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Abstract: We consider the paradigm of marginal coordinate tests (Cook (2004))
for model-free variable selection. To combine the strength of existing tests based
on sliced inverse regression and sliced average variance estimation, we design a
new marginal coordinate test via directional regression. Given the method-specific
marginal coordinate test statistics, a maximum ratio criteria is proposed to facil-
itate model-free variable selection. Under mild conditions, the variable-selection
consistency is guaranteed when n goes to ∞.
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1. Introduction

While most variable selection approaches are based on some model, and
selecting active predictors is part of the overall process of fitting a model based
on the data, one can argue the importance of identifying the explanatory variables
that have detectable effects without assuming any model. See, for example, Cox
and Snell (1974). Let X = (X1, . . . , Xp)

T be the p-dimensional predictor and Y
be the univariate response. Model-free variable selection aims to select a subset
of the predictors without assuming the functional form between Y and X, such
that the selected predictors are sufficient to predict F (Y |X), the conditional
distribution of Y given X. Let I = {1, . . . , p} be the full index set. The active
set A and the the inactive set Ac are defined as

A = {k ∈ I : F (Y | X) functionally depends on Xk} and

Ac = {k ∈ I : F (Y | X) does not functionally depend on Xk}.

Let XA = {Xi : i ∈ A} denote the vector that contains all the active predictors.
Then we have that Y is independent of X conditioning on XA. We write Y ⊥⊥
X|XA, where “⊥⊥” means independency.

The hypothesis testing paradigm for model-free variable selection was first
introduced in Cook (2004). To test wether the ith predictor is active or not, one
can consider

H0 : i ∈ Ac versus Ha : i ∈ A. (1.1)
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This is known as the marginal coordinate hypothesis in Cook (2004). Several

tests for (1.1) have been introduced in the literature. See, for example, Cook

(2004) and Shao, Cook, and Weisberg (2007). Based on a chosen test for (1.1), Li,

Cook, and Nachtsheim (2005) suggested a sequential test approach for model-free

variable selection. This procedure can be viewed as an adaptation of the standard

normal theory backward elimination procedure, and it replaces the t-test with

the marginal coordinate test. In the presence of nonlinear link functions between

Y and X, Li, Cook, and Nachtsheim (2005) demonstrated that the sequential test

procedure performs better than model-based variable selection methods such as

AIC, BIC, and the classical backward elimination based on the t-test.

We address two limitations of this paradigm. First, the existing tests for

(1.1) are based on sliced inverse regression (SIR) (Li (1991)) and sliced aver-

age variance estimation (SAVE) (Cook and Weisberg (1991)). As two popular

methods for sufficient dimension reduction (Li (1991); Cook (1998)), the short-

comings of SIR and SAVE are well-known in the literature: SIR does not work

well when the link function between the response and the predictor is symmet-

ric, and SAVE may not be very effective with monotone link functions. These

shortcomings could potentially be inherited by their respective marginal coor-

dinate tests. This motivates us to propose the marginal coordinate test based

on directional regression. Directional regression (Li and Wang (2007)) is an ef-

fective sufficient dimension reduction method that inherently combines SIR and

SAVE. Not surprisingly, the newly designed directional regression-based test can

be viewed as an approximate combination of the SIR-based test in Cook (2004)

and the SAVE-based test in Shao, Cook, and Weisberg (2007), and we expect it

to work well across a wide range of link functions.

The second limitation of this paradigm is the need of implementing sequential

tests for model-free variable selection. Without loss of generality, denote Ti as the

test statistic for H0 : i ∈ Ac versus Ha : i ∈ A based on SIR, SAVE, or directional

regression. The asymptotic null distribution of the method-specific Ti is a sum of

weighted χ2(1) distributions under mild conditions, where χ2(1) denotes a chi-

square distribution with one degree of freedom, and the unknown weights have

to be estimated in practice. Implementing sequential tests based on Ti can be

time-consuming, especially when the sample size n is large. Furthermore, it is not

clear whether the backward elimination procedure is variable-selection consistent

when n goes to ∞. This leads to the second contribution of the paper: a novel

maximum ratio criteria (MRC) for model-free variable selection. This criteria is

quite general, and can be combined with marginal coordinate tests based on any

of SIR, SAVE and directional regression. We can bypass approximation of the

asymptotic null distribution of Ti, as only the ratios of consecutively ranked test

statistics Ti are needed. The variable-selection consistency of the MRC procedure

is theoretically justified under mild conditions.
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The rest of the paper is organized as follows. In Section 2, we briefly review

existing marginal coordinate tests in the sufficient dimension reduction literature.

The new test based on directional regression is proposed in Section 3. Maximum

ratio criteria is introduced in Section 4 to facilitate model-free variable selection.

We report numerical studies in Section 5 and conclude the paper with some

discussions in Section 6.

2. Review of Existing Marginal Coordinate Tests

The marginal coordinate hypothesis H0 : i ∈ Ac versus Ha : i ∈ A is closely

related to the concept of sufficient dimension reduction. Sufficient dimension

reduction (Li (1991); Cook (1998)) aims to find linear combinations of X, such

that Y is independent of X given these linear combinations. Specifically, the goal

is to identify β ∈ Rp×d with the minimum column space satisfying Y ⊥⊥ X|βTX

for some d < p. This minimum column space is then referred to as the central

space of Y versus X and is denoted by SY |X. Under mild regularity conditions

(Yin, Li, and Cook (2008)), the central space exists and is unique. We say that

β is the basis of the X-scale central space with Span(β) = SY |X. Here Span(β)

denotes the column space of β.

The central space has an important invariance property. Let E(X) = µ,

Var (X) = Σ, and Z = Σ−1/2(X − µ). Let SY |Z denote the central space of

Y versus the standardized predictor Z. Suppose SY |Z has basis η such that

Span(η) = SY |Z. The invariance property states that β = Σ−1/2η. This in-

variance property can facilitate our discussions about the marginal coordinate

tests. As we will see, one can work with the Z-scale central space estimation and

achieve the X-scale coordinate test due to the invariance property.

