
Statistica Sinica 26 (2016), 1249-1267

doi:http://dx.doi.org/10.5705/ss.2014.029

A NEW CLASS OF NESTED (NEARLY) ORTHOGONAL

LATIN HYPERCUBE DESIGNS

Xue Yang1,2, Jian-Feng Yang2, Dennis K. J. Lin3 and Min-Qian Liu2

1Tianjin University of Finance and Economics, 2Nankai University

and 3The Pennsylvania State University

Abstract: Nested Latin hypercube designs are useful for computer experiments with

multi-fidelity and orthogonality is a desirable property for them. In this paper, we

provide methods for constructing nested Latin hypercube designs with (exact or

near) orthogonality. The constructed designs have flexible numbers of runs and

factors with the desirable property that the sum of the elementwise product of

any three columns is zero. The construction algorithms are given with theoretical

support. Some designs are tabulated for practical use.
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1. Introduction

Computer experiments are used to study complex systems and have received

considerable attention. Latin hypercube designs (LHDs) for them, introduced by

McKay, Beckman, and Conover (1979), are particularly popular. Experiments

with various levels of accuracy or fidelity have been widely used in sciences and

engineering. Thus high-accuracy experiments are more accurate but slower and

low-accuracy experiments are less accurate but faster (see, Kennedy and O’Hagan

(2000), Qian and Wu (2008)). It is appealing to use LHDs with two layers to

design computer experiments with two levels of accuracy for increasing prediction

accuracy with limited cost. Qian, Tang, and Wu (2009) and Qian, Ai, and

Wu (2009) proposed nested space-filling designs for multi-fidelity experiments by

applying projections in the Galois field, and other algebraic techniques. Haaland

and Qian (2010) provided a construction method for nested space-filling designs of

multi-layer with the help of (t, s)-sequences. Sun, Yin, and Liu (2013) constructed

nested space-filling designs by using nested difference matrices. Sun, Liu, and

Qian (2014) proposed methods for constructing several classes of nested space-

filling designs based on a new group projection, and other algebraic techniques.

Although these constructions can achieve stratification in low dimensions, they

are not orthogonal.
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An LHD is orthogonal if the correlation coefficient of any two columns is zero.

For a first-order model, such a design guarantees independent estimates of linear

effects. For a second-order model, however, designs with (a) each design column

is orthogonal to all the others, and (b) the sum of elementwise product of any

three columns is zero, ensure that estimates of all linear effects are uncorrelated

with each other, and with all quadratic effects and bilinear interactions (cf., Ye

(1998), Sun, Liu, and Lin (2009, 2010), Yang and Liu (2012)). If (a) cannot

be satisfied, it can be relaxed to (a′) each column is nearly orthogonal to the

others in the design. An LHD satisfying (a) and (b) is said to be a second-order

orthogonal LHD, and an LHD with properties (a′) and (b) is said to be a nearly

orthogonal LHD.

Li and Qian (2013) provided some approaches to constructing nested orthog-

onal LHDs using nested rotation matrices and nested factorial designs. Yang, Liu,

and Lin (2014) presented methods for constructing nested orthogonal LHDs us-

ing a special type of orthogonal design proposed by Yang and Liu (2012). Their

designs have properties (a) and (b) with 2s factors and different layers, where

s is a positive integer. For practical use, however, nested LHDs with (exact or

near) orthogonality are needed, but largely unavailable.

This paper proposes a new class of nested LHDs with (exact or near) or-

thogonality by using vectors with zero periodic autocorrelation function (PAF)

provided by Georgiou and Efthimiou (2014). These designs satisfy (a) and (b),

or properties (a′) and (b), have flexible numbers of runs, and 2, 4, 8, 12, 16,

20, and 24 factors, some of which cannot be obtained from Yang, Liu, and Lin

(2014).

The paper is organized as follows. Section 2 presents useful notation and

definitions. Section 3 provides methods for constructing nested orthogonal LHDs

using vectors with zero PAF. Section 4 proposes methods to construct nested

nearly orthogonal LHDs. Section 5 extends the results of Sections 3 and 4 to

nested orthogonal and nearly orthogonal LHDs with more layers and gives some

concluding remarks. All proofs are deferred to Appendix A.

2. Preliminary Results

This section gives some notation and definitions. For vectors u = (u1, . . .,

un)
T and v = (v1, . . . , vn)

T , we write ū and v̄ for their means, and ρuv for their

correlation coefficient. Throughout, we use 0m and 1m to denote the m × 1

column vectors with all entries zero and one, respectively, and use Rl to denote

the anti-diagonal identity matrix of order l with one on the anti-diagonal and zero

elsewhere. A circulant matrix is a square matrix B = (bij) of order n with first

row b1 = (b1,0, b1,1, . . . , b1,n−1) and every next row being generated by a circulant

permutation of its previous row, bij = b1,j−i+1, where j− i+1 is taken modulo n,
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i = 2, . . . , n and j = 0, . . . , n − 1. Let A = {Aj : Aj = (aj0, aj1, . . . , aj(l−1)), j =

1, . . . , r} be a set of r vectors of length l. The periodic autocorrelation function

(PAF) PA(s) is defined, reducing i+ s modulo l, as

PA(s) =

r∑
j=1

l−1∑
i=0

ajiaj,i+s, s = 0, . . . , l − 1.

The set of vectors A is said to have zero PAF if PA(s) = 0, for all s = 1, . . . , l−1,

and is said to have constant PAF if PA(s) = γ, for all s = 1, . . . , l − 1 for some

integer number γ. Georgiou and Efthimiou (2014) provided an algorithm to

search for sets of vectors with zero PAF. Some are listed in Appendix B. These

vectors are used in Georgiou and Efthimiou (2014) for the construction of LHDs

that satisfy (a) and (b). A design L(n,m) with n runs and m factors is called an

LHD if it corresponds to an n×m matrix X = (x1, . . . , xm), where column xj is

the jth factor and each factor includes n uniformly spaced levels.

Consider a computer experiment involving u different levels of accuracy:

Y1(·), . . . , Yu(·), where Yu(·) is the most accurate, Yu−1(·) is the second most

accurate, and so on. For each i = 1, . . . , u, let Li be a design with ni points

associated with Yi(·). If the ith layer Li is an L(ni,m) for i = 1, . . . , u with

Lu ⊂ · · · ⊂ L1 and nu < · · · < n1, then (L1; . . . ;Lu) is called a nested LHD

with u layers, denoted by NL((n1, . . . , nu),m) (cf., Yang, Liu, and Lin (2014)).

If each Li is an orthogonal LHD, then (L1; . . . ;Lu) is called a nested orthogonal

LHD; if L1 is a nearly orthogonal LHD and each Li, i = 2, . . . , u, is an orthogonal

or nearly orthogonal LHD, then (L1; . . . ;Lu) is called a nested nearly orthogonal

LHD.

We provide methods to construct orthogonal matrices that are useful for the

construction of nested LHDs with (exact or near) orthogonality.

