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Abstract: We propose a semiparametric inference approach for proportional mean

residual life model with right-censored length-biased data, that arise frequently

in observational studies, especially in epidemiological cohort studies. A challenge

in the analysis of such data is the presence of informative censoring. Another

challenge is that the distribution of the observed data is different from that of

the underlying model. We develop an inverse probability weighted approach to

estimation based on estimating equations. We establish large sample properties and

study the semiparametric efficiency and double robustness property of the proposed

estimators. We also propose an improved estimator that chooses the most efficient

one in the class of augmented inverse probability weighted estimators. We use

simulation studies to evaluate the proposed method, and illustrate its application

using a data analysis.
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data, proportional mean residual model, semiparametric efficiency.

1. Introduction

Length-biased data arise frequently in such observational studies, as screen-

ing programs for chronic diseases (Zelen and Feinleib (1969)), aetiological studies

(Simon (1980)), and wildlife studies (Patil and Rao (1978)). In such studies, for

a fixed enrollment period, the initiation time of a subject is recorded and the

subject is followed up for a fixed period of time. Only the subjects who have

survived at or beyond the enrollment time can be observed, and so they are not

a random sample from the underlying population. Generally, in this situation,

the probability of observing a subject is proportional to the length of the period

from the initiation time to the failure time. For this reason the data is said to be

length-biased, observed individuals tending to live longer than those randomly

selected from the underlying population. An example of right-censored length-

biased data is the dementia data from the Canadian Study of Health and Aging
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(CSHA), see Wolfson et al. (2001). In this data set, the longer the duration of

an individual’s dementia symptoms, the larger the probability of obtaining the

observation from this individual, it is length-biased.

There are two main difficulties in the analysis of right-censored length-biased

data: the distribution of the observed right-censored length-biased data is differ-

ent from that of a random sample from the underlying population; with right-

censored length-biased data, the censoring mechanism is informative since the

observed failure time and the censoring time share the same initiation time.

Several authors have considered the problem of regression analysis with right-

censored length-biased data. For example, Wang (1996) considered the propor-

tional hazards regression model using a bias-adjusted risk set method. Other

work attempted to avoid the bias due to the informative censoring by means of

not allowing it (Vardi (1985),Wang (1996)). More recently, Shen, Ning, and Qin

(2009) proposed an inverse probability weighted approach to solve the problem.

Using a similar approach, Qin and Shen (2010) studied the estimation in the

proportional hazard model based on estimating equations.

The mean residual life function (MRLF) is an important characteristic of

the remaining life of an individual who has survived up to a certain time. In

many situations we are interested in the remaining life expectancy rather than

the probability of immediate failure or the distribution of a failure time. Thus,

a cancer patient may care most about how long he or she can expect to survive

from the time of diagnosis, and insurance companies are interested in the mean

residual life times of their customers. Mean residual life models have received

much attention in the literature. Examples include Bickel et al. (1993), Rojo and

Ghebremichael (2006), Oakes and Dasu (1990) and Maguluri and Zhang (1994),

who considered estimation in the mean residual life model with complete data;

and Chen and Cheng (2005), Chen et al. (2005), Chen and Cheng (2006) and Sun

and Zhang (2009), who considered estimation in the same model with censored

data.

Motivated by these considerations, we study the estimation in the propor-

tional mean residual life model with right-censored length-biased data. Because

of the sampling scheme of the length-biased data, the distribution of the obser-

vations have a unique structure that is different from that of traditional survival

data. Ignoring this fact can lead to bias in estimation, so it is necessary to develop

new methods to analyze the mean residual life data. We propose an estimating

equation approach using the inverse probability weighted technique to correct for

length bias and to adjust for informative censoring. Two estimating equations

are constructed: the first is used to get an initial estimator, the second to obtain

the final estimator by making use of the internal information. In this way, the

efficiency of the estimator is improved. Moreover, our procedure can be easily
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generalized to the additive mean residual life model or the transformation model

in Sun and Zhang (2009). We investigate the semiparametric efficiency of the

proposed estimator for a given weight function and construct the most efficient

estimator in a class of estimators. In addition, we study the double robustness

property of the most efficient estimator.

The rest of this paper is organized as follows. In Section 2 we introduce

the notation and assumptions used throughout the paper. We also describe

the estimation approach and derive the asymptotic properties of the proposed

estimator. In Section 3 we study the efficiency of the proposed estimator and

provide a way to construct a class of more efficient estimators. The double

robustness property is discussed there. In Section 4 we report on simulation

studies to evaluate the finite sample properties of our estimators. In Section 5 a

data example is used to illustrate the application of the proposed method. The

proofs of theoretical results are given in the Appendix.

2. Estimation Method and Asymptotic Properties

2.1. Notation and assumptions

Let T̃ denote the true failure time of the population of interest, that is, the

time from the initiating event to the failure event, let A be the time from the

initiation event to enrollment, let V be the time from enrollment to the failure

event, and let C be the time from enrollment to censoring. Here T = A + V is

the observed failure time. Note that T can be observed only when T̃ ≥ A. Let

X be a p-vector baseline covariate, and assume that C is independent of both A

and V given X.

Take Y = min{T,A + C} and δ = I{A + V ≤ A + C}, where I{·} is an

indicator function. Then the observed data is {(Yi, δi, Xi, Ai), i = 1, · · · , n}. As

A+ V and A+ C are dependent, censoring is informative.

Let f(·|x) be the conditional density function of T̃ given covariates X = x.

The conditional density function of the observed length-biased T is

g(t|x) = tf(t|x)
µ(x)

,

where µ(x) =
∫
tf(t|x)dt.

Write m(t|X) = E[T̃ − t|T̃ > t,X] as the mean residual life function as-

sociated with the covariate X. To assess the covariate effects, we consider the

proportional mean residual life model

m(t|X) = m0(t) exp(β
TX), (2.1)

where m0(t) is an unknown baseline mean residual life function and β is the pa-

rameter of interest that describes the effect of the covariate on the mean residual

life.
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We assume that the upper support of the censoring variable C is longer than

that of V and take 0 < τ = sup{t : S
T̃
(t) > 0} <∞, where S

T̃
(t) is the survival

function of the true failure time T̃ . This assumption ensures that the survival

function of T̃ is estimable.

2.2. Estimation method when censoring variable C is independent of

covariates

If the censoring variable C is independent of the covariates, the conditional

probability of observing the data (Y = y, δ = 1, A = a) given X is

P (A = a, Y = y, δ = 1|X = x) = P (A = a, V = y − a,C ≥ y − a|X = x)

=
f(y|X = x)SC(y − a)

µ(x)
,

where SC(·) is the survival function of censoring variable C.