For i = 1, . . . , p, let ei ∈ Rp, where the ith element of ei is 1 and all other

elements are zero. For β and η denoting the bases for the X-scale central space

SY |X and the Z-scale central space SY |Z, respectively, we have i ∈ Ac if and

only if eT

i β = 0. See Lemma A.2 in the Appendix. It follows that testing

H0 : i ∈ Ac versus Ha : i ∈ A in (1.1) is equivalent to testing H0 : eT

i β = 0

versus Ha : eT

i β ̸= 0. Due to invariance, we consider

H0 : e
T

i Σ
−1/2η = 0 versus Ha : eT

i Σ
−1/2η ̸= 0. (2.1)

Here η ∈ Rp×d can be replaced with any matrix that has the same column space

as η. The key to the marginal coordinate test thus becomes estimation of the

Z-scale central space SY |Z = Span(η).

Let {J1, . . . , JH} be a measurable partition of the sample space of Y . Let

Rh = I(Y ∈ Jh) be the indicator function of Y belonging to the hth slice. For h =

1, . . . , H, write ph = E(Rh), Uh = Σ1/2E(ZRh), and Vh = Σ1/2E(ZZTRh)Σ
1/2.
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Define the SIR and SAVE kernel matrices asMSIR =
∑H

h=1 p
−1
h Σ−1/2UhU

T

hΣ
−1/2

and MSAVE =
∑H

h=1 phB
2
h, where Bh = Σ−1/2(p−1

h Vh − Σ − p−2
h UhU

T

h)Σ
−1/2.

We list some common assumptions in the sufficient dimension reduction literature
as follows.

(C1) Linear conditional mean condition: E(Z|ηTZ) is linear in ηTZ.

(C2) Constant conditional variance condition: Var (Z|ηTZ) is a constant.

(C3) Coverage condition for SIR: Span{Σ−1/2Uh : h = 1, . . . , H} = SY |Z.

(C4) Coverage condition for SAVE: for any nonzero η ∈ SY |Z, at least one of
Var {E(ηTZ|Y )} > 0 and Var {Var (ηTZ|Y )} > 0 holds true.

Condition (C1) holds true if Z has an elliptically-contoured distribution. Both
(C1) and (C2) are guaranteed when Z is normally distributed. More discussions
about (C1) and (C2) can be found in Li and Dong (2009), Dong and Li (2010).
Refer to Cook (2004) about (C3). The coverage condition (C4) for SAVE has been
discussed in Shao, Cook, and Weisberg (2007), and more insights are provided in
Li and Wang (2007). Coverage condition (C4) is generally considered to be very
mild. Meanwhile, coverage condition (C3) can be violated in the case when the
link function between Y and Z is symmetric.

Under (C1), Li (1991) showed that Span(MSIR) ⊆ SY |Z. With the ad-
ditional (C3), we have Span(MSIR) = SY |Z. From the discussions following

(2.1), we know eT

i Σ
−1/2MSIRΣ−1/2ei = 0 for i ∈ Ac. Given an i.i.d. sam-

ple (X1, Y1), . . ., (Xn, Yn), we can calculate the sample estimators p̂h, Ûh,
V̂h, µ̂, Σ̂ and M̂SIR. For example, Ûh = n−1

∑n
i=1(Xi − µ̂)I(Yi ∈ Jh) and

M̂SIR =
∑H

h=1 p̂
−1
h Σ̂

−1/2
ÛhÛ

T

hΣ̂
−1/2

. The SIR based test statistic for (1.1) is
then n times the sample estimator of eT

i Σ
−1/2MSIRΣ−1/2ei,

T SIR
i = n

H∑
h=1

eT

i p̂
−1
h Σ̂

−1
ÛhÛ

T

hΣ̂
−1

ei. (2.2)

Cook (2004) showed that T SIR
i has an asymptotic distribution that is the sum of

weighted χ2(1) under H0 : i ∈ Ac.
Cook and Weisberg (1991) proved that Span(MSAVE) ⊆ SY |Z under (C1)

and (C2). With the additional coverage condition (C4), we have Span(MSAVE) =
Span(

∑H
h=1 phB

2
h) = SY |Z. It follows that for i ∈ Ac, we have

∑H
h=1 ph(e

T

i Σ
−1/2

BhΣ
−1/2ei)

2 = 0. At the sample level, Shao, Cook, and Weisberg (2007) devel-
oped a SAVE-based test statistic for (1.1):

T SAVE
i = n

H∑
h=1

p̂h{eT

i Σ̂
−1

(p̂−1
h V̂h − Σ̂− p̂−2

h ÛhÛ
T

h)Σ̂
−1

ei}2. (2.3)
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The asymptotic distribution of T SAVE
i under H0 : i ∈ Ac is also a sum of weighted

χ2(1) distributions.

3. A New Test Based on Directional Regression

Directional regression (Li and Wang (2007)) is a popular sufficient dimen-

sion reduction method that implicitly synthesizes SIR and SAVE. Let Ahk =

E{(Z − Z̃)(Z − Z̃)T|Y ∈ Jh, Ỹ ∈ Jk}, where (Z̃, Ỹ ) is an independent copy

of (Z, Y ). The kernel matrix for directional regression is defined as MDR =∑H
h=1

∑H
k=1 phpk(2Ip −Ahk)

2. Then we have Span(MDR) ⊆ SY |Z (Li and Wang

(2007)). The kernel matrices MDR and MSAVE have similar forms. This similar-

ity motivates us to mimic the development of the SAVE-based test, and consider

a population level quantity for directional regression,

τi =
H∑

h=1

H∑
k=1

phpk{eT

i Σ
−1/2(2Ip −Ahk)Σ

−1/2ei}2. (3.1)

Obviously τi ≥ 0 from the definition. Furthermore, we have

Proposition 1. If (C1), (C2) and (C4) hold, then τi = 0 if and only if i ∈ Ac.