Lemma 1 (Thm. 4.49 of Geramita and Seberry (1979)). Suppose there exist

circulant matrices B1, B2, B3, B4 of order l satisfying

B1B
T
1 +B2B

T
2 +B3B

T
3 +B4B

T
4 = cIl,

where c is a constant. Then the Goethal-Seidel array

GS = GS(B1, B2, B3, B4) =


B1 B2Rl B3Rl B4Rl

−B2Rl B1 −BT
4 Rl BT

3 Rl

−B3Rl BT
4 Rl B1 −BT

2 Rl

−B4Rl −BT
3 Rl BT

2 Rl B1


is an orthogonal matrix of order 4l.
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Corollary 1. If there are vectors B1, B2, B3, B4 of length l with zero PAF, they
can be used as the first rows of circulant matrices in the Goethals-Seidel array to
generate an orthogonal matrix of order 4l.

Following Kharaghani (2000), a set of square real matrices {B1, B2, . . . , B2k}
is said to be amicable if

k∑
i=1

(B2i−1B
T
2i −B2iB

T
2i−1) = 0.

Lemma 2 (Thm. 1 of Kharaghani (2000)). Let {B1, B2, . . . , B8} be an amica-
ble set of circulant matrices of order l, satisfying

∑8
i=1BiB

T
i = cIl. Then the

Kharaghani array

K =



B1 B2 B4Rl B3Rl B6Rl B5Rl B8Rl B7Rl

−B2 B1 B3Rl −B4Rl B5Rl −B6Rl B7Rl −B8Rl

−B4Rl −B3Rl B1 B2 −BT
8 Rl BT

7 Rl BT
6 Rl −BT

5 Rl

−B3Rl B4Rl −B2 B1 BT
7 Rl BT

8 Rl −BT
5 Rl −BT

6 Rl

−B6Rl −B5Rl BT
8 Rl −BT

7 Rl B1 B2 −BT
4 Rl BT

3 Rl

−B5Rl B6Rl −BT
7 Rl −BT

8 Rl −B2 B1 BT
3 Rl BT

4 Rl

−B8Rl −B7Rl −BT
6 Rl BT

5 Rl BT
4 Rl −BT

3 Rl B1 B2

−B7Rl B8Rl BT
5 Rl BT

6 Rl −BT
3 Rl −BT

4 Rl −B2 B1


is an orthogonal matrix of order 8l.

Remark 1. As in Corollary 1, we can use eight vectors of length l with zero
PAF to generate eight suitable amicable circulant matrices for Lemma 2.

Lemma 3. Suppose there exist two circulant matrices B1, B2 of order l satisfying
B1B

T
1 +B2B

T
2 = cIl. Then

B =

(
B1 B2

−BT
2 BT

1

)
or B =

(
B1 B2Rl

−B2Rl B1

)
(2.1)

is an orthogonal matrix of order 2l.

Remark 2. Two vectors of length l with zero PAF can be used as the first rows
of the circulant matrices B1 and B2 at (2.1) to generate an orthogonal matrix of
order 2l.

3. Generation of Nested Orthogonal LHDs

Here we construct nested orthogonal LHDs by using a special class of or-
thogonal matrices with order 2l, 4l, and 8l. The generated designs have flexible
run sizes and satisfy properties (a) and (b).

Two algorithms are provided to construct nested orthogonal LHDs with m =
rl factors. Given a positive integer a, let Ab

1, A
b
2, . . . , A

b
r be row vectors of length

l with zero PAF and satisfying one of
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(i) the set formed by combining the absolute values of all entries of all vectors

together is {b+ (2p− 1)a : p = 1, . . . ,m};
(ii) the set formed by combining the absolute values of all entries of all vectors

together is {b+ pa : p = 1, . . . ,m}.

Some vectors with zero PAF are listed in Appendix B, which were obtained by

the algorithm provided in Georgiou and Efthimiou (2014). If the vectors satisfy

(i), NOL-Algorithm 1 is used; if the vectors satisfy (ii), NOL-Algorithm 2 is used.

The nested orthogonal LHDs generated by the two algorithms may have the same

run size and number of factors. For ease of expression, we henceforth use r to

denote 2, 4, or 8, and use Di±j to denote the matrices Di+j and Di−j .

Nested orthogonal LHDs Algorithm 1 (NOL-Algorithm 1).

Step 1. Given a positive integer a, take Ab
1, A

b
2, . . . , A

b
r to be r row vectors of

length l with zero PAF satisfying Condition (i).

Step 2. For b = 0,±1, . . . ,±(a − 1), a, construct E by stacking D0, D±1, . . .,

D±(a−1), Da row by row, E = (DT
0 , D

T
±1, . . . , D

T
±(a−1), D

T
a )

T . Define L1 =

(−ET , 0m, ET )T , L2α = (−DT
0 , D

T
0 )

T , and L2β = (−DT
a , 0m, DT

a )
T .

Step 3. Let F1 = (L1;L2α) and F2 = (L1;L2β).

Nested orthogonal LHDs Algorithm 2 (NOL-Algorithm 2).

Step 1. Given a positive even integer a, take Ab
1, A

b
2, . . . , A

b
r to be r row vectors

of length l with zero PAF satisfying Condition (ii).

Step 2. For b = 0,−1, . . . ,−(a−1), construct E by stackingD0, D−1, . . . , D−(a−1)

row by row, E = (DT
0 , D

T
−1, . . . , D

T
−(a−1))

T . Define L1=(−ET , 0m, ET )T ,

L2α=(−DT
0 , 0m, DT

0 )
T , and L2β=(−DT

−a/2, D
T
−a/2)

T .

Step 3. Let G1 = (L1;L2α) and G2 = (L1;L2β).

Theorem 1.

(i) For the designs constructed in NOL-Algorithm 1, F1 is a nested orthogonal

L((4am+1, 2m),m) and F2 is a nested orthogonal L((4am+1, 2m+1),m),

where L1, L2α, and L2β are orthogonal LHDs with m factors and 4am + 1,

2m, and 2m+ 1 runs, respectively.

(ii) For the designs constructed in NOL-Algorithm 2, G1 is a nested orthogonal

L((2am+1, 2m+1),m) and G2 is a nested orthogonal L((2am+1, 2m),m),

where L1, L2α, and L2β are orthogonal LHDs with m factors and 2am + 1,

2m+ 1, and 2m runs, respectively.
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Remark 3. NOL-Algorithm 2 works for any positive integer a. The condition

that a be a positive even integer is to ensure that all levels of the generated

designs are integers. NOL-Algorithms-1 and -2 are able to generate many new

nested orthogonal LHDs that are not now available.

The following examples show how to construct designs with m = 12 and 20

factors. They are apparently new.