Let

Mi(t) =
δiI(Yi > t)

YiSC(Yi −Ai)

[
(Yi − t)−m0(t) exp(β

TXi)
]
. (2.2)

Given the observed data {Yi, δi, Xi, Ai, i = 1, · · · , n}, {Mi(t), 0 ≤ t ≤ τ} are zero-

mean stochastic processes. Therefore we can construct the estimating equations

for β and the baseline MRLF m0(·) as
n∑

i=1

δiI(Yi > t)

YiSC(Yi −Ai)

[
(Yi − t)−m0(t) exp(β

TXi)
]
= 0, (2.3)

n∑
i=1

∫ τ

0

δiI(Yi > t)

YiSC(Yi −Ai)
Xi

[
(Yi − t)−m0(t) exp(β

TXi)
]
dH(t) = 0, (2.4)

where H(t) is an increasing known weight function and 0 ≤ t ≤ τ in (2.3).

Here we use inverse probability of weighted (IPW) method in (2.3) and (2.4).

The first estimating equation (2.3) is used to obtain an initial estimator of β and

a point by point estimator of m0(t). Notice that for different t, the covariate

effect β is the same. Making use of this information, estimating equation (2.4)

is constructed, in this way, the efficiency of the parameter β is improved. This

idea can be readily used in the additive mean residual life model, or the general

transformation model of Sun and Zhang (2009).

Since the survival function SC(Yi−Ai) can be estimated by its Kaplan-Meier

estimator ŜC(Yi−Ai), m0(t) can be estimated based on the estimating equation
n∑

i=1

δiI(Yi > t)

YiŜC(Yi −Ai)

[
(Yi − t)−m0(t) exp(β

TXi)
]
= 0, 0 ≤ t ≤ τ. (2.5)

The resulting estimator has a closed form,
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m̂0(t, β) =

∑n
i=1 δiI(Yi > t){YiŜC(Yi −Ai)}−1(Yi − t)∑n

i=1 δiI(Yi > t){YiŜC(Yi −Ai)}−1 exp(βTXi)
. (2.6)

To obtain an estimator of β, we replace m0(t) with m̂0(t, β) in (2.4) to get

the estimating equation

U(β) =
n∑

i=1

∫ τ

0

δiI(Yi > t)

YiŜC(Yi −Ai)
Xi

[
(Yi−t)−m̂0(t, β) exp(β

TXi)
]
dH(t) = 0. (2.7)

Let β̂ be the solution of (2.7), and write m̂0(t) = m̂0(t, β̂). We have the final

estimators β̂ and m̂0(t) when C is independent of the covariates.

2.3. Estimation method when censoring variable C depends on covari-

ates

Assume that C depends on Z, a part of the covariate X, or just X itself. As

in Section 2.2, estimating equations can be constructed as
n∑

i=1

δiI(Yi > t)

YiSC(Yi −Ai|Zi)

[
(Yi − t)−m0(t) exp(β

TXi)
]
= 0, 0 ≤ t ≤ τ, (2.8)

n∑
i=1

∫ τ

0

δiI(Yi > t)

YiSC(Yi −Ai|Zi)
Xi

[
(Yi − t)−m0(t) exp(β

TXi)
]
dH(t) = 0, (2.9)

where SC(·|Z) is the survival function of C given Z. Thus, if SC(·|Z) can be

estimated properly, the final estimator can be derived as in the independent

censoring case.

When censoring depends on the covariates, SC(·|Z) can be estimated by

semiparametric methods based on a regression model specified for the censoring

time (e.g., the Cox proportional hazards model or transformation model), or

nonparametric methods using the local Kaplan-Meier estimator of the survival

function.

When Z is discrete taking a finite number of possible values and the sample

size is sufficiently large, we can obtain the Kaplan-Meier estimators ŜC(·|Zi) for

each Z = Zi. In general, we can model the dependence of C on Z and obtain an

estimator of SC(·|Z). Here we assume a Cox proportional hazards model for the

conditional hazard function of C given Z, λC(t|Z) = λ0(t) exp(α
TZ), where λ0(t)

is an unknown baseline hazard function and α is a vector of unknown parameters.

We estimate α using the Cox partial likelihood estimator α̂, the solution of

n∑
i=1

∫ τ

0
(Zi − Z(t;α))dNC

i (t) = 0, (2.10)
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where NC
i (t) = I(Yi − Ai ≤ t, δi = 0), Yi(t) = I(Yi − Ai ≥ t), Z(t;α) =

S(1)(t;α)/S(0)(t;α), and for k = 0, 1, 2, S(k)(t;α) = (1/n)
∑n

i=1 Yi(t)Z
⊗k
i exp(αTZi).

Here for a vector a, a⊗0 = 1, a⊗1 = a, a⊗2 = aaT . Let Λ̂0(t) be the Breslow

estimator of Λ0(t) =
∫ t
0 λ0(s)ds,

Λ̂0(t) =

n∑
i=1

∫ t

0

dNC
i (s)∑n

j=1 Yj(s) exp(α̂
TZj)

.

So SC(t|Z) can be estimated by ŜC(t|Z) = exp{− exp(α̂TZ)Λ̂0(t)}. Plug ŜC(t|Z)
into (2.8) and (2.9), we obtain

n∑
i=1

δiI(Yi > t)

YiŜC(Yi −Ai|Zi)

[
(Yi − t)−m0(t) exp(β

TXi)
]
= 0, 0 ≤ t ≤ τ, (2.11)

n∑
i=1

∫ τ

0

δiI(Yi > t)

YiŜC(Yi −Ai|Zi)
Xi

[
(Yi − t)−m0(t) exp(β

TXi)
]
dH(t) = 0. (2.12)

Let

m̂0d(t, β) =

∑n
i=1 δiI(Yi > t){YiŜC(Yi −Ai|Zi)}−1(Yi − t)∑n

i=1 δiI(Yi > t){YiŜC(Yi −Ai|Zi)}−1 exp(βTXi)
.

As in Section 2.2, we can obtain the estimators β̂d and m̂0d(t) when C depends

on the covariates, where m̂0d(t) = m̂0d(t, β̂d).

The Cox model may not capture the real relationship between C and the

covariates. We propose a double robustness estimator in Section 3: if the Cox

model is not satisfied, we can still obtain a consistent and asymptotically normal

estimator.

2.4. Large sample properties

We first consider the large sample properties of the estimators when C is

independent of the covariates. Let

π̂(t) =
1

n

n∑
i=1

I(Yi −Ai ≥ t), NC
i (t) = I(Yi −Ai ≤ t, δi = 0),

Λ̂C(t) =

∫ t

0

∑n
i=1 dN

C
i (s)∑n

i=1 I(Yi −Ai ≥ s)
,

M̂C
i (t) =NC

i (t)−
∫ t

0
I(Yi −Ai ≥ u)dΛ̂C(u),

M̂i(t) =
δiI(Yi > t)

YiŜC(Yi −Ai)

[
(Yi − t)− m̂0(t) exp(β̂

TXi)
]
,
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Q̂(t) =
1

n

n∑
i=1

∫ τ

0
M̂i(s){Xi −X(s, β̂)}dH(s)I(Yi −Ai ≥ t),

X(t, β̂) =

∑n
i=1 δiI(Yi > t){YiŜC(Yi −Ai)}−1 exp(β̂TXi)Xi∑n
i=1 δiI(Yi > t){YiŜC(Yi −Ai)}−1 exp(β̂TXi)

.