The next result greatly simplifies the sample level calculation.

Proposition 2. τi in (3.1) can be reexpressed as τi = 2τi,1 + 4τ2i,2, where τi,1 =∑H
h=1 ph{eT

iΣ
−1(p−1

h Vh −Σ)Σ−1ei}2 and τi,2 =
∑H

h=1 p
−1
h eT

iΣ
−1UhU

T

hΣ
−1ei.

The sample estimators of τi,1 and τi,2 are τ̂i,1 =
∑H

h=1 p̂h{eT

i Σ̂
−1

(p̂−1
h V̂h −

Σ̂)Σ̂
−1

ei}2 and τ̂i,2 =
∑H

h=1 p̂
−1
h eT

i Σ̂
−1

ÛhÛ
T

hΣ̂
−1

ei respectively. Upon closer

examination, we note that nτ̂i,2 is exactly T SIR
i defined in (2.2), and nτ̂i,1 bears

close resemblance to T SAVE
i defined in (2.3).

For h = 1, . . . , 2H, let χ2
h(1) be i.i.d. random variables with χ2(1) distribu-

tion. Let

ℓih = p
1/2
h eT

i Σ
−1(p−1

h V∗
h − p−2

h p∗hVh −Σ∗)Σ−1ei

and

gih = p
−1/2
h eT

i (Σ
−1)∗Uh + p

−1/2
h eT

i Σ
−1U∗

h,

where p∗h, U
∗
h, V

∗
h, Σ

∗ and (Σ−1)∗ are defined in the proof of Lemma 1. De-

note the eigenvalues of Cov (Li) and Cov (Gi) by ιi1, . . . , ιiH and γi1, . . . , γiH ,

respectively, where Li = (ℓi1, . . . , ℓiH)T and Gi = (gi1, . . . , giH)T. Let
D→ denote

convergence in distribution and
P→ denote convergence in probability.
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Lemma 1. Suppose the entries of E(Z|Y ) and E(ZZT|Y ) have finite second

moments. If (C1) and (C2) hold, then nτ̂i,1
D→

∑H
h=1 ιihχ

2
h(1) and nτ̂i,2

D→∑H
h=1 γihχ

2
h(1) under H0 : i ∈ Ac. If (C3) and (C4) hold in addition, then

τ̂i,1
P→ τi,1 and τ̂i,2

P→ τi,2 with τi,1 > 0 and τi,2 > 0 under Ha : i ∈ A.

Since τi = 2τi,1 + 4τ2i,2, simply multiplying its sample version by n leads

to 2nτ̂i,1 + 4nτ̂2i,2. Under H0 : i ∈ Ac, we know nτ̂i,1 = OP (1) and nτ̂2i,2 =

OP (n
−1) according to the first part of Lemma 1. Thus 2nτ̂i,1 + 4nτ̂2i,2 has the

same asymptotic distribution as 2nτ̂i,1. To keep the balance between the two

terms, we replace 4nτ̂2i,2 with 4nτ̂i,2, and define the directional regression-based

marginal coordinate test statistic TDR
i = 2nτ̂i,1+4nτ̂i,2. Here TDR

i can be viewed

as a hybrid between the SIR-based test in Cook (2004) and the SAVE-based test

in Shao, Cook, and Weisberg (2007). Since (C3) for SIR can be easily violated

when the link function between Y and X is symmetric, and SAVE may not be

as effective when the link function between Y and X is monotone, we expect the

directional regression-based test to be a safe alternative to the existing tests in

Cook (2004) and Shao, Cook, and Weisberg (2007), and that it will work well

across a wide range of link functions.

Theorem 1. Suppose the entries of E(Z|Y ) and E(ZZT|Y ) have finite sec-

ond moments, and that (C1) and (C2) hold. For i ∈ Ac, we have TDR
i

D→
2
∑2H

h=1 ωihχ
2
h(1), where {ωih, h = 1, . . . , 2H} are the eigenvalues of Cov (Wi),

and Wi = (ℓi1, . . ., ℓiH ,
√
2gi1, . . .,

√
2giH)T.

Thus under H0 : i ∈ Ac, TDR
i has the same distribution as the sum of

weighted χ2(1) distributions. The unknown weights ωih can be replaced with

their consistent sample estimators in practice.

4. The Maximum Ratio Criteria

We propose a novel maximum ratio criteria (MRC) to facilitate estimation

of the active set A. MRC can be combined with marginal coordinate tests based

on SIR, SAVE or directional regression. Let Ti be a method-specific test statistic

for H0 : i ∈ Ac versus Ha : i ∈ A. In all such tests, we reject H0 and conclude

the ith predictor is active when Ti is larger than a certain threshold, or when

the corresponding p-value is smaller than a prespecified nominal level α. Let

T(1) > T(2) > · · · > T(p) be the ordered test statistics for all p predictors. Consider

the ratio of consecutively ranked statistics ri = T(i)/T(i+1). Lemma 1 reveals that

Ti = OP (n) for i ∈ A and Ti = OP (1) for i ∈ Ac. Due to the different order

of magnitude for Ti depending on i ∈ Ac or i ∈ A, we expect that for large n,

the top-ranked test statistics belong to the active predictors, while the bottom-

ranked statistics correspond to the inactive predictors. Furthermore, we expect
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the ratio ri to be maximized when T(i) corresponds to the active predictor with

the smallest test statistic, and T(i+1) corresponds to the inactive predictor with

the largest test statistic.