Example 1 (m = 12). We construct nested orthogonal L((48a + 1, 24), 12),

L((48a+1, 25), 12), L((49, 24), 12), and L((49, 25), 12). By setting a = 2 in NOL-

Algorithm 1, we have b = −1, 0, 1, 2. Then, by Corollary 1, vectors with zero

PAF (in Appendix B) are Ab
1 = (b+15a,−(b+5a), b+19a), Ab

2 = (b+17a,−(b+

21a), b+23a), Ab
3 = (b+ a, b+3a,−(b+7a)), and Ab

4 = (b+9a, b+11a, b+13a),

and orthogonal matrices D−1, D0, D1, and D2 of order 12 are

D−1 =



29 −9 37 45 −41 33 −13 5 1 25 21 17
37 29 −9 −41 33 45 5 1 −13 21 17 25
−9 37 29 33 45 −41 1 −13 5 17 25 21
−45 41 −33 29 −9 37 −21 −25 −17 5 −13 1
41 −33 −45 37 29 −9 −25 −17 −21 −13 1 5

−33 −45 41 −9 37 29 −17 −21 −25 1 5 −13
13 −5 −1 21 25 17 29 −9 37 41 −45 −33
−5 −1 13 25 17 21 37 29 −9 −45 −33 41
−1 13 −5 17 21 25 −9 37 29 −33 41 −45
−25 −21 −17 −5 13 −1 −41 45 33 29 −9 37
−21 −17 −25 13 −1 −5 45 33 −41 37 29 −9
−17 −25 −21 −1 −5 13 33 −41 45 −9 37 29


,

D0 =



30 −10 38 46 −42 34 −14 6 2 26 22 18
38 30 −10 −42 34 46 6 2 −14 22 18 26

−10 38 30 34 46 −42 2 −14 6 18 26 22
−46 42 −34 30 −10 38 −22 −26 −18 6 −14 2
42 −34 −46 38 30 −10 −26 −18 −22 −14 2 6

−34 −46 42 −10 38 30 −18 −22 −26 2 6 −14
14 −6 −2 22 26 18 30 −10 38 42 −46 −34
−6 −2 14 26 18 22 38 30 −10 −46 −34 42
−2 14 −6 18 22 26 −10 38 30 −34 42 −46

−26 −22 −18 −6 14 −2 −42 46 34 30 −10 38
−22 −18 −26 14 −2 −6 46 34 −42 38 30 −10
−18 −26 −22 12 −6 14 34 −42 46 −10 38 30


,

D1 =



31 −11 39 47 −43 35 −15 7 3 27 23 19
39 31 −11 −43 35 47 7 3 −15 23 19 27

−11 39 31 35 47 −43 3 −15 7 19 27 23
−47 43 −35 31 −11 39 −23 −27 −19 7 −15 3
43 −35 −47 39 31 −11 −27 −19 −23 −15 3 7

−35 −47 43 −11 39 31 −19 −23 −27 3 7 −15
15 −7 −3 23 27 19 31 −11 39 43 −47 −35
−7 −3 15 27 19 23 39 31 −11 −47 −35 43
−3 15 −7 19 23 27 −11 39 31 −35 43 −47

−27 −23 −19 −7 15 −3 −43 47 35 31 −11 39
−23 −19 −27 15 −3 −7 47 35 −43 39 31 −11
−19 −27 −23 −3 −7 15 35 −43 47 −11 39 31


,
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D2 =



32 −12 40 48 −44 36 −16 8 4 28 24 20
40 32 −12 −44 36 48 8 4 −16 24 20 28

−12 40 32 36 48 −44 4 −16 8 20 28 24
−48 44 −36 32 −12 40 −24 −28 −20 8 −16 4
44 −36 −48 40 32 −12 −28 −20 −24 −16 4 8

−36 −48 44 −12 40 32 −20 −24 −28 4 8 −16
16 −8 −4 24 28 20 32 −12 40 44 −48 −36
−8 −4 16 28 20 24 40 32 −12 −48 −36 44
−4 16 −8 20 24 28 −12 40 32 −36 44 −48

−28 −24 −20 −8 16 −4 −44 48 36 32 −12 40
−24 −20 −28 16 −4 −8 48 36 −44 40 32 −12
−20 −28 −24 −4 −8 16 36 −44 48 −12 40 32


.

By NOL-Algorithm 1, (L1;L2α) and (L1;L2β) are nested orthogonal

L((97, 24), 12) and L((97, 25), 12), respectively, where

L1 = (−DT
0 , D

T
0 ,−DT

2 , 012, D
T
2 ,−DT

−1, D
T
−1,−DT

1 , D
T
1 , )

T is an orthogonal

L(97, 12),

L2α = (−DT
0 , D

T
0 )

T is an orthogonal L(24, 12), and

L2β = (−DT
2 , 012, D

T
2 )

T is an orthogonal L(25, 12).

Furthermore, by letting L′
1 = (LT

2α, L
T
2β)

T , we have that (L′
1;L2α) and (L′

1;L2β)

are nested orthogonal L((49, 24), 12) and L((49, 25), 12), respectively. If we take

other values for a, then more nested orthogonal LHDs with 12 factors and flexible

run sizes can be constructed similarly.

Example 2 (m = 20). We construct nested orthogonal LHDs with 20 fac-

tors. Set a = 2 in NOL-Algorithm 2, then b = 0,−1. Vectors with zero PAF

(in Appendix B) are Ab
1 = (b + 11a, b + 3a,−(b + 14a), b + 15a, b + 12a), Ab

2 =

(b+13a, b+16a, b+17a, b+18a,−(b+19a)), Ab
3 = (b+20a, b+a,−(b+2a),−(b+

4a),−(b+ 5a)), and Ab
4 = (b+ 6a, b+ 7a,−(b+ 8a), b+ 9a,−(b+ 10a)). Accord-

ing to Corollary 1 and NOL-Algorithm 2, nested orthogonal L((81, 41), 20) and

L((81, 40), 20) can be obtained: (L1;L2α) and (L1;L2β) with L1 = (LT
2α, L

T
2β)

T ,

L2α = (−DT
0 , 020, D

T
0 )

T , and L2β = (−DT
−1, D

T
−1)

T , where D0 and D−1 are listed

in Appendix C.

4. Generation of Nested Nearly Orthogonal LHDs

For some parameters, a nested LHD with orthogonality may not exist. Then

a nested nearly orthogonal LHD is a natural choice. We propose two methods

for constructing nested nearly orthogonal LHDs, that satisfy properties (a′) and

(b) in Section 1, using r vectors with zero PAF. The main difference with the

algorithms in Section 3 is that two more runs are added. To achieve a low

correlation between any two distinct columns, levels +1 and −1 are added and

original nonzero levels are taken further away from zero to make sure the resulting

design is an LHD.
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Nested nearly orthogonal LHDs Algorithm 1 (NNOL-Algorithm 1).

Step 1. The same as Step 1 of NOL-Algorithm 1, except that here a ≥ 2.

Step 2. For b = 0,±1, . . . ,±(a − 2), a − 1, a, a + 1, construct E by stacking

D0, D±1, . . . , D±(a−2), Da−1, Da, Da+1 row by row, E = (DT
0 , D

T
±1, . . .,

DT
±(a−2), D

T
a−1, D

T
a , D

T
a+1)

T . Define L1 = (−ET ,−1m, 0m, 1m, ET )T .

Step 3. Let Q1 = (L1;L2α) and Q2 = (L1;L2β), where L2α and L2β have the

same form as in NOL-Algorithm 1.

Nested nearly orthogonal LHDs Algorithm 2 (NNOL-Algorithm 2).

Step 1. The same as Step 1 of NOL-Algorithm 2.