Denote the true value of the parameters by β0 and m0(t), respectively.

Theorem 1. Under assumptions (A1)−(A4) in the Appendix, β̂ and m̂0(t) exist

and are unique. Moreover, β̂ is a strong consistent estimator of β0, and m̂0(t) is

a strong consistent estimator of m0(t) in t ∈ [0, τ ].

Theorem 2. Under assumptions (A1)−(A4) in the Appendix, we have:

(1)
√
n(β̂−β0) is asymptotically normal with mean zero and a covariance matrix

that can be consistently estimated by B̂−1Σ̂B̂−1, where Σ̂ = (1/n)
∑n

i=1 ξ̂
⊗2
i ,

B̂ =
1

n

n∑
i=1

∫ τ

0

δiI(Yi > t)

YiŜC(Yi −Ai)

(
Xi −X(t, β̂)

)⊗2
m̂0(t) exp(β̂

TXi)dH(t),

ξ̂i =

∫ τ

0
M̂i(t){Xi −X(t, β̂)}dH(t) +

∫ τ

0

Q̂(t)

π̂(t)
dM̂C

i (t);

(2) {
√
n(m̂0(t) −m0(t)), 0 ≤ t ≤ τ} converges weakly to a zero-mean Gaussian

process whose covariance function at (s, t) can be consistently estimated by

Γ̂(s, t) =
1

n

n∑
i=1

ψ̂i(s)ψ̂i(t),

where

ψ̂i(t) = Φ̂(t)−1[M̂i(t) +

∫ τ

0

R̂(t, µ)

π̂(µ)
dM̂C

i (µ)]−X(t, β̂)m̂0(t)B̂
−1ξ̂i,

Φ̂(t) =
1

n

n∑
i=1

δiI(Yi > t){YiŜC(Yi −Ai)}−1 exp(β̂TXi),

and

R̂(t, µ) =
1

n

n∑
i=1

M̂i(t)I(Yi −Ai ≥ µ).

This result can be used as a basis for making statistical inference for β0 and

m0(t). While it is easy to obtain the pointwise confidence interval for m0(t) for

any fixed t by the asymptotic normality of m̂0(t), simultaneous confidence bands

are more difficult to construct, since for an interval [t1, t2], the distribution of

supt∈[t1,t2](m̂0(t)−m0(t)) has to be calculated. This is difficult because the limit-

ing process of n1/2{m̂0(t)−m0(t)} does not have an independent increment struc-

ture. To get around this difficulty, we use a resampling scheme to approximate
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the distribution of
√
n{m̂0(t) − m0(t)}. Let Ŵ (t) = n−1/2

∑n
i=1 ψ̂i(t)Ωi, where

Ωi, i = 1, . . . , n are independent standard normal random variables independent

of {Yi, δi, Xi, Ai}. Then the distribution of the process
√
n{m̂0(t) −m0(t)} can

be approximated by that of a zero-mean Gaussian process Ŵ (t) by the results

in Lin et al. (2000). So an approximate 1− α simultaneous confidence band for

m0(t) can be obtained as follows. First, for fixed {Yi, δi, Xi, Ai}, generate repeat-
edly (Ω1, . . . ,Ωn) to obtain many realizations of Ŵ (t). Second, approximate the

distribution of
√
n{m̂0(t)−m0(t)} by the realizations of Ŵ (t).

We now consider the large sample properties of the estimators when C de-

pends on the covariates. Let

Ω̂ =
1

n

n∑
i=1

∫ τ

0

{S(2)(t; α̂)

S(0)(t; α̂)
− Z(t; α̂)⊗2

}
dNC

i (t),

M̂d
i (t) =NC

i (t)−
∫ t

0
I(Yi −Ai ≥ u) exp(α̂TZi)dΛ̂0(u),

M̂∗
i (t) =

δiI(Yi > t)

YiŜC(Yi −Ai|Zi)

[
(Yi − t)− m̂0(t) exp(β̂

T
d Xi)

]
,

Xd(t, β̂d) =

∑n
i=1 δiI(Yi > t){YiŜC(Yi −Ai|Zi)}−1 exp(β̂Td Xi)Xi∑n
i=1 δiI(Yi > t){YiŜC(Yi −Ai|Zi)}−1 exp(β̂Td Xi)

,

Q̂d(t) =
1

n

n∑
i=1

∫ τ

0
M̂∗

i (u)(Xi −Xd(u, β̂d))dH(u) exp{α̂TZi}I(Yi −Ai ≥ t),

D̂d =
1

n

n∑
i=1

∫ τ

0
M̂∗

i (u)(Xi −Xd(u, β̂d))dH(u)Λ̂0(Yi −Ai) exp{α̂TZi}ZT
i ,

Φ̂d(t) =
1

n

n∑
i=1

δiI(Yi > t) exp(β̂Td Xi)

YiŜC(Yi −Ai|Zi)
,

R̂1(t) =
1

n

n∑
i=1

M̂∗
i (t)Λ̂0(Yi −Ai) exp{α̂TZi}ZT

i ,

R̂d(t, u) =
1

n

n∑
i=1

M̂∗
i (t) exp{α̂TZi}I(Yi −Ai ≥ u).

Theorem 3. Under assumptions (A1)−(A3) and (A5) in the Appendix, β̂d and

m̂0d(t) exist and are unique. Moreover, β̂d is a strong consistent estimator of β0
and m̂0d(t) is a strong consistent estimator of m0(t) in t ∈ [0, τ ].

Theorem 4. Under assumptions (A1)−(A3) and (A5) in the Appendix, we have:
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(1)
√
n(β̂d−β0) is asymptotically normal with mean zero and a covariance matrix

that can be consistently estimated by B̂−1
d Σ̂dB̂

−1
d , where Σ̂d = (1/n)

∑n
i=1 ξ̂

d⊗2
i ,

B̂d =
1

n

n∑
i=1

∫ τ

0

δiI(Yi > t)

YiŜC(Yi −Ai|Zi)

(
Xi −Xd(t, β̂d)

)⊗2
m̂0d(t) exp(β̂

T
d Xi)dH(t),

ξ̂di =

∫ τ

0
M̂∗

i (t){Xi −Xd(t, β̂d)}dH(t) +

∫ τ

0

Q̂d(t)

S(0)(t; α̂)
dM̂d

i (t) +
[
D̂d

−
∫ τ

0
Q̂d(t)Z

T
(t; α̂)dΛ̂0(t)

]
Ω̂−1

∫ τ

0
(Zi − Z(t; α̂))dM̂d

i (t).

