ya) for a ∈ F . Since Nd/2(UN − 1)
d−→

N→+∞
N (0,Σ), we have

Nd/2(G(UN )−G(1))
d−→

N→+∞
∇G(1)′N (0,Σ).

using the multivariate ∆-method. But, for a ∈ F ,

G(UN )a −G(1)a = Y Na + log(N2H)− log(Ca) +RNa ,

where RNa = log(Ca)− log(N2HE(WN
a )) and Ca is defined by Equation (S1.3). Moreover, due

to Lemma 1, lim
N→+∞

RNa = 0. Hence, the asymptotic normality (26) (main paper) follows for

ζN = (log(Ca)− log(N2H))a∈F and Σ defined by Equation (27) (main paper).

Part 2. Let us notice that

Ca =
1

(2π)d

∫
[0,2π]d

∫
Rd
|v̂(T ′a(w + z))|2δ

(
(w + z)

|w + z|

)
|w + z|−2H−dd∆(z)dw,

where d∆(z) =
∑
k∈Zd δ2kπ(z) is a counting measure on Rd. But, Ca < +∞. Hence, by

application of the Lebesgue-Fubini theorem, we obtain

Ca =
1

(2π)d

∑
k∈Zd

∫
[0,2π]d

|v̂(T ′a(w + 2kπ))|2δ
(
w + 2kπ

|w + 2kπ|

)
|w + 2kπ|−2H−ddw.

After a variable change ζ = w + 2kπ in each integral, we further get

Ca =
1

(2π)d

∫
Rd
|v̂(T ′aζ)|2δ

(
ζ

|ζ|

)
|ζ|−2H−ddζ.

Next, using the variable change w = |ua|ζ, we have Ca = |ua|2HCH(arg(ua), v), where arg(ua)

is the angle of the rotation
T ′a
|ua| and CH(arg(ua), v) is defined by Equation (31) (main paper).

Then, the expression of ζ given by Equations (29) and (30) of the main paper follows.

Furthermore, let us notice that, when the texture of Z is isotropic, the function δ ≡ τ0 ∈
R+
∗ . Hence, in this case, we obtain

CH(arg(ua), v) =
τ0

(2π)d

∫
Rd
|v̂(w)|2|w|−2H−ddζ.

by applying the variable change w =
T ′a
|ua|ζ. Therefore, in this case, CH(arg(ua), v) only depends

on v.

Proof of Lemma 1. Let us define

GN (w) = N2H+df(Nw)− δ
(
w

|w|

)
|w|−2H−d,

and, for L ∈ N∗, consider SNL (w) =
∑

0<|k|≤LG
N (w + 2kπ). Since f satisfies Condition (3)

(main paper), we have

f(N(w + 2kπ)) ≤ CN |k|−2H−d,
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for k 6= 0, w ∈ [0, 2π]d, and N sufficiently large. Hence,
∑

0<|k| f(N(w + 2kπ)) is normally

convergent, and, as L tends to +∞, SNL tends uniformly to

SN = N2H+d
∑

0<|k|

f(N(w + 2kπ))−
∑

0<|k|

δ

(
w + 2kπ

|w + 2kπ|

)
|w + 2kπ|−2H−d.

Let us now consider

UN =

∫
[0,2π]d

|v̂(T ′aw)v̂(T ′bw)|2
(
SN (w) +GN (w)

)2

dw,

and show that UN tends to 0 as N tends to +∞.

First, let us quote that, for all w ∈ [0, 2π]d, SN (w) is bounded by

IN =

∫
Rd\B(0,A)

|GN (w)|dw =

∫
Sd−1

∫ +∞

A

|GN (ρs)|ρd−1dρds,

where B(0, A) denotes a ball of Rd centered at 0 of radius 0 < A ≤ 2π. Further notice that

|GN (ρs)| ≤ GN1 (ρs) +GN2 (ρs), (S1.4)

where GN1 (ρs) = N2H+d
∣∣∣f(Nρs)− τ(s)(Nρ)−2β(s)−d

∣∣∣ , (S1.5)

and GN2 (ρs) =
∣∣∣N2(H−β(s))τ(s)ρ−2β(s)−d − δ(s)ρ−2H−d

∣∣∣ . (S1.6)

Hence, IN ≤ IN1 + IN2 with INj =
∫
Sd−1

∫ +∞
A

GNj (ρs)ρd−1dρds.

