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Abstract: In some experimental situations, there is a natural grouping of factors.

Prior knowledge may indicate that active two-factor interactions only occur within

groups of factors. Designs of variable resolution (Lin (2012)) were introduced for

such situations. However, main effects from one group in a design of variable

resolution may be aliased with non-negligible two-factor interactions from another

group. In this article, we introduce robust designs of variable resolution which

ensure main effects are robust to non-negligible interactions. Constructions are

provided for a number of situations. Some existence results are given as well.
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1. Introduction

Two-level fractional factorial designs are widely used in many areas of sci-

ence, engineering, and industry. Often they are used as screening designs to

identify important main effects and two-factor interactions in a linear model,

assuming three-factor and higher order interactions are negligible. The tradi-

tional notions of resolution (Box and Hunter (1961)) and minimum aberration

(Fries and Hunter (1980)) treat interactions of the same order as equally likely

to be important. However, it is not uncommon that prior knowledge implies

some interactions can be safely treated as negligible. Research has been taken

up on design choices when some two-factor interactions are negligible and oth-

ers are non-negligible. See, for example, Franklin and Bailey (1977), Hedayat

and Pesotan (1997), Tang and Zhou (2009), and Lekivetz and Tang (2011). If

the factors are separated into groups, these non-negligible two-factor interactions

may come from factors within disjoint groups, two-factor interactions between

factors from different groups being negligible. This can arise when the different

groups of factors occur between separate steps in a process, or when some basic

knowledge about the underlying physical process provides the groupings. The

disjoint groups of factors considered are control factors whose levels can be varied

from run to run. The two-factor interactions within groups are non-negligible,
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while the two-factor interactions that occur between factors in different groups

are safely assumed negligible.

For such a case, Lin (2012) proposed designs of variable resolution, in which

the resolution of each group is higher than the overall resolution of the respective

design. For example, let A, B, C and D be independent factors making up a 24

full factorial design, and consider the 212−8 design d1 where the 12 factors are

partitioned into three groups, G1 = {A,AB,AC,AD}, G2 = {B,BC,ABC,D},
andG3 = {C,BD,ACD,CD}, where, for instance, ABC is the column generated

from the product of columns A, B and C. According to Lin (2012), d1 is a design

of variable resolution with the overall resolution III and the resolution of each

of its groups G1, G2 and G3 is V. Now consider the 212−8 design d2 whose

factors are partitioned into the three groups, G1 = {A,AC,AD,ACD}, G2 =

{B,BC,BD,BCD}, G3 = {AB,ABC,ABD,ABCD}. The overall resolution of

design d2 is III and the resolution of each of its groups is IV. Intuitively, a higher

resolution for each group would be preferred and thus d1 appears preferable to

d2. However, if the estimation of main effects is the primary goal, design d2
would be more appealing than d1. In d2, the main effects are orthogonal to all

two-factor interactions occurring within all groups, while d1 has aliasing between

main effects and two-factor interactions within other groups.

In this article, we introduce and construct a new class of designs, called robust

designs of variable resolution, to eliminate the contamination of non-negligible

two-factor interactions on the estimation of main effects, where the non-negligible

two-factor interactions occur between factors within each of the groups of fac-

tors. The remainder of this article is organized as follows. Section 2 provides

background knowledge, notation and definitions. Section 3 presents several con-

struction methods for robust designs of variable resolution. Section 4 provides

existence results of such designs. Section 5 concludes the article with discussion.

2. Concepts and Notation

A two-level factorial design of n runs for p factors can be represented by

d = (d1, . . . , dp) where dj = (d1j , . . . , dnj)
T is the jth column of d and dij = ±1

for i = 1, . . . , n and j = 1, . . . , p. Given any m columns, s = {dj1 , . . . , djm}, of
design d, their J-characteristic is

J(s) = J(dj1 , . . . , djm) =
∣∣∣ n∑
i=1

dij1 · · · dijm
∣∣∣. (2.1)

The resolution, r, of a design is the smallest integer such that max|s|=rJ(s) > 0.