(2) {
√
n(m̂0d(t) −m0(t)), 0 ≤ t ≤ τ} converges weakly to a zero-mean gaussian

process whose covariance function at (s, t) can be consistently estimated by

Γ̂d(s, t) =
1

n

n∑
i=1

ψ̂d
i (s)ψ̂

d
i (t),

where

ψ̂d
i (t) = Φ̂d(t)

−1
{
M̂∗

i (t) +

∫ τ

0

R̂d(t, u)

S(0)(u;α)
dM̂d

i (u)

+
[
R̂1(t)−

∫ τ

0
R̂d(t, u)Z

T
(u; α̂)dΛ̂0(u)

]
Ω̂−1

∫ τ

0
(Zi−Z(u; α̂))dM̂d

i (u)
}

−Xd(t, β̂d)m̂0d(t)B̂
−1
d ξ̂di .

Simultaneous confidence bands for m̂0d(t) on some interval [t1, t2] can be

obtained as for m̂0(t).

Proofs are deferred to the Appendix.

3. Efficiency Study

In this section, we discuss the efficiency and double robustness of the pro-

posed estimators. For simplicity, we focus on the case when C is independent of

the covariates. When C depends on the covariates, similar method can be used

to study these issues. This is more complicated and we do not discuss it here.

3.1. An improved estimator and its efficiency

We focus on the issue of efficiency based on semiparametric efficiency the-

ory (Bickel et al. (1993) and Robins, Rotnitzky, and Zhao (1994)). As stated in

Tsiatis (2006), the most efficient estimator can be obtained in theory for regu-

lar and asymptotically linear estimators. However, in applications it is usually

difficult to derive it. Fortunately, when data is monotone coarsened, there is an

explicit form of the most efficient estimator. Here the most efficient estimator is

the estimator that achieves the semiparametric efficiency bound.
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With length-biased data, the true unbiased T̃ cannot be observed, the data

obtained is biased T . Then based on the biased data (A, T ), the observation

(A, Y, δ), Y = T ∧ (A + C), δ = I(T ≤ (A + C)) can be handled as the usual

right censored data since A is always observed. Following the theory in Tsiatis

(2006), right censored data is monotone coarsening data. Hence, making use of

the relationship between the biased T and the unbiased T̃ , we can use the theory

of monotone coarsening in Tsiatis (2006) (Theorems 10.1 and 10.4) to derive the

most efficient estimator in our setting.

A coarsening variable C̃ can be defined as follows. For 0 < r < ∞, C̃ = r

is defined as C = r, T − A > r, and Gr(A, T ) = {A, TI(T − A ≤ r)}; C̃ = ∞ is

defined as T − A ≤ C and G∞(A, T ) = {A, T}; for r ≥ T − A, let Gr(A, T ) =

G∞(A, T ). In this way, the observed data is (C̃, GC̃(T )), which is equivalent to

{C̃ = r,Gr(A, T )} = {A,C = r, T −A > r},
{C̃ = ∞, G∞(A, T )} = {A, T, T −A ≤ C},

and so length-biased right-censored data is monotone coarsening.

After Theorem 2, our proposed estimator has an asymptotically linear rep-

resentation,
√
n(β̂ − β0) = B−1 1√

n
U(β0) + op(1). (3.1)

In addition, it can be verified that the conditions in Theorem 2.2 of Newey (1990)

on regular estimators are satisfied. Therefore, β̂ is a regular estimator.

Let Di = (1/Ti)
∫ τ
0 I(Ti > t)

(
Xi − x(t)

)[
(Ti − t) −m0(t) exp(β

T
0 Xi)

]
dh(t),

MC
i (t) = I(Yi − Ai ≤ t, δi = 0) −

∫ t
0 I(Yi − Ai ≥ s)dΛC(s), where ΛC(t) is the

cumulative hazard function of the censoring variable C.

By the martingale integral representation of the Kaplan-Meier estimator

(Gill (1980)), we can write

SC(t)− ŜC(t)

SC(t)
=

∫ t

0

ŜC(u−)

SC(u)

∑n
i=1 dM

C
i (u)

nπ̂(u)
. (3.2)

Based on the results of Robins and Rotnitzky (1992), we have

δi
SC(Yi −Ai)

= 1−
∫ τ

0

dMC
i (t)

SC(t)
. (3.3)

Using (3.2) and (3.3), we can write

U(β0) =

n∑
i=1

δiDi

ŜC(Yi −Ai)
+ op(n

−1/2)
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=

n∑
i=1

Di −
n∑

i=1

∫ τ

0

[
Di −K(t,D)

]dMC
i (t)

SC(t)
+ op(n

−1/2), (3.4)

where K(t,D) = E[DI(T −A ≥ t)]/SV (t) and SV (t) is the survival function of

V.

Combining (3.1) and (3.4), and based on the results of Robins and Rotnitzky

(1992), the class of all the influence functions for the parameter β is

B−1
{
Di −

∫ τ

0

[
Di −K(t,D)

]dMC
i (t)

SC(t)
+

∫ τ

0
[e(u,Xi)−K(u, e)]

dMC
i (u)

SC(t)

}
,

where e(u,X) is an arbitrary function of X and K(u, e) is defined similarly

as K(t,D). Following the theory of semiparametric efficiency in Tsiatis (2006)

(Theorems 10.1 and 10.4) involving censoring, when e(u,Xi) = E
[
Di|Ti − Ai ≥

t,Xi, Ai

]
, the corresponding estimator is the most efficient estimator in the sense

of achieving the semiparametric efficiency bound.

Although this theoretically elegant, in general, it is virtually impossible to

derive this conditional expectation through it, or even to get an estimator of

it without additional assumptions on the covariates. There are two strategies

to deal with this problem (Bang and Tsiatis (2000)): posit a model for the

conditional expectation, or find an improved estimator, which means getting a

more efficient estimator. In the first strategy it is difficult to select a correct

model for the conditional expectation, and when it is incorrect, the estimator is

not most efficient, although it is still consistent and asymptotically normal.

We now describe a way to obtain a more efficient estimator. Let e(t,X) be

a given q-dimensional function. Consider the class of influence functions

B−1
{
Di−

∫ τ

0

[
Di−K(t,D)

]dMC
i (t)

SC(t)
+γ

∫ τ

0
[e(u,Xi)−K(u, e)]

dMC
i (u)

SC(t)

}
, (3.5)

where γ is a p × q-dimensional constant matrix. Choose an optimal parameter

γ that makes the corresponding estimator of β achieve the minimal variance in

this class. Note that the first term is independent of the last two terms in (3.5).