To formalize this idea, we assume the cardinality of the active set is |A| = q

with q < p. Let ui be the subscript of the statistic such that it matches the ith

order statistic, or Tui = T(i). The estimator of q is thus

q̂ = arg max
i=1,...,p−1

T(i)

T(i+1)
,

and the corresponding estimator of the active set is Â = {u1, u2, . . . , uq̂}. We

remark that MRC is not applicable with q = p, when all the predictors are active.

Theorem 2. Suppose the entries of E(Z|Y ) and E(ZZT|Y ) have finite second

moments, and (C1) through (C4) hold. Then P (Â = A) → 1 as n → ∞.

Theorem 2 applies to MRC with T SIR
i , T SAVE

i , or TDR
i . For the SIR based

procedure to be variable-selection consistent, we only need (C1) and (C3). For the

SAVE-based or the directional regression-based procedure to be variable-selection

consistent, we need (C1), (C2) and (C4). While a formal marginal coordinate

test based on Ti involves estimation of unknown weights in the weighted χ2

distribution, calculating the ratios of the test statistics suffices for the MRC. An

additional benefit is that we avoid selecting the significance level α, as is required

by the existing sequential test procedure.

5. Numerical Analysis

The finite sample performances of the proposed marginal coordinate test

based on TDR
i were compared with existing marginal coordinate tests. The MRC

procedure for model-free variable selection was examined through both synthetic

data sets and the Iris data (Fisher (1936)).

5.1. Simulation studies

First we used synthetic data to demonstrate the effectiveness of the marginal

coordinate test and variable selection via directional regression. Consider the

models

I : Y = 3 sin(X1) + 3 sin(Xp) + .1ϵ,

II : Y = sgn(X1 +Xp) exp(X2 +Xp−1) + .1ϵ,

III : Y = (X1 +Xp)
2 +X2 +Xp−1 + (X3 + 1)2ϵ.

Here X = (X1, . . . , Xp)
T is multivariate normal with mean µ = 0. The predictors

are correlated, and the covariance between Xi and Xj is .5|i−j| for 1 ≤ i, j ≤ p.
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Table 1. Marginal coordinate tests. Based on 1,000 repetitions, frequencies
of rejecting H0 : i ∈ Ac with nominal 5% tests are reported.

Model n Method X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

I

100
SIR 1 0.086 0.084 0.081 0.090 0.086 0.079 0.082 0.087 1

SAVE 0.306 0.026 0.017 0.019 0.027 0.025 0.031 0.022 0.025 0.310
DR 0.959 0.024 0.027 0.026 0.033 0.035 0.038 0.026 0.023 0.949

400
SIR 1 0.060 0.052 0.064 0.058 0.060 0.067 0.062 0.058 1

SAVE 0.997 0.040 0.044 0.036 0.040 0.043 0.035 0.037 0.041 0.999
DR 1 0.033 0.042 0.035 0.038 0.046 0.039 0.037 0.049 1

II

100
SIR 1 1 0.074 0.089 0.078 0.078 0.086 0.094 1 0.999

SAVE 0.088 0.084 0.034 0.031 0.024 0.026 0.024 0.020 0.088 0.103
DR 0.893 0.906 0.034 0.034 0.027 0.025 0.023 0.026 0.913 0.870

400
SIR 1 1 0.047 0.049 0.053 0.063 0.056 0.059 1 1

SAVE 0.927 0.982 0.051 0.033 0.034 0.036 0.052 0.037 0.986 0.917
DR 1 1 0.044 0.031 0.036 0.038 0.057 0.043 1 1

III

100
SIR 0.162 0.610 0.469 0.084 0.087 0.084 0.086 0.087 0.625 0.160

SAVE 0.229 0.022 0.035 0.024 0.05 0.020 0.016 0.026 0.014 0.216
DR 0.253 0.228 0.185 0.029 0.032 0.031 0.026 0.028 0.240 0.248

400
SIR 0.408 0.997 0.976 0.062 0.058 0.063 0.062 0.063 0.999 0.446

SAVE 0.970 0.105 0.178 0.035 0.032 0.042 0.042 0.037 0.102 0.972
DR 0.982 0.975 0.881 0.043 0.034 0.050 0.043 0.046 0.967 0.978

The variance ofXi is 1 for i = 1, . . . , p. The error term ϵ is standard normal and is

independent of X. The active sets A for these models are {1, p}, {1, 2, p− 1, p},
and {1, 2, 3, p − 1, p}, respectively. Each simulation run was based on 1,000

repetitions, and we fixed the number of slices to be H = 5 in each repetition.

The choice of H = 10 led to similar results.

We compared the performance of the directional regression-based marginal

coordinate test with existing tests. For the test statistic based on directional

regression for testing H0 : i ∈ Ac v.s. Ha : i ∈ A, we have from Theorem 1 that

TDR
i

D→ 2
∑2H

h=1 ωihχ
2
h(1). Let Ki = (ω̂i1, ω̂i2, . . . , ω̂is)

T , where s = 2H and ω̂ih

is the sample estimator of ωih for h = 1, . . . , s. Let C be an m × s-dimensional

matrix of i.i.d. χ2(1) realizations. Then 2CKi is an m-dimensional vector of

i.i.d. realizations of 2
∑2H

h=1 ω̂ihχ
2
h(1). The proportion of these m realizations

larger than TDR
i is then the approximated p-value for testing H0. We reject H0

if the approximated p-value is smaller than the nominal level α. We set m = 1000

and α = .05 in all settings.

In Table 1, we report the frequencies that H0 : i ∈ Ac is rejected for each

predictor Xi. We fixed the predictor dimension at p = 10, and considered sample

sizes n = 100, 400. For all three models, the frequencies for predictors belonging

to the inactive set Ac correspond to the estimated levels, and we want them to be

close to the nominal level 0.05. On the other hand, the frequencies for predictors
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in the active set A are the estimated powers, and we want them to be close to 1.