For convenience, we denote a two-level design with n runs, p factors and resolu-

tion r as D(n, p, r). For regular designs whose columns are either independent

or fully aliased, r = 3, 4, and 5 correspond to designs of resolution III, IV and V,
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respectively. For notational simplicity, we also use the Roman numeral notation

for resolution of non-regular designs whose columns can be independent, fully

aliased or partially aliased, although non-regular designs are quantified by gen-

eralized resolution (Deng and Tang (1999); Grömping and Xu (2014)). A design

is called column-orthogonal if any of its two distinct columns has J-characteristic

0. Column-orthogonal designs are different from designs of resolution III in that

each column in the former does not need to have equal frequency of each level.

Thus, designs of resolution III are column-orthogonal, but column-orthogonal de-

signs may not be of resolution III. Other examples of column-orthogonal designs

include Hadamard matrices (Hedayat, Sloane, and Stufken (1999)), and designs

of resolution IV and higher.

A design D(n, p, r) is said to be of variable resolution if its columns can

be partitioned into k groups, where the ith group, Di, having pi factors, is

a D(n, pi, ri), where r < ri ≤ pi + 1 for i = 1, . . . , k − 1, and r ≤ rk ≤
pk + 1 (Lin (2012)). Thus, each group has higher resolution than the resolu-

tion of the whole design, while allowing for the possibility that the last group

has the same resolution as the entire design. Such a design is denoted by

D{n, (p1, . . . , pk), (r1, . . . , rk); r}.
To introduce robust designs of variable resolution, recall the framework of

quantifying the contamination of non-negligible two-factor interactions on the

estimation of main effects (Deng and Tang (1999)). Suppose the true model is

Y = 1nβ0 +X11β11 + · · ·+Xk1βk1 +X12β12 + · · ·+Xk2βk2 + ϵ, (2.2)

where Y is the response vector of n observations, 1n is the column of n 1’s, β0 is

the regression coefficient for the grand mean, Xi1 is the design matrix for the main

effects of the pi factors in group i, βi1 represents the vector of the corresponding

regression coefficients, Xi2 is the model matrix corresponding to the pi(pi −
1)/2 two-factor interactions within group i, with βi2 the corresponding vector of

regression coefficients, and ϵ is random error with mean 0 and constant variance.

For a fitted model involving only the main effects, the least squares estimate

of β1 = (βT
11, . . . , β

T
k1)

T is given by β̂1 = (β̂T
11, . . . , β̂

T
k1)

T = (XT
1 X1)

−1XT
1 Y ,

where X1 = (X11, . . . , Xk1) is the design matrix and Xi1 = Di for i = 1, . . . , k.

Under (2.2), we have E(β̂1) = β1 +
∑k

i=1 n
−1XT

1 Xi2βi2. Lin (2012) showed that

to minimize the contamination of non-negligible two-factor interactions on the

estimation of main effects, it is equivalent to minimize

C3 =

k∑
i=1

∥n−1XT
1 Xi2∥2 =

k∑
i=1

[3B(i,3) +
∑
i′ ̸=i

B(i,1),(i′,2)], (2.3)

where

B(i,3) = n−2
∑

c1,c2,c3∈Di

J(c1, c2, c3)
2, (2.4)
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B(i,1),(i′,2) = n−2
∑

c1∈Di,c2,c3∈Di′

J(c1, c2, c3)
2. (2.5)

The B(i,3) in (2.4) measures the aliasing between main effects and two-factor in-

teractions within the ith group, while the B(i,1),(i′,2) in (2.5) measures the aliasing

between main effects of factors in the ith group and the two-factor interactions

occurring within the i′th group. For a design of variable resolution with ri ≥ 4

and r ≥ 3, B(i,3) in (2.4) is equal to 0 for i = 1, . . . , k. Note that because of

ri ≥ 4, we assume pi ≥ 3 for i = 1, . . . , k throughout. If such a design of variable

resolution has B(i,1),(i′,2) in (2.5) equal to 0 for i = 1, . . . , k, it is called robust

design of variable resolution, a robust design of variable resolution has C3 in (2.3)

equal to 0. Such a design is denoted by RD{n, (p1, . . . , pk), (r1, . . . , rk); r}. If the
overall resolution of a design is IV or higher, it is a robust design of variable

resolution. Thus, we focus on constructing robust designs of variable resolution

with overall resolution III.