Thus finding the optimal γ turns out to be a regression problem.

Let

Σ1 = E
[ ∫ τ

0
(D −K(t,D))(e(t,X)−K(t, e))T I(Y −A ≥ t)

dΛC(t)

S2
C(t)

]
,

Σ2 = E
[ ∫ τ

0
(e(t,X)−K(t, e))⊗2I(Y −A ≥ t)

dΛC(t)

S2
C(t)

]
.

From least squares theory of linear regression, the optimal γopt = Σ1Σ
−1
2 .

The covariance of the corresponding optimal influence function is B−1
{
V ar(D)+
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V ar(
∫ τ
0

[
D−K(t,D)

]
dMC(t)/SC(t))−Σ1Σ

−1
2 ΣT

1

}
B−1, which is smaller than the

covariance of the influence function of β̂, B−1
{
V ar(D) + V ar(

∫ τ
0

[
D −K(t,D)

]
dMC(t)/SC(t))

}
B−1. Therefore, we obtain the most efficient estimator in this

class of influence functions (3.5) for fixed q-dimensional e(t,X). Here we used

e(t,X) = X.

For general e(t,X), we can estimate γ by γ̂ = Σ̂1Σ̂
−1
2 , where

Σ̂1 =
1

n

n∑
i=1

∫ τ

0

δi

ŜC(Yi −Ai)
(D̂i(β̂)− K̂(t,D))(Xi − K̂(t,X))T

I(Yi −Ai ≥ t)
dΛ̂C(t)

Ŝ2
C(t)

,

Σ̂2 =
1

n

n∑
i=1

∫ τ

0
(Xi − K̂(t,X))⊗2I(Yi −Ai ≥ t)

dΛ̂C(t)

Ŝ2
C(t)

,

D̂i(β) =
1

Ti

∫ τ

0
I(Ti > t)

(
Xi −X(t, β)

)[
(Ti − t)− m̂0(t) exp(β

TXi)
]
dH(t),

and

K̂(t, e) =

∑
e(t,Xi)I(Yi −Ai ≥ t)∑

I(Yi −Ai ≥ t)
.

In the case of e(t,X) = X, we denote the corresponding estimator by β̂imp,

and it is the solution of the estimating equation

Uimp(β) =

n∑
i=1

[ δiD̂i(β)

ŜC(Yi −Ai)
+ γ̂

∫ τ

0

(
Xi − K̂(t,X)

)dNC
i (t)

ŜC(t)

]
= 0. (3.6)

The variance of
√
n(β̂imp − β0) can be consistently estimated by B̂−1

1 Σ̂impB̂
−1
1 ,

where

B̂1 = − 1

n

∂Uimp(β̂imp)

∂βT
=− 1

n

∂U(β̂imp)

∂βT
, K̃(t,D)=

1

n

n∑
i=1

δiD̂i(β)I(Ti−Ai ≥ t)

ŜC(Ti−Ai)ŜV (t)
,

Σ̂imp =
1

n

n∑
i=1

δiD̂i(β̂imp)
⊗2

ŜC(Yi −Ai)

+
1

n

n∑
i=1

∫ τ

0

{
K̃(t, D̂⊗2(β̂imp))− K̃(t, D̂(β̂imp))

⊗2
}dNC

i (t)

Ŝ2
C(t)

− Σ̂1Σ̂
−1
2 Σ̂T

1 .

3.2. Double robustness property

The concept of double robust estimation was first introduced by Scharfstein,

Rotnitzky, and Robins (1999) and was further studied by Robins (1999), Robins,

Rotnitzky, and Van der Laan (2000), and Lunceford and Davidian (2004). In a
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censored data model, an estimator is double robust if the estimator is consistent

when either the censoring distribution or the distribution of the failure time
is correctly specified. Because with observational data, one can never be sure

that the assumed censoring mechanism or the distribution of the failure time is

correct, the best one can hope for is to find a double robust estimator. In this

section, we show that the most efficient estimator given above is double robust.
As discussed, when e(t,Xi) = E[Di|Ti − Ai ≥ t,Xi, Ai], the correspond-

ing estimator is most efficient. The most efficiency estimator is based on the

estimating function

δiDi

SC(Yi −Ai)
+

∫ τ

0
E[Di|Ti −Ai ≥ t,Xi, Ai]

dMC
i (t)

SC(t)
. (3.7)

Take QT (t,X,A) = −E[D|T − A ≥ t,X,A] = (ST (A+ t|X,A))−1
∫ τ
A+tD(u,X)

dST (u|X,A), where ST (u|X,A) is the conditional survival function of T given X
and A. In (3.7) both SC(t) and ST (t|X,A) are unknown. In order to obtain the

estimator, we have to specify models for SC(t) and ST (t|X,A), respectively. If

the models are not correctly specified, the estimator is biased.

Assume that a specified model for the survival function of the censoring vari-
able C is S̃C(t) (it may depend on the covariate, but, we use this notation here)

and a specified model for the survival function of T given (X,A), is S̃T (t|X,A).
If the survival function of C is correctly specified, then S̃C(t) = SC(t); similarly

if the survival function of T is correctly specified, then S̃T (t|X,A) = ST (t|X,A).
We show in the Appendix that the most efficient estimator has the double ro-

bustness property. By double robustness with monotone coarsening theory in

Tsiatis (2006, p.248), the most efficient estimator with estimating function (3.7),

is double robust, that is, it is consistent if either S̃T (t|X,A) = ST (t|X,A) or
the censoring mechanism assumption is true. In other words, in contrast to the

estimator derived by simple inverse probability weighted method, i.e the solution

to (2.7), the most efficient estimator can provide a double protection to obtain
a consistent estimator. More importantly, the double robustness estimator with

estimating function (3.7) does not lead to efficiency loss, since it belongs to the

class of the augmented inverse probability complete weight estimators, see Van

der Laan and Robins (2003), Rotnitzky and Robins (2005).

4. Simulation Studies

We conducted simulation studies to evaluate the proposed methods. We

considered a proportional mean residual life model with two covariates X =
(X1, X2), where X1 ∼ Bernoulli(0.5), X2 was uniform on [0, 1]. Two simulation

studies were carried out, the first focusing on the case in which the censoring

variable C is independent of Z; the second on the case in which C depends on

Z. We compared our procedures with that in Chan, Chen, and Di (2012).
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Simulation study 1. The censoring variable measured from the enrollment

time, C, was independently generated from a uniform on [0, uc], where uc was

specified to yield the desired censoring percentages, 10% and 30%. The initial

time A was uniform on [0, ua]. Here ua was chosen to be larger than the upper

bound of T̃ to ensure the stationarity assumption, as in Qin and Shen (2010).