For easy reference, the boldfaced entries in Table 1 correspond to the estimated

powers. There are some common trends across all three models. The estimated

nominal levels are never too far away from the true nominal level, as they range

from 0.017 to 0.090. As sample size increases from 100 to 400, the estimated

levels for all three methods become closer to 0.05. The SIR-based test seems to

be more liberal compared with the SAVE-based and the directional regression-

based tests. The main difference arises from the estimated powers of the tests.

Not surprisingly, the powers of all three tests improve as sample size increases.

The SIR-based test has large powers for Models I and II, but has small powers

for testing X1 and X10 in Model III even with n = 400. This is because X1 and

X10 appear in a quadratic link function in Model III, and the coverage condition

(C3) for SIR is violated in this case. The SAVE-based test has poor powers when

n = 100. In most instances, the estimated powers for SAVE increase dramatically

when n = 400. However, SAVE still has poor powers in Model III for the two

linear terms X2 and X9, as well as for X3 which appears in the error term. Our

proposed directional regression-based test has decent powers for Models I and II

with relatively small sample size n = 100, and achieves large powers for all three

models when n = 400.

The performances of maximum ratio criteria for variable selection are sum-

marized in Table 2. The frequencies of predictors X1, X2, X3, Xp−1 and Xp

being selected are reported based on 1,000 repetitions. Let Â(i) be the esti-

mated active set in the ith repetition. We also report the average model size

MS =
∑1,000

i=1 |Â(i)|/1, 000, the underfitted count UF =
∑1,000

i=1 I(A ̸⊆ Â(i)),

the correctly-fitted count CF =
∑1,000

i=1 I(A = Â(i)), and the overfitted count

OF =
∑1,000

i=1 I(A ⊂ Â(i)). We consider two combinations of sample size and

predictor dimensionality here: n = 400 with p = 10, or n =1,600 with p = 40.

Since the three models have different active predictor sets, we use boldfaced

entries to denote the truly active predictors. For a variable selection procedure

to work well, not only do we need these boldfaced entries to be close to 1, but the

average model size also has to be close to the true number of predictors |A|, which
are 2, 4, and 5 for the three models, respectively. In the case when the average

model size is different from |A|, we prefer the procedure to overfit rather than

to underfit, as missing truly active predictors oftentimes has more severe effect

on the model building. We see from Table 2 that MRC works well with all three

methods in Models I and II. In particular, MRC based on directional regression

achieves perfect selection for Models I and II when n =1,600 and p = 40. This

justifies our theoretical finding in Theorem 2. In the challenging case of Model III,

MRC based on SIR tends to miss X1 and Xp, while MRC based on SAVE tends

to miss X2, X3 and Xp−1. MRC based on directional regression does a very good
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Table 2. Maximum ratio criteria (MRC) for variable selection. Based on
1,000 repetitions, frequencies of X1, X2, X3, Xp−1 and Xp being selected,
the average model size (MS), the underfitted count (UF), the correctly-fitted
count (CF), and the overfitted count (OF) are reported.

Model Method X1 X2 X3 Xp−1 Xp MS UF CF OF

I
SIR 1 0.015 0.013 0.017 1 2.126 0 982 18

SAVE 0.993 0.197 0.216 0.217 0.996 3.687 11 641 348
DR 1 0.019 0.014 0.020 1 2.151 0 969 31

n = 400
II

SIR 1 1 0.006 1 1 4.062 0 987 13
& SAVE 0.980 0.989 0.435 0.994 0.981 6.491 31 243 726

p = 10 DR 0.999 1 0.038 1 1 4.268 1 914 85

III
SIR 0.527 0.969 0.899 0.970 0.525 5.312 543 46 411

SAVE 0.893 0.360 0.380 0.362 0.909 4.173 688 4 308
DR 0.902 0.961 0.920 0.970 0.908 6.260 172 260 568

I
SIR 1 0.002 0.002 0.002 1 2.074 0 998 2

SAVE 1 0.023 0.023 0.024 1 2.888 0 976 24
DR 1 0 0 0 1 2 0 1000 0

n = 1, 600
II

SIR 1 1 0.001 1 1 4.035 0 999 1
& SAVE 1 1 0.076 1 1 6.761 0 916 84

p = 40 DR 1 1 0 1 1 4 0 1000 0

III
SIR 0.272 0.999 0.985 1 0.280 8.264 756 104 14

SAVE 0.998 0.068 0.078 0.067 0.998 4.477 933 0 67
DR 0.999 1 0.998 1 0.999 5.373 4 983 13

job with Model III: selecting all five active predictors with high probability, it

does not suffer from serious underfitting, and has modest overfitting. In the case

of n = 1, 600 and p = 40, performing a single test H0 : i ∈ Ac versus Ha : i ∈ A
is very cumbersome, not to mention a full sequential test through backward

elimination. Performing variable selection through MRC with 1,000 repetitions,

on the other hand, can be done on a personal computer within several minutes.

5.2. Analysis of the Iris data

For the data analysis, we used the Iris data (Fisher (1936)) that can be

downloaded from the UCI machine learning repository. This data contains three

classes of irises (Setosa, Versicolour, and Virginica), with 50 observations for each

class. The four predictors are sepal length, sepal width, petal length, and petal

width. We used this analysis to demonstrate the effectiveness of our proposals

with discrete response. Denote the marginally standardized predictors as X1,

X2, X3, and X4 respectively. Without fitting a classification model, we want to

decide which predictors are sufficient to predict the response Y , the class label

of the Iris. One possibility is to implement the backward elimination procedure

(Li, Cook, and Nachtsheim (2005)) with our directional regression test. This
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Figure 1. The scatterplots of all possible pairs of predictors. ◦ denotes Iris
Setosa; × denotes Iris Versicolour, and ⋆ denotes Iris Virginica.

procedure can be viewed as an adaptation of the classical backward elimination

procedure in linear models. In the first iteration, we performed the marginal

coordinate test for H0 : i ∈ Ac versus Ha : i ∈ A based on TDR
i . The p-values

were 0.0538, 0.0601, 0.0221, and 0 for i = 1, 2, 3, 4, respectively. We see that

X2 is the least significant predictor in terms of predicting Y . At nominal level

α = .05, we conclude X2 is inactive and eliminate X2 from further analysis. In

the second iteration, we recalculated the p-values for X1, X3, and X4, obtaining

0.1280, 0.0118, and 0. Dropping X1 because 0.1280 > α, the next iteration found

that the p-values for X3 and X4 were both 0, and no variables could be further

dropped from the model. We conclude X3 and X4 are sufficient to predict Y .