Since f satisfies Condition (3) (main paper) and τ is bounded, we have

IN1 ≤ c1N−γA−2H−γ ,

for some c1 > 0, and large N . So, lim
N→+∞

IN1 = 0.

Besides, for η > 0, let us define sets

Eη = {s ∈ Sd−1, H < β(s) < H + η} and Fη = {s ∈ Sd−1, β(s) ≥ H + η}. (S1.7)

When s ∈ Eη∪Fη, δ(s) = 0, so that GN2 (ρs) ≤ cN2(H−β(s))ρ−2β(s)−d. When s ∈ E0, τ(s) = δ(s)

and β(s) = H, so that GN2 (ρs) = 0. Hence,

IN2 ≤ c2
∫
Eη∪Fη

N2(H−β(s))A−2β(s)ds.

Thus, IN2 ≤ c̃2(µ(Eη) + N−2η), where µ(Eη) is the Lebesgue measure of Eη over the sphere

Sd−1. Let us show that lim
η→0+

µ(Eη) = 0. Assume it is not the case. Then, there exists c0 > 0

and a decreasing sequence (ηn)n∈N such that lim
n→+∞

ηn = 0 and µ(Eηn) > c0. Since Eη ⊂ E′η

when η < η′, the sequence µ(Eη) decreases, and admits a positive limit as η decreases to 0.

This implies that µ( ∩
η<η0

Eη) > 0. So, take s ∈ ∩
η<η0

Eη. It satisfies H < β(s) < H + η for all



S1. CONVERGENCE STUDY

η > 0. This yields β(s) = H, which is contradictory.

Now, for 0 < α < 1, let us set ηN = log(N)−α/2. We then obtain

IN2 ≤ c̃2(µ(Elog(N)−α) + e− log(N)1−α), (S1.8)

and lim
N→+∞

IN2 = 0. Therefore, lim
N→+∞

IN = 0. Thus, on [0, 2π]d, SN converges uniformly to 0,

as N tends to 0.

Consequently, the integral UN is bounded by c1(supw∈[0,2π]d |SN (w)|)2 + c2J
N , where

JN =

∫
[0,2π]d

|v̂(T ′aw)v̂(T ′bw)|2((GN (w))2 +GN (w))dw.

Let us then decompose JN into a sum of two integrals JN1 =
∫
B(0,A)

· · · dw and JN2 =
∫

[0,2π]d\B(0,A)
· · · dw,

and study separately these integrals.

Notice that v̂(y) = Qv(eiy1 , · · · , eiyd) where Qv is the characteristic polynomial of v.

Hence, using Proposition 3.2 and Taylor expansions of Qv in the neighborhood of 0, we obtain

|v̂(y)|2 ≤ C|y|2K+2 for some C > 0. Therefore, JN1 is bounded by

c3N
4(H−K−1)+d

∫
B(0, A

N
)
|w|4(K+1)(f2(w) + f(w)|w|−2H−d + |w|−4H−2d)dw

+c4N
2(H−2K−2)

∫
B(0, A

N
)
|w|4(K+1)(f(w) + |w|−2H−d)dw,

for some c3, c4 > 0. In this upper bound, integrals of the form
∫
B(0,ε)

|w|uf(w)dw are finite for

both u = 4(K + 1) − 2H − d and u = 4(K + 1), since Z is a M -IRF and K ≥ M/2 + d/4.

Moreover, sup
w∈B(0,ε)

|w|2K+3f(w) ≤ c < +∞, since Z is a M -IRF and Ka ≥M . Therefore,

∫
B(0,ε)

|w|4(K+1)f2(w)dw ≤ c
∫
B(0,ε)

|w|2K+1f(w)dw < +∞,

since K ≥M+1. Besides, integrals of the form
∫
B(0,ε)

|w|udw are finite for u = 4(K+1)−2H−d
and u = 4(K + 1)− 4H − 2d, since K ≥ d/4. Consequently,

JN1 ≤ c̃3N4(H−K−1)+d + c̃4N
2(H−2K−2),

and lim
N→+∞

JN1 = 0, since K ≥ d/4.