The baseline mean residual life function m0(t) has a linear mean residual

life of the Hall-Wellner family, m0(t) = (D1t + D2)
+, where D1 > −1, D2 > 0

and d+ = dI(d ≥ 0) for any real number d. Here, we considered two cases:

D1 = −0.5, D2 = 0.5 and D1 = −0.5, D2 = 1, corresponding to a uniform

distribution on [0, 1] and a random variable with survival function S(t) = 1 −
0.5t, 0 ≤ t ≤ 2, respectively, when X = (0, 0). Let m

(1)
0 (t) = (0.5 − 0.5t)+ and

m
(2)
0 (t) = (1 − 0.5t)+. Each study consisted of 1,000 replications. The sample

sizes n = 200 and n = 300 were used.

We considered two choices for the weight function, H1(t) = t, for which the

integral in (2.7) is the area beneath the curve, and H2(t) = (1/n)
∑n

i=1 I(Yi ≤
t, δi = 1), for which the integral in (2.7) is a weighted sum of integrand over all

the jump points of the uncensored observations.

The true value of β0 was taken to be (0, 0) and (0.2, 0.4). Tables 1-4 present

the simulation results of β̂ and β̂imp, where β̂ is the estimator obtained from

(2.7), and β̂imp is derived from (3.6). In all these tables, Bias is the bias of

the estimators; se is the standard error of the estimators; sd is the mean of the

standard deviation of the estimators; CP% denotes the 95% empirical coverage

probability.

Table 1 shows the results when the baseline function is m
(1)
0 (t) and the

weight function is H1(t) = t. Both estimators behave well. The confidence in-

tervals based on these estimators have an empirical coverage probability close to

the nominal 95% level. There is a good agreement between the estimated stan-

dard deviation and the empirical standard deviation. In addition, as expected,

β̂imp performs better than β̂, in the sense that it has a smaller variance. Table 2

presents similar results for m
(1)
0 (t) and H2(t). In Table 3, the results for m

(2)
0 (t)

and H1(t) are provided. For m
(2)
0 (t) and H2(t), see Table 4. Here the estimators

perform well and have a reasonable 95% empirical coverage probability. As ex-

pected, the performance of the estimators improves as the sample size increases

from 200 to 300. The results are similar for the two weight functions H1(t) and

H2(t) in every case.

We have shown that the estimator obtained from the estimating function

(3.7) is double robust. The estimating equation based on (3.7) is

Udouble(β) =

n∑
i=1

δiD(Yi, Xi, β)

ŜC(Yi −Ai)
−

∫ τ

0
Q̂T (t,Xi, Ai, β)

dMC
i (t)

ŜC(t)
= 0, (4.1)
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Table 1. Simulations results based on 1,000 runs in the case of H1(t) and

m
(1)
0 (t).

β0 c% Bias se sd CP%

n = 200

(0, 0) 10 β̂ (0.0051, 0.0010) (0.0799, 0.1325) (0.0783, 0.1348) (95.3, 95.3)

β̂imp (0.0049, 0.0011) (0.0789, 0.1316) (0.0775, 0.1335) (95.3, 95.4)

β̂double (0.0048, 0.0012) (0.0776, 0.1296) (0.0765, 0.1321) (95.4, 95.7)

β̂chan (0.0045, 0.0019) (0.0787, 0.1351) (0.0787, 0.1357) (95.3, 95.4)

30 β̂ (0.0055, 0.0065) (0.0961, 0.1616) (0.0909, 0.1565) (93.6, 93.9)

β̂imp (0.0062, 0.0085) (0.0915, 0.1519) (0.0858, 0.1478) (92.7, 94.6)

β̂double (0.0070, 0.0073) (0.0848, 0.1388) (0.0825, 0.1423) (94.7, 95.1)

β̂chan (0.0065, 0.0042) (0.0850, 0.1438) (0.0840, 0.1449) (94.6, 95.2)

(0.2, 0.4) 10 β̂ (0.0012, -0.0008) (0.0660, 0.1082) (0.0622, 0.1045) (93.3, 93.3)

β̂imp (0.0014, -0.0006) (0.0656, 0.1070) (0.0619, 0.1040) (93.4, 93.6)

β̂double (0.0013, -0.0020) (0.0653, 0.1058) (0.0614, 0.1032) (93.7, 93.7)

β̂chan (0.0018, -0.0009) (0.0749, 0.1272) (0.0714, 0.1220) (93.0, 94.0)

30 β̂ (0.0007, 0.0027) (0.0735, 0.1220) (0.0695, 0.1170) (93.7, 94.1)

β̂imp (0.0006, 0.0045) (0.0717, 0.1181) (0.0674, 0.1135) (93.3, 93.8)

β̂double (0.0001, 0.0002) (0.0695, 0.1151) (0.0655, 0.1101) (93.8, 93.7)

β̂chan (0.0015, 0.0008) (0.0805, 0.1366) (0.0759, 0.1301) (93.2, 93.8)

n = 300

(0, 0) 10 β̂ (0.0022, -0.0050) (0.0644, 0.1130) (0.0639, 0.1103) (94.9, 94.1)

β̂imp (0.0020, -0.0049) (0.0638, 0.1110) (0.0633, 0.1093) (94.8, 94.3)

β̂double (0.0023, -0.0056) (0.0631, 0.1097) (0.0625, 0.1079) (95.5, 94.0)

β̂chan (0.0022, -0.0025) (0.0647, 0.1132) (0.0642, 0.1107) (95.1, 93.7)

30 β̂ (0.0019, -0.0079) (0.0800, 0.1350) (0.0746, 0.1286) (92.6, 93.3)

β̂imp (0.0014, -0.0067) (0.0748, 0.1266) (0.0703, 0.1213) (93.7, 94.5)

β̂double (0.0013, -0.0058) (0.0698, 0.1190) (0.0675, 0.1164) (94.5, 94.2)

β̂chan (0.0025, -0.0043) (0.0699, 0.1208) (0.0685, 0.1185) (94.5, 95.4)

(0.2, 0.4) 10 β̂ (0.0015, 0.0045) (0.0517, 0.0896) (0.0508, 0.0859) (95.0, 93.9)

β̂imp (0.0017, 0.0043) (0.0515, 0.0889) (0.0506, 0.0854) (94.7, 93.8)

β̂double (0.0015, 0.0039) (0.0509, 0.0879) (0.0502, 0.0848) (94.8, 94.1)

β̂chan (0.0021, 0.0051) (0.0581, 0.1057) (0.0582, 0.1000) (94.9, 94.1)

30 β̂ (0.0018, 0.0048) (0.0582, 0.1012) (0.0568, 0.0962) (94.5, 93.9)

β̂imp (0.0023, 0.0048) (0.0564, 0.0972) (0.0551, 0.0934) (95.2, 93.9)

β̂double (0.0014, 0.0039) (0.0547, 0.0937) (0.0536, 0.0906) (94.9, 93.8)

β̂chan (0.0023, 0.0077) (0.0625, 0.1126) (0.0620, 0.1064) (94.6, 94.3)

Note: c%: the censoring %; Bias: the bias of the estimators; se: the standard error of the estimators;

sd: the mean of the standard deviation of the estimators; CP%: the empirical 95% covering

probability.

where ŜC(·) is the Kaplan-Meier estimator for censoring variable C, ŜT̃ (t|Xi) is

the survival function of the true failure time T̃ given Xi, which can be estimated
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Table 2. Simulations results based on 1,000 runs in the case of H2(t) and

m
(1)
0 (t).