The selection procedure through MRC is much more straightforward. We

do not need any iterations or the calculation of any p-values. The test statistics

for H0 : i ∈ Ac versus Ha : i ∈ A were calculated as TDR
1 = 1, 841, TDR

2 = 197,

TDR
3 = 77, 232, and TDR

4 = 74, 428. The ratios of the consecutively ranked test

statistics are r1 = 1.038, r2 = 40.42, and r3 = 9.339. Thus q̂ = argmaxi ri = 2,

and the predictors corresponding to the top-two ranked test statistics are taken

to be active. Again we conclude X3 and X4 are sufficient to predict Y . The

scatterplots between pairs of predictors are listed in Figure 1. Among all the

possible pairs, we see that X3 and X4 provide the clearest separation for the

three Iris classes.
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6. Discussion

We provide a simple maximum ratio criteria to facilitate model-free variable

selection. A related method in the sufficient dimension reduction literature is

maximal eigenvalue ratio criterion, proposed in Luo, Wang, and Tsai (2009), to

determine the dimensionality of the central space SY |X. Although the maximum

ratio criteria can be readily combined with existing marginal coordinate tests

based on SIR or SAVE, it yields the best variable selection performance when we

couple it with our directional regression-based test. The proposed test statistic

for directional regression can be viewed as a hybrid between the SIR-based test

(Cook (2004)) and the SAVE-based test (Shao, Cook, and Weisberg (2007)).

More general combination methods can be studied along the lines of Ye and Weiss

(2003). Due to the involvement of such terms as Σ−1, our proposal is not directly

applicable when p > n. Cook, Li, and Chiaromonte (2007) studied sufficient

dimension reduction without matrix inversion. Developments towards testing

predictor contribution without matrix inversion warrant further investigation.
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Appendix: proofs

Recall that Span(β) = SY |X and I = {1, . . . , p} denotes the full index set.

Suppose D ⊆ I is an index set and Dc is the complement of D in I. Let

XD = {Xi : i ∈ D} denote the vector that contains all the predictors from index

set D. Let IDc = diag{d1, . . . , dp} be the p× p dimensional diagonal matrix with

di = 1 for i ∈ Dc and di = 0 for i ∈ D.

Lemma A.1. IDcβ = 0 if and only if Y ⊥⊥ X|XD.

Proof of Lemma A.1. First the “only if” part. Let ID = diag{d1, . . . , dp}
be a p × p dimensional diagonal matrix, where di = 1 for i ∈ D, and di = 0

for i ∈ Dc. Then we have IDc + ID = Ip. Together with IDcβ = 0, we have

βTX = βTIpX = βTIDX. From the definition of SY |X, we have Y ⊥⊥ X|βTX,

which is Y ⊥⊥ X|βTIDX. As IDX involves only 0 and elements in XD, we have

Y ⊥⊥ X|XD. For the “if” part, Y ⊥⊥ X|XD implies Y ⊥⊥ X|IDX. Since β has

the smallest columns space among all those satisfying Y ⊥⊥ X|βTX, we have

SY |X = Span(β) ⊆ Span(ID). It follows immediately that IDcβ = 0.
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Lemma A.2. i ∈ Ac if and only if eT

i β = 0.

Proof of Lemma A.2. First consider the “only if” part. By definition, Y ⊥⊥
X|XA. It follows from Lemma A.1 that IAcβ = 0. For i ∈ Ac, the ith row of IAc

is eT

i . Thus we have eT

i β = 0. Now consider the “if” part. Take I{i} = diag{ei}.
Then eT

i β = 0 guarantees that I{i}β = 0. Let E = {1, . . . , i− 1, i+ 1, . . . , p}. It
follows from Lemma A.1 that Y ⊥⊥ X|XE . By the definition of the active set A,
we know A ⊆ E and i ∈ Ac.

Proof of Proposition 1. Li and Wang (2007) proved that (C1), (C2), and
(C4) guarantee Span(MDR) = SY |Z. By the invariance law of the central space,

we have Span(Σ−1/2MDRΣ−1/2) = SY |X. If i ∈ Ac, we know from Lemma A.2

that eT

i Σ
−1/2MDRΣ−1/2ei = 0. Because phpk > 0, it follows that eT

i Σ
−1/2(2Ip−

Ahk) = 0 for any h and k. From the definition of τi in (3.1), we have τi = 0 if
i ∈ Ac.

Because τi ≥ 0, to prove that τi = 0 must lead to i ∈ Ac, all we need to
show is i ∈ A indicates τi > 0. Condition (C4) guarantees that Span{(2Ip −
Ahk)

2 : h, k = 1, . . . ,H} = SY |Z, which in turn implies Span{2Ip −Ahk : h, k =

1, . . . , H} = SY |Z. From the invariance law of the central space, eT

i Σ
−1/2(2Ip −

Ahk)Σ
−1/2ei > 0 for at least one set of h and k if i ∈ A. Otherwise we get a

contradiction to the “only if” part of Lemma A.2. As a result, we have τi ≥
phpk{eT

i Σ
−1/2(2Ip −Ahk)Σ

−1/2ei}2 > 0 as long as i ∈ A.