Besides, using the bound (S1.4), we obtain

JN2 ≤
∫
Sd−1

∫ +∞

A

(GN1 (ρs) +GN2 (ρs))2ρd−1dρds.

Then, using previous bounds on GN1 and GN2 , we get

JN2 ≤ c5
(
N−2γ +N−2η + µ(Eη)

)
ΓH ,

with c5 > 0 and ΓH =
∫ +∞
A

ρ−4H−d−1dρ < +∞. Setting again ηN = log(N)−α/2 with 0 < α <

1, we obtain lim
N→+∞

JN2 = 0. Therefore, lim
N→+∞

JN = 0.

Consequently, limN→+∞ U
N = 0. This implies the convergence of N2HfNa,b to fa,b in

L2([0, 2π]d).
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S2 Proofs of Propositions

Proof of Proposition 3.1. By definition, the kernel v leads to K-order increments of Z if and

only if
∑
k∈[[0,L]]d v[k](m− k)l = 0, ∀m ∈ Zd,∀l ∈ [[0,K]]d, |l| ≤ K, which is also equivalent to∑

k∈L

v[k]kl = 0, ∀ l ∈ [[0,K]]d, |l| ≤ K.

Besides, we have

∂|l|Qv
∂zl

(z) =

L1∑
k1=l1

· · ·
Ld∑

kd=ld

v[k]

l1−1∏
j1=0

(k1 − j1) · · ·
ld−1∏
jd=0

(kd − jd)zk−l,

using the convention that
∏li−1
ji=0(ki − ji) = 1 if li = 0. From that, we deduce the recurrence

equations

∂|l|Qv
∂zl

(z) =
∑

k∈[[0,L]]d

v[k]klzk−l −
∑

j∈[[1,d]],lj≥1

lj − 1

zj

∂|l|−1Qv
∂zl−ej

(z),

where ej is the jth vector of the canonical basis of Rd. In particular,

∀j, l, ∂
|l|Qv
∂zl

(1, · · · , 1) +
∑

j∈[[1,d]],lj≥1

(lj − 1)
∂|l|−1Qv
∂zl−ej

(1, · · · , 1) =
∑

k∈[[0,L]]d

v[k]kl.

We conclude the proof by recurrence on the order of the partial derivatives of Q.

Proof of Proposition 3.2. Let P be a polynomial of degree l ≤ K. We notice

∑
k

v[k]P

(
m− Tuk

N

)
=
∑
k

v[k]P ◦ Tu
(
m′ − k
N

)
,with m′ = T−1

u m.

But, any rescaling or rotation P ◦Tu of a polynomial P remains a polynomial of the same de-

gree. Hence,
∑
k v[k]P

(
m−Tuk
N

)
= 0 for all P of degree l ≤ K if and only if

∑
k v[k]P

(
m′−k
N

)
=

0 for all P of degree l ≤ K. According to Proposition 3.1, this only holds if an and only if

Condition (17) (main paper) is satistied.

Proof of Proposition 3.3. Since, for a ∈ F and m ∈ Zd, V Na [m] is an increment of Z of order

≥M , it has zero mean. Moreover, for any a, b ∈ F and m,n ∈ Zd, Theorem 2.3 yields

E(V Na [m]V Nb [n]) =
∑
k,l∈Zd

v[k]vb[l]KZ

(
m− Tak

N
− n− Tbl

N

)
< +∞,

where KZ is a generalized covariance of the form (8). But, for any even polynomial P of degree

2M , we can write P (x− y) =
∑M
|l|=0 ql(y)xl +

∑M
|l|=0 ql(x)yl where ql are polynomials of degree

up to 2M . Hence, since V Na [m] and V Nb [n] are increments of order K ≥M ,

∑
k,l∈Zd

v[k]v[l]P

(
m− Tak

N
− n− Tbl

N

)
= 0,
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for any even polynomial P of degree 2M , including PM and Q of Equation (8). Therefore,