Step 2. For b = 1, 0,−1, . . . ,−(a− 2), construct E by stacking D1, D0, D−1, . . .,

D−(a−2) row by row, E = (DT
1 , D

T
0 , D

T
−1, . . . , D

T
−(a−2))

T . Define L1 =

(−ET ,−1m, 0m, 1m, ET )T .

Step 3. Let W1 = (L1;L2α) and W2 = (L1;L2β), where L2α and L2β have the

same form as in NOL-Algorithm 2.

Theorem 2.

(i) For the designs constructed in NNOL-Algorithm 1, Q1 is a nested nearly or-

thogonal L((4am+3, 2m),m) and Q2 is a nested nearly orthogonal L((4am+

3, 2m+ 1),m), where L1 is a nearly orthogonal LHD with correlation ρuv =

6/[(2am + 1)(2am + 2)(4am + 3)] for any two distinct columns u and v,

L2α and L2β are orthogonal LHDs with m factors and 2m and 2m+ 1 runs,

respectively.

(ii) For the designs constructed in NNOL-Algorithm 2, W1 is a nested nearly

orthogonal L((2am + 3, 2m + 1),m) and W2 is a nested nearly orthogonal

L((2am+ 3, 2m),m), where L1 is a nearly orthogonal LHD with correlation

ρuv = 6/[(am+ 1)(am+ 2)(2am+ 3)] for any two distinct columns u and v,

L2α and L2β are orthogonal LHDs with m factors and 2m+ 1 and 2m runs,

respectively.

TheW1 in NNOL-Algorithm 2 also works for odd a with a > 2; an illustration

is given in Example 5. The resulting design in Theorem 2 is not orthogonal, but

the correlation between any two design columns is a small constant as given in

Theorem 2. We thus call them nearly orthogonal.

Example 3 (m = 8). We construct a nested nearly orthogonal L((32a+3, 16), 8)

and L((32a+3, 17), 8) by using Lemma 2 and the eight vectors Ab
i = b+(2i−1)a

for i = 1, . . . , 8 with zero PAF. Without loss of generality, take a = 2, and then
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b = 0, 1, 2, 3 from NNOL-Algorithm 1. We get orthogonal matrices D0, D1, D2,

and D3 of order eight as

D0 =



2 6 14 10 22 18 30 26

−6 2 10 −14 18 −20 26 −30

−14 −10 2 6 −30 26 22 −18

−10 14 −6 2 26 30 −18 −22

−22 −18 30 −26 2 6 −14 10

−18 22 −26 −30 −6 2 10 14

−30 −26 −22 18 14 −10 2 6

−26 30 18 22 −10 −14 −6 2


,

D1 =



3 7 15 11 23 19 31 27

−7 3 11 −15 19 −21 27 −31

−15 −11 3 7 −31 27 23 −19

−11 15 −7 3 27 31 −19 −23

−23 −19 31 −27 3 7 −15 11

−19 23 −27 −31 −7 3 11 15

−31 −27 −23 19 15 −11 3 7

−27 31 19 23 −11 −15 −7 3


,

D2 =



4 8 16 12 24 20 32 28

−8 4 12 −16 20 −22 28 −32

−16 −12 4 8 −32 28 24 −20

−12 16 −8 4 28 32 −20 −24

−24 −20 32 −28 4 8 −16 12

−20 24 −28 −32 −8 4 12 16

−32 −28 −24 20 16 −12 4 8

−28 32 20 24 −12 −16 −8 4


,

D3 =



5 9 17 13 25 21 33 29

−9 5 13 −17 21 −23 29 −33

−17 −13 5 9 −33 29 25 −21

−13 17 −9 5 29 33 −21 −25

−25 −21 33 −29 5 9 −17 13

−21 25 −29 −33 −9 5 13 17

−33 −29 −25 21 17 −13 5 9

−29 33 21 25 −13 −17 −9 5


.

By using them, we obtain nested nearly orthogonal LHDs (L1;L2α) and (L1;L2β)

of 8 factors with correlation ρuv = 1/12, 529, where L1 = (DT
0 ,−DT

0 , D
T
2 ,−DT

2 , 08,

DT
1 ,−DT

1 , D
T
3 ,−DT

3 , 18, −18)
T is a nearly orthogonal L(67, 8), L2α=(DT

0 ,−DT
0 )

T

is an orthogonal L(16, 8), and L2β = (DT
2 ,−DT

2 , 08)
T is an orthogonal L(17, 8).
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Table 1. The nested nearly orthogonal LHD with 8 factors and 67 runs in
Example 3.

Run x1 x2 x3 x4 x5 x6 x7 x8 Run x1 x2 x3 x4 x5 x6 x7 x8

1 2 6 14 10 22 18 30 26 34 3 7 15 11 23 19 31 27
2 −6 2 10 −14 18 −20 26 −30 35 −7 3 11 −15 19 −21 27 −31
3 −14 −10 2 6 −30 26 22 −18 36 −15 −11 3 7 −31 27 23 −19
4 −10 14 −6 2 26 30 −18 −22 37 −11 15 −7 3 27 31 −19 −23
5 −22 −18 30 −26 2 6 −14 10 38 −23 −19 31 −27 3 7 −15 11
6 −18 22 −26 −30 −6 2 10 14 39 −19 23 −27 −31 −7 3 11 15
7 −30 −26 −22 18 14 −10 2 6 40 −31 −27 −23 19 15 −11 3 7
8 −26 30 18 22 −10 −14 −6 2 41 −27 31 19 23 −11 −15 −7 3
9 −2 −6 −14 −10 −22 −18 −30 −26 42 −3 −7 −15 −11 −23 −19 −31 −27
10 6 −2 −10 14 −18 20 −26 30 43 7 −3 −11 15 −19 21 −27 31
11 14 10 −2 −6 30 −26 −22 18 44 15 11 −3 −7 −31 27 −23 19
12 10 −14 6 −2 −26 −30 18 22 45 11 −15 7 −3 −27 −31 19 23
13 22 18 −30 26 −2 −6 14 −10 46 23 19 −31 27 −3 −7 15 −11
14 18 −22 26 30 6 −2 −10 −14 47 19 −23 27 31 7 −3 −11 −15
15 30 26 22 −18 −14 10 −2 −6 48 31 27 23 −19 −15 11 −3 −7
16 26 −30 −18 −22 10 14 6 −2 49 27 −31 −19 −23 11 15 7 −3
17 4 8 16 12 24 20 32 28 50 5 9 17 13 25 21 33 29
18 −8 4 12 −16 20 −22 28 −32 51 −9 5 13 −17 21 −23 29 −33
19 −16 −12 4 8 −32 28 24 −20 52 −17 −13 5 9 −33 29 25 −21
20 −12 16 −8 4 28 32 −20 −24 53 −13 17 −9 5 29 33 −21 −25
21 −24 −20 32 −28 4 8 −16 12 54 −25 −21 33 −29 5 9 −17 13
22 −20 24 −28 −32 −8 4 12 16 55 −21 25 −29 −33 −9 5 13 17
23 −32 −28 −24 20 16 −12 4 8 56 −33 −29 −25 21 17 −13 5 9
24 −28 32 20 24 −12 −16 −8 4 57 −29 33 21 25 −13 −17 −9 5
25 −4 −8 −16 −12 −24 −20 −32 −28 58 −5 −9 −17 −13 −25 −21 −33 −29
26 8 −4 −12 16 −20 22 −28 32 59 9 −5 −13 17 −21 23 −29 33
27 16 12 −4 −8 32 −28 −24 20 60 17 13 −5 −9 33 −29 −25 21
28 12 −16 8 −4 −28 −32 20 24 61 13 −17 9 −5 −29 −33 21 25
29 24 20 −32 28 −4 −8 16 −12 62 25 21 −33 29 −5 −9 17 −13
30 20 −24 28 32 8 −4 −12 −16 63 21 −25 29 33 9 −5 −13 −17
31 32 28 24 −20 −16 12 −4 −8 64 33 29 25 −21 −17 13 −5 −9
32 28 −32 −20 −24 12 16 8 −4 65 29 −33 −21 −25 13 17 9 −5
33 0 0 0 0 0 0 0 0 66 1 1 1 1 1 1 1 1