β0 c% Bias se sd CP%

n = 200

(0, 0) 10 β̂ (0.0031, 0.0026) (0.0733, 0.1271) (0.0797, 0.1371) (96.4, 96.9)

β̂imp (0.0030, 0.0026) (0.0725, 0.1264) (0.0728, 0.1253) (94.8, 94.8)

30 β̂ (0.0038, 0.0100) (0.0940, 0.1633) (0.1061, 0.1811) (97.2, 96.4)

β̂imp (0.0046, 0.0122) (0.0905, 0.1558) (0.0846, 0.1452) (92.9, 93.4)

(0.2, 0.4) 10 β̂ (0.0018, 0.0004) (0.0565, 0.0915) (0.0561, 0.0936) (94.9, 94.9)

β̂imp (0.0019, 0.0006) (0.0564, 0.0908) (0.0534, 0.0893) (93.0, 94.6)

30 β̂ (0.0020, 0.0040) (0.0667, 0.1076) (0.0692, 0.1155) (95.2, 95.4)

β̂imp (0.0020, 0.0055) (0.0657, 0.1052) (0.0613, 0.1026) (92.6, 94.4)

n = 300

(0, 0) 10 β̂ (0.0008,-0.0044) (0.0597, 0.1055) (0.0638, 0.1098) (96.6, 96.5)

β̂imp (0.0006,-0.0043) (0.0593, 0.1040) (0.0592, 0.1021) (95.3, 95.2)

30 β̂ (0.0003,-0.0090) (0.0786, 0.1335) (0.0862, 0.1469) (96.5, 96.4)

β̂imp (-0.0002,-0.0078) (0.0744, 0.1270) (0.0693, 0.1194) (93.6, 93.1)

(0.2, 0.4) 10 β̂ (0.0007, 0.0045) (0.0448, 0.0764) (0.0450, 0.0757) (95.1, 94.1)

β̂imp (0.0008, 0.0043) (0.0447, 0.0761) (0.0433, 0.0729) (94.3, 92.9)

30 β̂ (0.0014, 0.0059) (0.0529, 0.0913) (0.0556, 0.0935) (95.8, 94.8)

β̂imp (0.0019, 0.0061) (0.0517, 0.0886) (0.0499, 0.0842) (93.9, 93.5)

by

ŜT̃ (t|Xi, β) =
m̂0(0, β)

m̂0(t, β)
exp

{
−

∫ t

0

1

m̂0(s, β)
ds exp(−βTXi)

}
,

Q̂T (t,Xi, Ai, β) =
1

ŜT̃ (t|Xi, β)

∫ τ

a+t
D(u,Xi, β)dŜT̃ (t|Xi, β). (4.2)

By making use the relationship between ST (t|X) and ST̃ (t|Xi, β), QT (t,Xi, Ai, β)

can be estimated based on (4.2). The estimator of β is denoted as β̂double. The

results are shown in Table 1. The estimator is unbiased and has the smallest

variance. When both the censoring model and the failure time model are correct,

the double robustness estimator is semiparametric efficient, meaning it has the

smallest asymptotic variance among all the estimators obtained with a given

weight function H(t).

Our method can also be used to estimate the baseline mean residual life

function m0(t). Pointwise confidence intervals can be constructed and simulta-

neous confidence bands can also be obtained based on resampling. For simplicity,

we only give the results for m0(t) = m
(1)
0 (t), H1(t) = t and n = 200. Figure 1

shows the 95% pointwise confidence intervals and the 95% confidence bands.

The solid line denotes the true curve of m0(t), the dotted dash line represents
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Table 3. Simulations results based on 1,000 runs in the case of H1(t) and

m
(2)
0 (t).

β0 c% Bias se sd CP%

n = 200

(0, 0) 10 β̂ (0.0019, -0.0050) (0.0789, 0.1371) (0.0781, 0.1348) (94.6, 94.2)

β̂imp (0.0019, -0.0055) (0.0775, 0.1360) (0.0773, 0.1335) (94.6, 94.4)

30 β̂ (0.0026, -0.0018) (0.0964, 0.1650) (0.0913, 0.1573) (93.9, 94.1)

β̂imp (0.0036, -0.0028) (0.0898, 0.1552) (0.0860, 0.1482) (93.7, 94.0)

(0.2, 0.4) 10 β̂ (0.0005, -0.0013) (0.0630, 0.1068) (0.0623, 0.1048) (94.7, 94.1)

β̂imp (0.0004, -0.0007) (0.0626, 0.1060) (0.0620, 0.1043) (95.0, 93.5)

30 β̂ (0.0015, 0.0024) (0.0699, 0.1205) (0.0697, 0.1170) (95.1, 94.1)

β̂imp (0.0004, 0.0044) (0.0671, 0.1165) (0.0676, 0.1135) (94.8, 94.9)

n = 300

(0, 0) 10 β̂ (0.0049, -0.0046) (0.0641, 0.1105) (0.0640, 0.1105) (95.0, 94.8)

β̂imp (0.0050, -0.0046) (0.0636, 0.1102) (0.0634, 0.1095) (94.7, 94.6)

30 β̂ (0.0043, -0.0047) (0.0779, 0.1341) (0.0753, 0.1299) (93.9, 93.8)

β̂imp (0.0049, -0.0054) (0.0729, 0.1275) (0.0707, 0.1220) (93.7, 94.0)

(0.2, 0.4) 10 β̂ (0.0005, 0.0039) (0.0529, 0.0882) (0.0509, 0.0860) (94.6, 94.9)

β̂imp (0.0004, 0.0039) (0.0526, 0.0880) (0.0506, 0.0856) (94.2, 95.1)

30 β̂ (0.0010, 0.0054) (0.0591, 0.0986) (0.0568, 0.0961) (94.0, 94.9)

β̂imp (0.0009, 0.0066) (0.0573, 0.0968) (0.0551, 0.0932) (93.7, 94.7)

Note: c%: the censoring %; Bias: the bias of the estimators; se: the standard error of the estimators;

sd: the mean of the standard deviation of the estimators; CP%: the empirical 95% covering

probability.

the estimated curve by the proposed approach, the dashed lines represent the

95% pointwise confidence intervals, and the dotted lines represent the simulta-

neous 95% confidence bands. The plot in the top panel corresponds to the result

with 30% censoring rate and the plot in the bottom panel corresponds to the

result with 10% censoring rate. The simultaneous confidence band is wider than

the pointwise confidence interval and m0(t) can be estimated very well by our

approach.