3. Construction of Robust Designs of Variable Resolution

This section provides several constructions for two-level robust designs of

variable resolution using Kronecker products and clear two-factor interactions.

3.1 Construction via Kronecker products

This section introduces Constructions 1 and 2 to construct two classes of

robust designs of variable resolution using designs of resolution III. Construction

1 provides designs with groups of equal resolution, while Construction 2 has more

groups, but higher resolution within some groups. Both constructions use Kro-

necker products. Let x = (x1, . . . , xn1)
T and y = (y1, . . . , yn2)

T . The Kronecker

product of x and y is

x⊗ y = (x1y1, . . . , x1yn2 , . . . , xn1y1, . . . , xn1yn2)
T .

Construction 1. Let A = (a1, . . . , ap) be a D(n1, p, 3) where p ≥ 2. For i =

1, . . . , p, let Bi be a column-orthogonal design with n2 rows and qi columns,

where qi ≥ 3, and let Di = ai ⊗Bi.

Proposition 1. Design d = (D1, . . . , Dp) in Construction 1 is a RD{n1n2, (q1,

. . . , qp), (4, . . . , 4); 3}.

Proof. Proposition 1 follows directly by the definition of a robust design of

variable resolution and the property of J-characteristics of Kronecker products

of columns (Tang (2006));

J(a1 ⊗ b1, . . . , ap ⊗ bp) = J(a1, . . . , ap)J(b1, . . . , bp), (3.1)
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where aj = (a1j , . . . , an1j)
T and bj = (b1j , . . . , bn2j)

T for j = 1, . . . , p.

We focus on robust designs of variable resolution with the overall resolu-

tion III, because if the overall resolution is IV or higher, it is already a robust

design of variable resolution. In Construction 1, if columns of Bi are from a

design, say B, where any three columns have a J-characteristic of 0, the re-

sulting design d = (D1, . . . , Dp) is of resolution IV. The run size of a two-level

robust design of variable resolution provided by Construction 1 is a multiple

of 16 because n1 and n2 must be a multiple of 4 for A to be a design of res-

olution III, Bi to be column-orthogonal and qi ≥ 3. The maximum value of

p and qi in Construction 1 is n1 − 1 and n2, respectively, for i = 1, . . . , p.

Thus, given n1 and n2, the largest robust design of variable resolution pro-

vided by Construction 1, in terms of the maximum number of columns, is a

d = (D1, . . . , Dn1−1) = RD{n1n2, (n2, . . . , n2), (4, . . . , 4); 3}.

Example 1. Let A be a D(8, 7, 3), and Bi be a Hadamard matrix of order 4,

i = 1, . . . , 7. Construction 1 gives a RD{32, (4, 4, 4, 4, 4, 4, 4), (4, 4, 4, 4, 4, 4, 4); 3}.
Now choosing A be a D(4, 3, 3) and Bi be a Hadamard matrix of order 8, i =

1, 2, 3, we get a RD{32, (8, 8, 8), (4, 4, 4); 3}.

Construction 2. Let A = (a1, . . . , ap) be a D(n1, p, 3) and Bi be a D(n2, qi, 3)

for i = 1, . . . , p. Suppose that Bi can be expressed as Bi = (B∗
i , Bi\B∗

i ) such

that B∗
i is a design of resolution V with mi columns, where Bi\B∗

i represents the

columns of Bi not in B∗
i . Let Ei = (1n2 , Bi) and E∗

i = (1n2 , B
∗
i ), where 1n2 de-

notes a column of n2 1’s. For i = 1, . . . , p, let Di = ai⊗E∗
i , Dp+i = ai⊗(Ei\E∗

i ).

Proposition 2. Design d = (D1, . . . , Dp, Dp+1, . . . , D2p) in Construction 2 is a

RD{n1n2, (m1 + 1, . . . ,mp + 1, q1 −m1, . . . , qp −mp), (6, . . . , 6, 4, . . . , 4); 3}.