67 −1 −1 −1 −1 −1 −1 −1 −1

Note: The entire array is a nearly orthogonal L(67, 8) with correlation ρuv = 1/12, 529, L1; the

subarray above the dashed line is an orthogonal L(16, 8), L2α; and the subarray from Run 17

to Run 33 is an orthogonal L(17, 8), L2β .

The generated design (L1;L2α) is a nested nearly orthogonal L((67, 16), 8), and

(L1;L2β) is a nested nearly orthogonal L((67, 17), 8). These are given in Table 1.
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5. Extensions and Concluding Remarks

Nested Latin hypercube designs (LHDs) are useful for sequentially running

a computer model, validating a computer model, and solving stochastic opti-

mization problems (Qian (2009)). We propose a new class of nested orthogonal

and nearly orthogonal LHDs with two layers. Extensions can be made in two

directions. First, if a ≥ 4 is an even integer, it is easy to construct nested or-

thogonal and nested nearly orthogonal LHDs with multiple layers by extending

our algorithms, as in the following example.

Example 4 (m = 4). We construct nested nearly orthogonal LHDs with four

layers. Take vectors A1 = b + a, A2 = b + 3a, A3 = b + 5a, A4 = b + 7a.

For a = 4, and b = 0,±1,±2, 3, 4, 5, the eight corresponding orthogonal ma-

trices are D0, D±1, D±2, D3, D4, and D5. We obtain 4-layer nested nearly or-

thogonal LHDs (H;H3;H2;Hα) and (H;H3;H2;Hβ) with 4 factors, where H =

(−DT
0 , D

T
0 ,−DT

4 , 04, D
T
4 ,−DT

−2, D
T
−2,−DT

2 , D
T
2 ,−DT

−1, D
T
−1,−DT

1 , D
T
1 ,−DT

3 , D
T
3 ,

−DT
5 , D

T
5 , 14,−14)

T is a nearly orthogonal L(67, 4) with ρuv = 1/12, 529; H3 =

(−DT
0 , D

T
0 ,−DT

4 , 04, D
T
4 ,−DT

−2, D
T
−2,−DT

2 , D
T
2 )

T is an orthogonal L(33, 4); H2=

(−DT
0 , D

T
0 ,−DT

4 , 04, D
T
4 )

T is an orthogonal L(17, 4); Hα = (−DT
0 , D

T
0 )

T is an

orthogonal L(8, 4); and Hβ = (−DT
4 , 04, D

T
4 )

T is an orthogonal L(9, 4). The

resulting design is displayed in Table 2.

As well, the run size of nested (nearly) orthogonal LHDs obtained from

NOL-Algorithms and NNOL-Algorithms can be more flexible if the parameter b

in vectors with zero PAF takes other values. We rewrite NNOL-Algorithm 2 to

show such extension.

Nested nearly orthogonal LHDs Algorithm 3 (NNOL-Algorithm 2*).

Step 1. The same as Step 1 of NOL-Algorithm 2.

Step 2. For j = 0, . . . , k−1 with k being a positive integer, define Ej = (DT
amj+1,

DT
amj , D

T
amj−1, . . . , D

T
amj−(a−2))

T and L1 = (−ET
k−1, . . . ,−ET

0 ,−1m, 0m,

1m, ET
0 , . . . , E

T
k−1)

T .

Step 3. Let W1 = (L1;L2α) and W2 = (L1;L2β), where L2α and L2β have the

same form as in NOL-Algorithm 2.

Here W1 is a nested nearly orthogonal L((2amk+3, 2mk+1),m) and W2 is a

nested nearly orthogonal L((2amk+3, 2mk),m), where L1 is a nearly orthogonal

LHD with correlation ρuv = 6/[(amk+1)(amk+2)(2amk+3)] for any two distinct

columns u and v, L2α, and L2β are orthogonal LHDs with m factors and 2mk+1

and 2mk runs, respectively. NNOL-Algorithm 2* becomes NNOL-Algorithm 2

if we take k = 1.
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Table 2. The nested nearly orthogonal LHD with four layers in Example 4.

Run x1 x2 x3 x4 Run x1 x2 x3 x4 Run x1 x2 x3 x4

1 −4 −12 −20 −28 24 −18 26 2 −10 47 −13 5 −29 21
2 12 −4 28 −20 25 −26 −18 10 2 48 −21 29 5 −13
3 20 −28 −4 12 26 −6 −14 −22 −30 49 −29 −21 13 5
4 28 20 −12 −4 27 14 −6 30 −22 50 −7 −15 −23 −31
5 4 12 20 28 28 22 −30 −6 14 51 15 −7 31 −23
6 −12 4 −28 20 29 30 22 −14 −6 52 23 −31 −7 15
7 −20 28 4 −12 30 6 14 22 30 53 31 23 −15 −7
8 −28 −20 12 4 31 −14 6 −30 22 54 7 15 23 31
9 −8 −16 −24 −32 32 −22 30 6 −14 55 −15 7 −31 23
10 16 −8 32 −24 33 −30 −22 14 6 56 −23 31 7 −15
11 24 −32 −8 16 34 −3 −11 −19 −27 57 −31 −23 15 7
12 32 24 −16 −8 35 11 −3 27 −19 58 −9 −17 −25 −33
13 0 0 0 0 36 19 −27 −3 11 59 17 −9 33 −25
14 8 16 24 32 37 27 19 −11 3 60 25 −33 −9 17
15 −16 8 −32 24 38 3 11 19 27 61 33 25 −17 −9
16 −24 32 8 −16 39 −11 3 −27 19 62 9 17 25 33
17 −32 −24 16 8 40 −19 27 3 −11 63 −17 9 −33 25
18 −2 −10 −18 −26 41 −27 −19 11 3 64 −25 33 9 −17
19 10 −2 26 −18 42 −5 −13 −21 −29 65 −33 −25 17 9
20 18 −26 −2 10 43 13 −5 29 −21 66 1 1 1 1
21 26 18 −10 −2 44 21 −29 −5 13 67 −1 −1 −1 −1
22 2 10 18 26 45 29 21 −13 −5
23 −10 2 −26 18 46 5 13 21 29

Note: The Hα, Hβ , H2, H3 and H correspond to runs 1−8, 9−17, 1−17, 1−33 and 1−67,

respectively.