Proof of Proposition 2. LetA(Y, Ỹ ) = E{(Z−Z̃)(Z−Z̃)T|Y, Ỹ } and ai(Y, Ỹ ) =
eT

i Σ
−1/2(2Ip − A(Y, Ỹ ))Σ−1/2ei. Then τi in (3.1) is the discretized version of

E{a2i (Y, Ỹ )}. Similarly, τi,1 and τ2i,2 are the discretized version of E[{eT

i Σ
−1/2

(E(ZZT|Y )− Ip)Σ
−1/2ei}2] and [E{eT

i Σ
−1/2E(Z|Y )ET(Z|Y )Σ−1/2ei}]2, respec-

tively. The former can be rewritten as

E[{eT

i Σ
−1/2(E(ZZT|Y )− Ip)Σ

−1/2ei}2]
= E[{eT

i Σ
−1/2E(ZZT|Y )Σ−1/2ei}2]− (eT

i Σ
−1ei)

2.

All we need is to prove is that

E{a2i (Y, Ỹ )} = 2E[{eT

i Σ
−1/2E(ZZT|Y )Σ−1/2ei}2]− 2(eT

i Σ
−1ei)

2

+4[E{eT

i Σ
−1/2E(Z|Y )ET(Z|Y )Σ−1/2ei}]2. (A.1)

Let ci(Y, Ỹ ) = eT

i Σ
−1/2A(Y, Ỹ )Σ−1/2ei. Then E{a2i (Y, Ỹ )} can be expressed as

E{a2i (Y, Ỹ )} = E{c2i (Y, Ỹ )} − 4(eT

i Σ
−1ei)

2. (A.2)

It is easy to check that ci(Y, Ỹ ) = bi(Y, Ỹ ) + bi(Ỹ , Y ), where

bi(Y, Ỹ ) = eT

i Σ
−1/2E(ZZT|Y )Σ−1/2ei − eT

i Σ
−1/2E(Z|Y )ET(Z̃|Ỹ )Σ−1/2ei,

bi(Ỹ , Y ) = eT

i Σ
−1/2ET(Z̃Z̃|Ỹ )Σ−1/2ei − eT

i Σ
−1/2E(Z̃|Ỹ )ET(Z|Y )Σ−1/2ei.
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Plug them into (A.2) and get

E{a2i (Y, Ỹ )} = 2E{b2i (Y, Ỹ )}+ 2E{bi(Y, Ỹ )bi(Ỹ , Y )} − 4(eT

i Σ
−1ei)

2. (A.3)

It can be shown that E{b2i (Y, Ỹ )} = b1i − b2i − b3i + b4i, where

b1i = E[{eT

i Σ
−1/2E(ZZT|Y )Σ−1/2ei}2],

b2i = E{eT

i Σ
−1/2E(ZZT|Y )Σ−1/2eie

T

i Σ
−1/2E(Z|Y )ET(Z̃|Ỹ )Σ−1/2ei},

b3i = E{eT

i Σ
−1/2E(Z|Y )ET(Z̃|Ỹ )Σ−1/2eie

T

i Σ
−1/2E(ZZT|Y )Σ−1/2ei}, and

b4i = E{eT

i Σ
−1/2E(Z|Y )ET(Z̃|Ỹ )Σ−1/2eie

T

i Σ
−1/2E(Z|Y )ET(Z̃|Ỹ )Σ−1/2ei}.

Because (Z, Y ) ⊥⊥ (Z̃, Ỹ ) and E(Z) = 0, we have b2i = b3i = 0, and b4i can be

simplified as b4i = E2{eT

i Σ
−1/2E(Z|Y )ET(Z|Y )Σ−1/2ei}. We also have

E{bi(Y, Ỹ )bi(Ỹ , Y )} = (eT

i Σ
−1ei)

2 + E2{eT

i Σ
−1/2E(Z|Y )ET(Z|Y )Σ−1/2ei}.

Plug them into (A.3) to get (A.1) as the desired result.

Proof of Lemma 1. For the notion of Frechet derivative, see, for example,

Fernholz (1983). Let F be the joint distribution of (X, Y ) and Fn be the empirical

distribution based on the i.i.d. sample (X1, Y1), . . . , (Xn, Yn). Let G be a real

or matrix-valued functional. Then the sample estimator G(Fn) can be expanded

as G(Fn) = G(F ) +En{G∗(F )}+Op(n
−1), where En{G∗(F )} = Op(n

−1/2). We

refer to G∗(F ) as the Frechet derivative of G(F ). Following Li and Wang (2007),

we have

p∗h = Rh − ph,Σ
∗ = XXT − E(XXT)− (X− µ)µT − µ(X− µ)T,

U∗
h =XRh − E(XRh)− (X− µ)ph − µ(Rh − ph), (Σ

−1)∗ = −Σ−1Σ∗Σ−1, and

V∗
h =XXTRh − E(XXTRh) + (Rh − ph)µµ

T + ph(X− µ)µT + phµ(X− µ)T

−{X− E(XRh)}µT − (X− µ)ET(XRh)− µ{X− E(XRh)}T

−E(XRh)(X− µ)T.

Take t1i = (t1i,1, . . . , t1i,H)T and t̂1i = (t̂1i,1, . . . , t̂1i,H)T, where, for i = 1, . . . , H,

t1i,h = p
1/2
h eT

i Σ
−1(p−1

h Vh −Σ)Σ−1ei and t̂1i,h = p̂
1/2
h eT

i Σ̂
−1

(p̂−1
h V̂h − Σ̂)Σ̂

−1
ei.