That Construction 2 provides a robust design of variable resolution can be

readily verified using (3.1). Constructions 1 and 2 both use the Kronecker prod-

uct of designs of resolution III and column-orthogonal designs. Construction 1

provides robust designs of variable resolution consisting of p groups of resolution

IV, with qi columns in the ith group. Construction 2 allows each of the p groups

to be further partitioned into groups with one of resolution VI and the other of

resolution IV. Both constructions can provide robust designs of variable resolu-

tion with the maximal number (n1− 1)n2 of columns; this occurs for p1 = n1− 1

and for p2 = n2 in Construction 1 and p1 = n1 − 1 and p2 = n2 − 1 in Con-

struction 2. Example S1 in the Supplementary Materials is an application of

Construction 2.

In addition to Constructions 1 and 2, several constructions from Lin (2012)

yield robust designs of variable resolution. These constructions, and conditions
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for ensuring the robustness property, can be found in the Supplementary Mate-

rials as Constructions S1 – S4.

3.2. Construction through clear two-factor interactions

A two-factor interaction is said to be clear if it is orthogonal to all main effects

and all other two-factor interactions (Tang (2006)). Designs with clear two-factor

interactions provide worry-free estimation of the clear two-factor interactions in

the presence of non-negligible two-factor interactions. For designs of resolution V,

all two-factor interactions are clear; for designs of resolution IV, not all two-factor

interactions are clear since some two-factor interactions will be aliased with each

other. If a design d of resolution IV has two groups of factors, D1 = {a1, . . . , ap1}
and D2 = {b1, . . . , bp2}, Ke, Tang, and Wu (2005) defined a clear compromise

plan of Class 4 to be a design d with the property that the two-factor interactions

between ai’s and bj ’s are clear for i = 1, . . . , p1 and j = 1, . . . , p2. For notational

simplicity, we denote the two-factor interactions between groups Di and Dj by

Di ×Dj , for i = 1, 2 and j = 1, 2. Another class of designs with two groups is, a

clear compromise plan of Class 3, in which the two-factor interactions D1 ×D1,

and the two-factor interactions D1 ×D2 are clear (Ke, Tang, and Wu (2005)).

Construction 3. Let (D1, D2) be an n-run clear compromise plan of Class 3 or

Class 4, where D1 = {a1, . . . , ap1} and D2 = {b1, . . . , bp2}. For i = 1, . . . , p1, let

Di+2 = (aib1, . . . , aibp2), and d = (D1, . . . , Dp1+2).

Proposition 3. Design d in Construction 3 is a RD{n, (p1, p2, p2, . . . , p2), (4, . . .,
4); 3} if (D1, D2) is a clear compromise plan of Class 4.

Proposition 4. Design d in Construction 3 is a RD{n, (p1, p2, p2, . . . , p2), (5, 4,
. . . , 4); 3} if (D1, D2) is a clear compromise plan of Class 3.

Propositions 3 follows by the definition of a clear compromise plan of Class

4. Specifically, the J-characteristics J(ai1 , ai2 , bj1), J(ai1 , bj1 , bj2), J(bj1 , bj2 , bj3),

J(ai1 , ai2 , bj1 , bj2), J(ai1 , ai2 , ai3 , bj1), and J(ai1 , bj1 , bj2 , bj3) are all zero for i1, i2,

i3 = 1, . . . , p1 and j1, j2, j3 = 1, . . . , p2, implying (2.4) and (2.5) are zero. A

similar argument applies to verify Proposition 4. In addition to being robust

designs of variable resolution, designs in both propositions enjoy the property

that the two-factor interactions between any two factors in D1 are orthogonal to

the two-factor interactions within other groups. If two-factor interactions within

D1 are known to be negligible, this property can be used to add additional factors

to D1 by using any unique two-factor interactions as the new factors. This makes

the sub-design of factors in D1 resolution III, implying that B(1,3) in (2.4) will not

be zero. However, if the two-factor interactions in D1 are negligible, the quantity