Example 5 (m = 4). For a = 3, consider the vectors Ab
i = b + ai for i =

1, 2, 3, 4 in Corollary 1 with zero PAF. We can construct nested nearly orthogonal

L((24k + 3, 8k + 1), 4) for any positive integer k. Without loss of generality, we

take k = 1, so b = 1, 0,−1. With the orthogonal matrices

D1 =


4 7 10 13

−7 4 −13 10

−10 13 4 −7

−13 −10 7 4

 , D0 =


3 6 9 12

−6 3 −12 9

−9 12 3 −6

−12 −9 6 3

 ,

D−1 =


2 5 8 11

−5 2 −11 8

−8 11 2 −5

−11 −8 5 2

 ,

a nested nearly orthogonal L((27, 9), 4) can be obtained as (L1;L2α), according to

NNOL-Algorithm 2, where L1 = (−DT
0 , 04, D

T
0 ,−DT

−1, D
T
−1,−DT

1 , D
T
1 ,−14, 14)

T

is a nearly orthogonal L(27, 4) with correlation ρuv = 1/819, and L2α = (−DT
0 , 04,

DT
0 )

T is an orthogonal L(9, 4).
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Table 3. The nested nearly orthogonal LHDs with 4 factors and 24k+3 runs
in Example 5.

Run x1 x2 x3 x4 Run x1 x2 x3 x4 Run x1 x2 x3 x4

1 −15 −18 −21 −24 18 −2 −5 −8 −11 34 −16 −19 −22 −25
2 18 −15 24 −21 19 5 −2 11 −8 35 19 −16 25 −2
3 21 −24 −15 18 20 8 −11 −2 5 36 22 −25 −16 19
4 24 21 −18 −15 21 11 8 −5 −2 37 25 22 −19 −16
5 −3 −6 −9 −12 22 2 5 8 11 38 16 19 22 25
6 6 −3 12 −9 23 −5 2 −11 8 39 −19 16 −25 22
7 9 −12 −3 6 24 −8 11 2 −5 40 −22 25 16 −19
8 12 9 −6 −3 25 −11 −8 5 2 41 −25 −22 19 16
9 0 0 0 0 26 −4 −7 −10 −13 42 −14 −17 −20 −23
10 3 6 9 12 27 7 −4 13 −10 43 17 −14 23 −20
11 −6 3 −12 9 28 10 −13 −4 7 44 20 −23 −14 17
12 −9 12 3 −6 29 13 10 −7 −4 45 23 20 −17 −14
13 −12 −9 6 3 30 4 7 10 13 46 14 17 20 23
14 15 18 21 24 31 −7 4 −13 10 47 −17 14 −23 20
15 −18 15 −24 21 32 −10 13 4 −7 48 −20 23 14 −17
16 −21 24 15 −18 33 −13 −10 7 4 49 −23 −20 17 14
17 −24 −21 18 15 50 −1 −1 −1 −1

51 1 1 1 1

Note: L1 corresponds to runs 5–13, 18–33 and 50–51; L2α corresponds to runs 5–13; L′
1 corre-

sponds to runs 1–51; L′
2α corresponds to runs 1–17.

For k = 2, b = 1, 0,−1, 13, 12, 11. Using D1, D0, D−1, and the orthogonal

matrices

D13 =


16 19 22 25

−19 16 −25 22

−22 25 16 −19

−25 −22 19 16

 , D12 =


15 18 21 24

−18 15 −24 21

−21 24 15 −18

−24 −21 18 15

 ,

D11 =


14 17 20 23

−17 14 −23 20

−20 23 14 −17

−23 −20 17 14

 ,

a nested nearly orthogonal L((51, 17), 4) can be obtained as (L′
1;L

′
2α), where L

′
1 =

(−DT
12, −DT

0 , 04, D
T
0 , D

T
12,−DT

−1, D
T
−1,−DT

1 , D
T
1 ,−DT

13, D
T
13,−DT

11, D
T
11,−14, 14)

T

is a nearly orthogonal L(51, 4) with correlation ρuv = 1/5, 525 and L′
2α = (−DT

12,

−DT
0 , 04, D

T
0 , D

T
12)

T is an orthogonal L(17, 4). The generated nested LHDs are

given in Table 3.

Some vectors for constructing such designs are listed in Appendix B. They are

obtained by the algorithm provided by Georgiou and Efthimiou (2014). Since any

full fold-over design is 3-orthogonal (Georgiou, Koukouvinos, and Liu (2014)),
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Table 4. The proposed nested orthogonal and nearly orthogonal LHDs as
well as those given in Yang, Liu, and Lin (2014).

u (n1, . . . , nu) a Method

2 (2am+ 1, 2m+ 1) a ≥ 2 Theorem 1

2 (2am+ 1, 2m) a ≥ 2, even Theorem 1

2 (4m+ 1, 2m) a ≥ 2 Corollary 1

YLL(2014)

m = 2s,

s ≥ 1

2 (4m+ 1, 2m+ 1) a ≥ 2 Corollary 1

s+ 1 (m2s+1 + 1,m2s + 1, . . . , 4m+ 1, 2m) 2s Theorem 3

s+ 1 (m2s+1 + 1,m2s + 1, . . . , 4m+ 1, 2m+ 1) 2s Theorem 3

2 (4am+ 1, 2m+ 1) a ≥ 1 Theorem 1(i)

2 (4am+ 1, 2m) a ≥ 1 Theorem 1(i)

2 (2am+ 1, 2m) a ≥ 2, even Theorem 1(ii)

2 (2am+ 1, 2m+ 1) a ≥ 2 Theorem 1(ii)

2 (4m+ 1, 2m+ 1) a ≥ 2 Theorem 1(ii)

2 (4m+ 1, 2m) a ≥ 2, even Theorem 1(ii)

2 (4m+ 1, 2m) a ≥ 1 Theorem 1(i)

2 (4m+ 1, 2m+ 1) a ≥ 1 Theorem 1(i)

2 (4am+ 3, 2m+ 1)∗ a ≥ 2 Theorem 2(i)

2 (4am+ 3, 2m)∗ a ≥ 2 Theorem 2(i)

NEW

m = 2, 4,

8, 12, 16,

20, 24

2 (2am+ 3, 2m)∗ a ≥ 2, even Theorem 2(ii)