E(V Na [m]V Nb [n]) =
1

(2π)d

∫
Rd

∑
k,l∈Zd

v[k]v[l] cos

(〈
m− Tak

N
− n− Tbl

N
,w

〉)
f(w)dw,

and, since f is even,

E(V Na [m]V Nb [n]) =
1

(2π)d

∫
Rd

∑
k,l∈Zd

v[k]v[l]ei〈
m−n
N
−Tak

N
+
Tbl

N
,w〉f(w)dw.

From this, we deduce

E(V Na [m]V Nb [n]) =
1

(2π)d

∫
Rd
v̂

(
T ′aw

N

)
v̂b

(
T ′bw

N

)
ei〈

m−n
N

,w〉f(w)dw.

Since this expression exclusively depends on m−n, and not on m and n, V N is stationary. Using

a variable change ζ = w/N , and a decomposition of the integral domain, we further obtain

E(V Na [m]V Nb [n]) =
1

(2π)d

∑
k∈Zd

∫
[0,2π]d+2kπ

v̂(T ′aζ)v̂(T ′bζ)e
i2π〈m−n,ζ〉f(Nζ)Nddζ,

After a variable change ζ = w + 2kπ in each integral, we then get

E(V Na [m]V Nb [n]) =
1

(2π)d

∫
Rd

∫
[0,2π]d

gNa,b(w, z)dwd∆(z),

where d∆(u) =
∑
k∈Zd δ2kπ(u) is a counting measure on Rd and gNa,b(w, z) = Ndv̂(T ′aw)v̂(T ′bw)ei〈m−n,w〉f(N(w+

z)). Since E(V Na [m]V Nb [n]) < +∞, the Lebesgue Fubini theorem implies that fNa,b(w) =∫
Rd g

N
a,b(w, z)d∆(z) is almost everywhere defined, and that

∫
[0,2π]d

fNa,b(w)dw < +∞.

S3 Covariance estimation

In this section, we construct an estimate of the covariance matrix ΣN of log-variations Y N

involved in the linear model (29) (main paper). According to the proof in Section S1, the

random vector Y N has the same asymptotical covariance Σ as the random vector UN defined

by Equation (S1.1). Hence, we approximate ΣN by an estimate of the covariance matrix of UN .

We have

E(UNa U
N
b ) =

1

N2
eE(WN

a )E(WN
b )

∑
p,q∈EN

E((V Na [p])2(V Na [q])2).

But (V Na [p], V Na [q]) are centered Gaussian vectors. Thus, E((V Na [p])2(V Na [q])2) = 2(E(V Na [p]V Na [q]))2.

Moreover,

E(V Na [p]V Na [q]) =
∑
k,l

v[k]v[l]KZ

(
p− Tak − q + Tbl

N

)
,

where KZ is the generalized covariance of the IRF Z. Let H̃ be an estimate of the Hölder irreg-

ularity of Z (e.g. an OLS estimate of H in the linear model (29) (main paper). Approximating
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the generalized covariance KZ by the one of a fractional Brownian field of order H̃, it follows

that

E(V Na [p]V Na [q]) ' CH̃
∑
k,l

v[k]v[l]|p− Tak − q + Tbl|2H̃ .

Using the same approximation, we also have

E(WN
a ) = E((V Na [0])2) '

∑
k,l

v[k]v[l]|Ta(l − k)|2H̃ .

Hence, we get

ΣNa,b '
∑

δ∈∆EN

Nδ
(∑

k,l v[k]v[l]|δ − Tak + Tbl|2H̃
)2

N2
e

(∑
k,l v[k]v[l]|Ta(l − k)|2H̃

)(∑
k,l v[k]v[l]|Tb(l − k)|2H̃

) ,
where ∆EN = {δ = p − q, p, q ∈ EN} and Nδ is the number of couples (p, q) ∈ E2

N for which

δ = p− q.
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