B(1,3) is removed from (2.3) and thus the value of C3 remains 0. Designs in
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Proposition 3 and those in Proposition 4 have different properties, in that D1 in

the latter is of resolution V because of the use of a compromise plan of Class 3: all

main effects and the two-factor interactions of D1 in Proposition 4 are orthogonal

to each other and to the two-factor interactions within other groups. Thus, the

two-factor interactions of D1 in Proposition 4 are estimable in the presence of

non-negligible two-factor interactions. They are referred to as partially clear

two-factor interactions by Lekivetz and Tang (2011). Example 2 illustrates the

use of Construction 3 to obtain robust designs of variable resolution.

Example 2. Ke, Tang, and Wu (2005) provided a clear compromise plan of Class

4 with 64 runs in which D1 and D2 have 6 factors each. Using Construction 3, we

obtain a RD{64, (6, 6, 6, 6, 6, 6, 6, 6), (4, 4, 4, 4, 4, 4, 4, 4); 3}. Using the clear com-

promise plan of Class 3 of 64 runs with 5 factors in D1 and 4 factors in D2 pro-

vided by Ke, Tang, and Wu (2005), we obtain a RD{64, (5, 4, 4, 4, 4, 4, 4), (5, 4, 4,
4, 4, 4, 4); 3} with the two-factor interactions of D1 being partially clear.

4. Existence Results

This section establishes existence results of two-level robust designs of vari-

able resolution. The problem we aim to address is whether or not a RD(n, (p1,

. . . , pk), (r1, . . . , rk); 3) exists given n, (r1, . . . , rk) and r = 3, and if it exists, what

the maximum value of pi’s is for i = 1, . . . , k.

Proposition 5. There does not exist a RD(n, (p1, p2), (r1, r2); r) with r1 ≥ 4,

r2 ≥ 4, and r = 3.

Proof. Lin (2012) showed an alternative derivation of C3 in (2.3) is

C3 = B3 + 2
k∑

i=1,pi>2

B(i,3) −
∑

k≥3,i̸=j ̸=l

B(i,1)(j,1)(l,1), (4.1)

where B3 = n−2
∑

c1,c2,c3∈(D1,...,Dk)
J(c1, c2, c3)

2,

B(i,1)(j,1)(l,1) = n−2
∑

c1∈Di,c2∈Dj ,c3∈Dl

J(c1, c2, c3)
2, (4.2)

and B(i,3) is given in (2.4). If r1 ≥ 4, r2 ≥ 4, and r = 3, then B(1,3) = B(2,3) = 0

and B3 > 0. Since k < 3, we have C3 = B3 > 0; for designs of variable resolution

with two groups and the overall resolution III, we have C3 > 0. Thus, there is

not such a robust design of variable resolution.

Proposition 5 leads to Corollaries 1 and 2. Based on the fact that the maxi-

mum number of columns in an n-run two-level design of resolution IV is n/2 (Wu

and Hamada (2011)), we have p1 + p2 ≤ n/2, p1 + p3 ≤ n/2, and p2 + p3 ≤ n/2.



1276 RYAN LEKIVETZ AND C. DEVON LIN

Corollary 1. For a RD(n, (p1, p2, p3), (r1, r2, r3); 3), removing any group of fac-

tors results in a design of resolution IV or higher.

Corollary 2. A RD(n, (p1, p2, p3), (4, 4, 4); 3) has p1 + p2 + p3 ≤ 3n/4.

Proposition 6 considers a special case of two-level robust designs of variable

resolution with three groups each of which has resolution IV or higher.

Proposition 6. Let d = (D1, D2, D3) be a RD(n, (p1, p2, p3), (r1, r2, r3); 3) with

ri ≥ 4, and diji be the jith column of Di for ji = 1, . . . , pi and i = 1, 2, 3. If there

exist j1, j2, and j3 such that d1j1d2j2 = d3j3, we have pi ≤ n/4 for i = 1, 2, 3.