2 (2am+ 3, 2m+ 1)∗ a ≥ 2 Theorem 2(ii)

t+ 3 (4am+ 1, 2t+2m+ 1, 2t+1m+ 1, . . . , 4m+ 1, 2m) a ̸= 2q , even Section 5

t+ 3 (4am+ 1, 2t+2m+ 1, 2t+1m+ 1, . . . , 4m+ 1, 2m+ 1) a ̸= 2q , even Section 5

t+ 3 (4am+ 3, 2t+2m+ 1, 2t+1m+ 1, . . . , 4m+ 1, 2m)∗ a ̸= 2q , even Section 5

t+ 3 (4am+ 3, 2t+2m+ 1, 2t+1m+ 1, . . . , 4m+ 1, 2m+ 1)∗ a ̸= 2q , even Section 5

t+ 2 (4am+ 1, 2t+1m+ 1, 2tm+ 1, . . . , 4m+ 1, 2m) a = 2q Section 5

t+ 2 (4am+ 1, 2t+1m+ 1, 2tm+ 1, . . . , 4m+ 1, 2m+ 1) a = 2q Section 5

t+ 2 (4am+ 3, 2t+1m+ 1, 2tm+ 1, . . . , 4m+ 1, 2m)∗ a = 2q Section 5

t+ 2 (4am+ 3, 2t+1m+ 1, 2tm+ 1, . . . , 4m+ 1, 2m+ 1)∗ a = 2q Section 5

Note: The symbol ∗ in the third column means that the corresponding design is a nested nearly orthogonal

LHD; t = max{i : 2i|a}, x|y denotes y is divisible by x; q ≥ 2; Yang, Liu, and Lin (2014) refers to Yang, Liu,

and Lin (2014).

the resulting nested orthogonal and nearly orthogonal LHDs satisfy the desirable

property that the sum of the elementwise product of any three columns is zero.

Such designs guarantee that the estimate of each linear effect is uncorrelated

with all second-order effects, in addition to exactly or nearly uncorrelated with

all other linear effects.

The new nested orthogonal LHDs (nested nearly orthogonal LHDs), as well

as the nested orthogonal LHDs given by Yang, Liu, and Lin (2014), are listed

in Table 4. It can be seen there that the designs we constructed have a flexible

number of runs and factors. In particular, we can construct nested orthogonal

LHDs with 12, 20, and 24 factors and nested nearly orthogonal LHDs with 2,

4, 8, 12, 16, 20, and 24 factors and a low correlation between any two distinct

columns.
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Appendix A: Proofs

A.1. Proof of Theorem 1

Without loss of generality, we only consider r = 4 (four vectorsAb
1, A

b
2, A

b
3, A

b
4).

For r = 2 or 8, the proof is similar.
(i) It is obvious that L2α ⊂ L1 and L2β ⊂ L1 hold from the definitions of

L1, L2α, and L2β in NOL-Algorithm 1. We show that the entries of each column
of L1, L2α, and L2β are equally spaced. It is easy to verify that the absolute
values of the entries in each column of E are {1, 2, . . . , 2am}. This indicates that
the entries in each column of L1 are {0,±1,±2, . . . ,±2am}. From the definition
of Db, the entries in each column of L2α and L2β are {±a,±3a, . . . ,±(2m− 1)a}
and {0,±2a,±4a, . . . ,±2am}, respectively. Thus, both (L1;L2α) and (L1;L2β)
are nested LHDs. The orthogonality of L1, L2α, and L2β can be easily obtained
by noting that the set of vectors {Ab

1, A
b
2, A

b
3, A

b
4} has zero PAF.

(ii) The proof of (ii) is similar to that of (i) and is thus omitted.

A.2. Proof of Theorem 2

Similar to the proof of Theorem 1, we only consider r = 4.

(i) It is obvious that L2α ⊂ L1 and L2β ⊂ L1 hold from the definitions of L1, L2α,
and L2β in NNOL-Algorithm 1.

We show that the entries of each column of L1, L2α, and L2β are equally
spaced. From the definition of Db and E, it is easy to verify that the entries in
each column of L1, L2α and L2β are {0,±1,±2, . . . ,±(2am+ 1)}, {±a,±3a, . . .,
±(2m − 1)a}, and {0,±2a,±4a, . . . ,±2am}, respectively. Thus, both (L1;L2α)
and (L1;L2β) are nested LHDs.

From the orthogonality of Db, we have

LT
1 L1 = 2ETE + 2Jm = 2

( 2am+1∑
i=1

i2 − 1
)
Im + 2Jm

=
((2am+ 1)(2am+ 2)(4am+ 3)

3
− 2

)
Im + 2Jm,
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where Im is the identity matrix of order m and Jm is the m × m matrix with

all entries unity. Obviously ρuv = 6/[(2am+ 1)(2am+ 2)(4am+ 3)] for any two

distinct columns u and v of L1. Thus, L1 is a nearly orthogonal LHD. From the

definition of Db, we know that

LT
2αL2α =

2a2m(2m+ 1)(2m− 1)

3
Im and LT

2βL2β =
2a2m(2m+ 1)(2m+ 2)

3
Im.

Thus we obtain the near orthogonality of L1 and the orthogonality of L2α and

L2β.

(ii) Similar to the proof of (i), consider L1, L2α, and L2β given in NNOL-

Algorithm 2. Since the entries of L1 are {0,±1, . . . ,±(am+1)}, ρuv = 6/[(am+

1)(am+2)(2am+3)], where u and v are any two distinct columns of L1. Follow-

ing the proof of (i), (L1;L2α) is the desired nested nearly orthogonal L((2am +

3, 2m + 1),m) and (L1;L2β) is a nested nearly orthogonal L((2am + 3, 2m),m)

with correlation ρuv = 6/[(am + 1)(am + 2)(2am + 3)], for any two distinct

columns u and v of L1.

Appendix B: Vectors with Zero PAF Used in the Algorithms

Table B.1. General vectors with zero PAF used in NOL-Algorithm 1 and
NNOL-Algorithm 1.

Number
Needed vectors

of factors

2 Ab
1 = (b+ a), Ab

2 = (b+ 3a)

4 Ab
1 = (b+ a), Ab

2 = (b+ 3a), Ab
3 = (b+ 5a), Ab

4 = (b+ 7a)

8 Ab
i = (b+ (2i− 1)a), i = 1, . . . , 8

12
Ab

1 = (b+ 15a,−(b+ 5a), b+ 19a), Ab
2 = (b+ 17a,−(b+ 21a), b+ 23a),

Ab
3 = (b+ a, b+ 3a,−(b+ 7a)), Ab

4 = (b+ 9a, b+ 11a, b+ 13a)

16
Ab

1 = (b+ a, b+ 3a), Ab
2 = (b+ 5a,−(b+ 7a)), Ab

3 = (b+ 9a,−(b+ 11a)),

Ab
4 = (b+13a, b+15a), Ab

5 = (b+17a,−(b+19a)), Ab
6 = (b+21a, b+23a),

Ab
7 = (b+ 25a, b+ 27a), Ab

8 = (b+ 29a,−(b+ 31a))

20
Ab

1 = (b+21a, b+5a,−(b+27a), b+29a, b+23a), Ab
2 = (b+25a, b+31a,

b+ 33a, b+ 35a,−(b+ 37a)), Ab
3 = (b+ 39a, b+ a,−(b+ 3a),−(b+ 7a),

−(b+ 9a)), Ab
4 = (b+ 11a, b+ 13a,−(b+ 15a), b+ 17a,−(b+ 19a))

24

Ab
1 = (b+ a, b+ 27a, b+ 3a), Ab

2 = (b+ 5a, b+ 7a,−(b+ 9a)),

Ab
3 = (b+11a,−(b+13a),−(b+15a)), Ab

4 = (b+17a, b+19a,−(b+21a)),

Ab
5 = (b+ 23a,−(b+ 25a), b+ 29a), Ab

6 = (b+ 31a, b+ 33a,−(b+ 35a)),

Ab
7 = (b+ 37a, b+ 39a, b+ 41a), Ab

8 = (b+ 43a, b+ 45a,−(b+ 47a))
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Table B.2. General vectors with zero PAF used in NOL-Algorithm 2 and
NNOL-Algorithm 2.