The asymptotic expansion of t̂1i is t̂1i = t1i+En(t
∗
1i)+Op(n

−1), where En(t
∗
1i) =

Op(n
−1/2). For the Frechet derivative of t1i,h, we get

(t1i,h)
∗ = (p

1/2
h )∗eT

i Σ
−1(p−1

h Vh−Σ)Σ−1ei+p
1/2
h eT

i (Σ
−1)∗(p−1

h Vh−Σ)Σ−1ei

+p
1/2
h eT

i Σ
−1(p−1

h Vh−Σ)(Σ−1)∗ei+p
1/2
h eT

i Σ
−1(p−1

h Vh−Σ)∗Σ−1ei.(A.4)

Conditions (C1) and (C2) imply that for i ∈ Ac,

eT

i Σ
−1(p−1

h Vh −Σ)Σ−1 = eT

i Σ
−1/2{E(ZZT|Y )− Ip}Σ−1/2 = 0.
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Thus the first three terms on the right hand side of (A.4) are all 0. Together with

the fact that (p−1
h Vh − Σ)∗ = p−1

h V∗
h − p−2

h p∗hVh − Σ∗, we have (t1i,h)
∗ = ℓih,

where ℓih = p
1/2
h eT

i Σ
−1(p−1

h V∗
h−p−2

h p∗hVh−Σ∗)Σ−1ei was defined above Lemma

1. It follows that t∗1i = Li = (ℓi1, . . . , ℓiH)T. By the Central Limit Theorem,

we have
√
n(t̂1i − t1i)

D→ N(0,Cov (Li)). Here τi,1 = tT

1it1i and τ̂i,1 = t̂T

1it̂1i.

Because t1i = 0 for i ∈ Ac under (C1) and (C2), it follows that nτ̂i,1 = nt̂T

1it̂1i
D→∑H

h=1 ιihχ
2
h(1).

Let t2i = (t2i,1, . . ., t2i,H)T and t̂2i = (t̂2i,1, . . . , t̂2i,H)T, where t2i,h = p
−1/2
h eT

i

Σ−1Uh and t̂2i,h = p̂
−1/2
h eT

i Σ̂
−1

Ûh. The Frechet derivative of t2i,h is (t2i,h)
∗ =

(p
−1/2
h )∗eT

i Σ
−1Uh+ p

−1/2
h eT

i (Σ
−1)∗Uh+ p

−1/2
h eT

i Σ
−1U∗

h. Because e
T

i Σ
−1Uh = 0

for i ∈ Ac, we have (t2i,h)
∗ = gih = p

−1/2
h eT

i (Σ
−1)∗Uh + p

−1/2
h eT

i Σ
−1U∗

h. It

follows that t∗2i = Gi = (gi1, . . . , giH)T and
√
n(t̂2i − t2i)

D→ N(0,Cov (Gi)).

Here τi,2 = tT

2it2i and τ̂i,2 = t̂T

2it̂2i. Because t2i = 0 for i ∈ Ac, we have

nτ̂i,2
D→

∑H
h=1 γihχ

2
h(1).

For the second part, τ̂i,1
P→ τi,1 and τ̂i,2

P→ τi,2 by the Weak Law of Large

Numbers. It remains to show that τi,1 > 0 and τi,2 > 0 for i ∈ A. Following

proofs similar to that of the second part of Proposition 1, we know τi,1 > 0 is

guaranteed by (C1), (C2), and (C4). Meanwhile, τi,2 > 0 is guaranteed by (C3).

Proof of Theorem 1. We have seen that τ̂i,1 = t̂T

1it̂1i and τ̂i,2 = t̂T

2it̂2i. Now

τ̂i,1 +2τ̂i,2 = (t̂T

1i,
√
2t̂T

2i)
T(t̂1i,

√
2t̂2i) and Wi = (LT

i ,
√
2GT

i )
T. The result follows

directly from the proof of Lemma 1.

Proof of Theorem 2. Without loss of generality, we show the result based

on directional regression, and the test statistic Ti exclusively refers to TDR
i . It

is straightforward to get a parallel proof for T SIR
i or T SAVE

i . Write a ≍ b if

a = Op(b) and b = Op(a). Theorem 1 implies that Ti ≍ 1 for i ∈ Ac. The second

part of Lemma 1 guarantees that Ti/n ≍ 1 for i ∈ A. Together we get

lim
n→∞

P (Ti > Tj) = 1 for any i ∈ A, j ∈ Ac. (A.5)

From the definition of ui, we have Tu1 > Tu2 > · · · > Tup . Here ui depends on n

as Tui = T(i) changes as n changes. Because |A| = q, as n → ∞, the top ranked

q test statistics Tu1 , . . . , Tuq must come from the active predictors, and the in-

active predictors must correspond to the remaining test statistics Tuq+1 , . . . , Tup .

Otherwise we get a contradiction to (A.5).

By definition Â = {u1, u2, . . . , uq̂}, so it remains to show that limn→∞ P

(q̂ = q) = 1. For i = 1, . . . , q − 1, we have Tui ∈ A and Tui+1 ∈ A. Thus

Tui/n ≍ 1 and Tui+1/n ≍ 1. It follows that Tui/Tui+1 ≍ 1 and maxi=1,...,q−1

Tui/Tui+1 ≍ 1. Similarly for i = q + 1, . . . , p − 1, we have Tui ∈ Ac and
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Tui+1 ∈ Ac. Thus Tui ≍ 1 and Tui+1 ≍ 1. It follows that Tui/Tui+1 ≍ 1 and
maxi=q+1,...,p−1 Tui/Tui+1 ≍ 1. On the other hand, for i = q, we have Tuq ∈ A
and Tuq+1 ∈ Ac. Thus Tuq/n ≍ 1 and Tuq+1 ≍ 1. It follows that Tuq/(nTuq+1) ≍ 1.
As a result, limn→∞ P (Tuq/Tuq+1 > maxi=1,...,q−1,q+1,...,p−1 Tui/Tui+1) = 1. Con-
sequently limn→∞ P (q = argmaxi=1,...,p−1 Tui/Tui+1) = 1.
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