Proof. For a RD(n, (p1, p2, p3), (r1, r2, r3); 3) with ri ≥ 4, suppose that there are

j1, j2, and j3 such that d1j1d2j2 = d3j3 . Without loss of generality, we assume

d11d21 = d31. Using a similar argument as in the proof of Proposition 1 in Tang

(2006), the following columns are mutually orthogonal and orthogonal to the col-

umn of all ones: d11, . . . , d1p1 , d21, d31, d11d12, . . . , d11d1p1 , d21d12, . . . , d21 d1p1 ,

d31d12, . . . , d31d1p1 . That these columns are pairwise orthogonal can be verified

with their J-characteristics. For example, given x, y ∈ 1, . . . , p1, J(d21d1x, d31d1y)

= J(d21d31d1xd1y) = J(d11d1xd1y) = 0, since the resolution of the first group of

factors, r1 ≥ 4. Taking these p1+2+3(p1− 1) mutually orthogonal columns, we

have

p1 + 2 + 3(p1 − 1) = 4p1 − 1 ≤ n− 1,

which upon rearranging yields the result p1 ≤ n/4. Similarly, we obtain p2 ≤ n/4

and p3 ≤ n/4.

Proposition 7 places a bound on the number of factors in a group when the

number of factors in each group is the same. Its proof is given in the Supplemen-

tary Materials.

Proposition 7. For a robust design of variable resolution with n runs and p1
groups of p2 factors, we have that p2 ≤ n/(p1 + 1).

Corollary 3. Using Construction 1, if A is a saturated design with n1 runs and

p1 = n1 − 1 columns, and Bi is a saturated design with n2 runs and p2 = n2

columns for i = 1, . . . , p1, then all p2’s in the design d in Construction 1 achieve

the upper bound given in Proposition 7.

Proposition 8 presents a situation in which there is no two-level robust design

of variable resolution with the overall resolution being III and the resolution in

each group being IV or higher. The situation lies in the fold-over designs. A

two-level design d is fold-over if d can be represented by d = (dT0 ,−dT0 )
T .

Proposition 8. There does not exist a RD(n, (p1, . . . , pk), (r1, . . . , rk); r) with

ri ≥ 4 and r = 3 if all D(n,m, 4)’s are fold-overs for m ≤ n/2.
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Corollary 4. There does not exist a RD(24, (p1, . . . , pk), (r1, . . . , rk); r) with ri ≥
4 and r = 3.

The proof of Proposition 8 is given in the Supplementary Materials. Corol-
lary 4 follows from the fact that all 24-run designs of resolution IV are fold-overs
(Schoen, Eendebak, and Nguyen (2010)).

5. Discussion

This article extends the concept of variable resolution by ensuring designs are
robust to non-negligible two-factor interactions that occur within groups. Robust
designs of variable resolution allow worry-free estimation of the main effects in
the presence of non-negligible interactions occurring within groups of factors.
While these designs do allow for the estimation of some two-factor interactions,
there is still potential confounding between non-negligible interactions. If one
needs to ensure the estimation of a particular set of interactions, the so-called
requirement set problem (Greenfield (1976)) will generally require either more
runs or fewer factors to be considered.

An application of variable resolution designs that requires further study is
for use with multiple response variables. If each response is believed to be driven
by one of the groups, not only can the main effects of the factors be accounted
for, but the higher resolution within each group allows for better estimation of
the interaction effects within that group for the particular response. Two main
advantages of using variable resolution designs in such a situation are that it
allows for the study of additional factors that might not be considered if each
response was experimented on separately, and that specifying all model effects
to be estimated among the total set of responses may result in a substantially
larger run size in comparison to using a variable resolution design.

While our focus has been on robust designs of variable resolution, the con-
structions can be generally useful for maintaining certain properties within the
groups of factors. For example, one may want to ensure all main effects and
two-factor interactions within a group are estimable. In Constructions 1 and 2,
if all Bi’s have such a property, each group of the resulting design does as well.
Using this group structure to maintain certain properties within each group is a
topic of future research.

Supplementary Materials

The online supplementary materials include an example of Construction 2,
additional construction methods, and the proofs of Propositions 7 and 8.
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