Number
Needed vectors

of factors

2 Ab
1 = (b+ a), Ab

2 = (b+ 2a)

4 Ab
1 = (b+ a), Ab

2 = (b+ 2a), Ab
3 = (b+ 3a), Ab

4 = (b+ 4a)

8 Ab
i = (b+ ia), i = 1, . . . , 8

12
Ab

1 = (b+ 8a,−(b+ 3a), b+ 10a), Ab
2 = (b+ 9a,−(b+ 11a), b+ 12a),

Ab
3 = (b+ a, b+ 2a,−(b+ 4a)), Ab

4 = (b+ 5a, b+ 6a, b+ 7a)

16

Ab
1 = (b+ a, b+ 2a), Ab

2 = (b+ 3a,−(b+ 4a)), Ab
3 = (b+ 5a,−(b+ 6a)),

Ab
4 = (b+ 7a, b+ 8a), Ab

5 = (b+ 9a,−(b+ 10a)), Ab
6 = (b+ 11a, b+ 12a),

Ab
7 = (b+ 13a, b+ 14a), Ab

8 = (b+ 15a,−(b+ 16a))

20
Ab

1 = (b+ 11a, b+ 3a,−(b+ 14a), b+ 15a, b+ 12a),Ab
2 = (b+ 13a,

b+ 16a, b+ 17a, b+ 18a,−(b+ 19a)), Ab
3 = (b+ 20a, b+ a,−(b+ 2a),

−(b+ 4a),−(b+ 5a)), Ab
4 = (b+ 6a, b+ 7a,−(b+ 8a), b+ 9a,−(b+ 10a))

24

Ab
1 = (b+ a, b+ 14a, b+ 2a), Ab

2 = (b+ 3a, b+ 4a,−(b+ 5a)),

Ab
3 = (b+ 6a,−(b+ 7a),−(b+ 8a)), Ab

4 = (b+ 9a, b+ 10a,−(b+ 11a)),

Ab
5 = (b+ 12a,−(b+ 13a), b+ 15a), Ab

6 = (b+ 16a, b+ 17a,−(b+ 18a)),

Ab
7 = (b+ 19a, b+ 20a, b+ 21a), Ab

8 = (b+ 22a, b+ 23a,−(b+ 24a))

Appendix C: Constructed Designs in Example 2

C.1. D0 and D−1 in Example 2

D0

22 6−28 30 24−38 36 34 32 26−10 −8 −4 2 40−20 18−16 14 12
24 22 6−28 30 36 34 32 26−38 −8 −4 2 40−10 18−16 14 12−20
30 24 22 6−28 34 32 26−38 36 −4 2 40−10 −8−16 14 12−20 18

−28 30 24 22 6 32 26−38 36 34 2 40−10 −8 −4 14 12−20 18−16
6−28 30 24 22 26−38 36 34 32 40−10 −8 −4 2 12−20 18−16 14
38−36−34−32−26 22 6−28 30 24−14 16−18 20 12 2 −4 −8−10 40

−36−34−32−26 38 24 22 6−28 30 16−18 20 12−14 −4 −8−10 40 2
−34−32−26 38−36 30 24 22 6−28−18 20 12−14 16 −8−10 40 2 −4
−32−26 38−36−34−28 30 24 22 6 20 12−14 16−18−10 40 2 −4 −8
−26 38−36−34−32 6−28 30 24 22 12−14 16−18−29 40 2 −4 −8−10
10 8 4 −2−40 14−16 18−20 12 22 6−28 30 24−32−34−36 38−26
8 4 −2−40 10−16 18−20 12 14 24 22 6−28 30−34−36 38−26−32
4 −2−40 10 8 18−20 12 14−16 30 24 22 6−28−36 38−26−32−34

−2−40 10 8 4−20 12 14−16 18−28 30 24 22 6 38−26−32−34−36
−40 10 8 4 −2 12 14−16 18−20 6−28 30 24 22−26−32−34−36 38
20−18 16−14−12 −2 4 8 10−40 32 34 36−38 26 22 6−28 30 24

−18 16−14−12 20 4 8 10−40 −2 34 36−38 26 32 24 22 6−28 30
16−14−12 20−18 8 10−40 −2 4 36−38 26 32 34 30 24 22 6−28

−14−12 20−18 16 10−40 −2 4 8−38 26 32 34 36−28 30 24 22 6
−12 20−18 16−14−40 −2 4 8 10 26 32 34 36−38 6−28 30 24 22
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D−1

21 5−27 29 23−37 35 33 31 25 −9 −7 −3 1 39−19 17−15 13 11
23 21 5−27 29 35 33 31 25−37 −7 −3 1 39 −9 17−15 13 11−19
29 23 21 5−27 33 31 25−37 35 −3 1 39 −9 −7−15 13 11−19 17

−27 29 23 21 5 31 25−37 35 33 1 39 −9 −7 −3 13 11−19 17−15
5−27 29 23 21 25−37 35 33 31 39 −9 −7 −3 1 11−19 17−15 13
37−35−33−31−25 21 5−27 29 23−13 15−17 19 11 1 −3 −7 −9 39

−35−33−31−25 37 23 21 5−27 29 15−17 19 11−13 −3 −7 −9 39 1
−33−31−25 37−35 29 23 21 5−27−17 19 11−13 15 −7 −9 39 1 −3
−31−25 37−35−33−27 29 23 21 5 19 11−13 15−17 −9 39 1 −3 −7
−25 37−35−33−31 5−27 29 23 21 11−13 15−17 19 39 1 −3 −7 −9

9 7 3 −1−39 13−15 17−19 11 21 5−27 29 23−31−33−35 37−25
7 3 −1−39 9−15 17−19 11 13 23 21 5−27 29−33−35 37−25−31
3 −1−39 9 7 17−19 11 13−15 29 23 21 5−27−35 37−25−31−33

−1−39 9 7 3−19 11 13−15 17−27 29 23 21 5 37−25−31−33−35
−39 9 7 3 −1 11 13−15 17−19 5−27 29 23 21−25−31−33−35 37
19−17 15−13−11 −1 3 7 9−39 31 33 35−37 25 21 5−27 29 23

−17 15−13−11 19 3 7 9−39 −1 33 35−37 25 31 23 21 5−27 29
15−13−11 19−17 7 9−39 −1 3 35−37 25 31 33 29 23 21 5−27

−13−11 19−17 15 9−39 −1 3 7−37 25 31 33 35−27 29 23 21 5
−11 19−17 15−13−39 −1 3 7 9 25 31 33 35−37 5−27 29 23 21
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