Simulation study 2. Here, the censoring variable C followed a Cox model,

depending on Z = X1. The corresponding hazard function was λC(t|Z) =

λ0(t) exp(α
TZ). We took α = 2 and λ0(t) a constant, determined by the cen-

soring percentages, 10% and 30%. The correlation between C and Z was about

−0.52. We only considered the case H1(t) = t and m
(1)
0 (t) = 0.5(1− t)+. All the

other settings were the same as those in Simulation study 1.

Results are given in Table 5. The values of the estimator β̂d were calculated

based on (2.11) and (2.12). We also give the value of the estimator β̂, obtained

under the assumption that C is independent of Z, ignoring the dependence of C
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Table 4. Simulations results based on 1,000 runs in the case of H2(t) and

m
(2)
0 (t).

β0 c% Bias se sd CP%

n = 200

(0, 0) 10 β̂ (0.0014, -0.0019) (0.0724, 0.1293) (0.0794, 0.1368) (96.3, 96.1)

β̂imp (0.0015, -0.0024) (0.0715, 0.1285) (0.0726, 0.1253) (94.2, 94.2)

30 β̂ (0.0027, 0.0018) (0.0950, 0.1660) (0.1069, 0.1812) (96.5, 96.3)

β̂imp (0.0033, 0.0009) (0.0901, 0.1577) (0.0850, 0.1459) (93.5, 93.3)

(0.2, 0.4) 10 β̂ (0.0005,-0.0012) (0.0530, 0.0935) (0.0562, 0.0936) (96.3, 95.0)

β̂imp (0.0004,-0.0009) (0.0529, 0.0928) (0.0535, 0.0894) (95.2, 94.1)

30 β̂ (0.0021, 0.0015) (0.0622, 0.1104) (0.0695, 0.1142) (96.5, 95.3)

β̂imp (0.0012, 0.0029) (0.0605, 0.1083) (0.0615, 0.1023) (95.2, 94.1)

n = 300

(0, 0) 10 β̂ (0.0050, -0.0042) (0.0599, 0.1039) (0.0637, 0.1101) (96.6, 96.4)

β̂imp (0.0051, -0.0042) (0.0596, 0.1033) (0.0592, 0.1022) (95.4, 94.5)

30 β̂ (0.0043, -0.0052) (0.0785, 0.1320) (0.0874, 0.1496) (97.3, 96.1)

β̂imp (0.0049, -0.0058) (0.0741, 0.1274) (0.0697, 0.1199) (93.5, 93.4)

(0.2, 0.4) 10 β̂ (-0.0012, 0.0027) (0.0456, 0.0742) (0.0450, 0.0758) (95.0, 95.4)

β̂imp (-0.0012, 0.0028) (0.0454, 0.0741) (0.0433, 0.0731) (94.0, 94.8)

30 β̂ (-0.0004, 0.0040) (0.0543, 0.0894) (0.0553, 0.0929) (95.6, 95.1)

β̂imp (-0.0004, 0.0051) (0.0530, 0.0881) (0.0498, 0.0839) (93.3, 93.3)

Note: c%: the censoring %; Bias: the bias of the estimators; se: the standard error of the estimators;

sd: the mean of the standard deviation of the estimators; CP%: the empirical 95% covering

probability.

on Z.

In Table 5, β̂d performs very well under each censoring percentage. It is

unbiased. The estimated standard error(se) is not far from the empirical standard

deviation (sd). The empirical coverage probabilities of the confidence intervals

are close to the nominal 95% level. The standard deviation of β̂d decreases when

the sample size increases from 200 to 300.

If the dependence of C on Z is ignored, the estimator β̂, which does not have

the double robustness property, is biased. On the other hand, when the model of

C is misspecified, the double robustness estimator should be consistent since the

failure time model is correct. To verify this, we calculated the double robustness

estimator β̂double by solving the estimating equation (4.1). The results are given

in Table 5, which support the theoretical result.

In our simulation studies, we also compared our method with that of Chan,

Chen, and Di (2012). Let β̂chan denote their estimator. For simplicity, we only

provide the results when the baseline function is m
(1)
0 (t) and the weight function

is H1(t) = t. The results with C independent of Z are presented in Table 1,
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Figure 1. The estimation of m0(t) when C is independent of Z.

and with C depending on Z in Table 5. From Tables 1 and 5, we see that our

estimators and β̂chan are unbiased, and they have similar performance.

When C depends on the covariate, m0(t) can also be estimated. Figure 2

shows the estimated curve, the corresponding 95% pointwise confidence intervals
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Table 5. Simulations results based on 1,000 runs in the case of H1(t) and

m
(1)
0 (t).

β0 c% Bias se sd CP%

n = 200

(0,0) 10 β̂d (-0.0013, 0.0005) (0.0796, 0.1397) (0.0777, 0.1359) (94.8, 94.5)

β̂ (-0.0325, 0.0004) (0.0809, 0.1387) (0.0786, 0.1352) (92.8, 95.0)

β̂double (-0.0006, 0.0006) (0.0786, 0.1361) (0.0761, 0.1326) (95.2, 94.7)

β̂chan (0.0009, 0.0024) (0.0812, 0.1410) (0.0789, 0.1365) (94.7, 93.5)

30 β̂d (-0.0114, 0.0023) (0.0993, 0.1776) (0.0924, 0.1629) (93.0, 93.2)

β̂ (-0.1258, 0.0014) (0.0999, 0.1582) (0.0955, 0.1527) (74.5, 94.4)

β̂double (-0.0027, 0.0012) (0.0870, 0.1486) (0.0742, 0.1431) (90.0, 94.1)

β̂chan (0.0013, 0.0032) (0.0884, 0.1538) (0.0861, 0.1472) (94.6, 93.8)

(0.2,0.4) 10 β̂d (0.0034, -0.001) (0.0655, 0.1075) (0.0612, 0.1045) (93.3, 94.3)

β̂ (-0.0130, 0.0004) (0.0653, 0.1087) (0.0610, 0.1055) (91.9, 93.8)

β̂double (0.0024, -0.0011) (0.0646, 0.1068) (0.0607, 0.1034) (93.3, 94.0)

β̂chan (0.0046, 0.0036) (0.0741, 0.1230) (0.0709, 0.1223) (93.4, 94.9)

30 β̂d (0.0000, 0.0051) (0.0721, 0.1231) (0.0675, 0.1196) (93.5, 94.2)

β̂ (-0.0595, 0.0060) (0.0732, 0.1233) (0.0686, 0.1201) (84.5, 94.5)

β̂double (-0.0030, 0.0009) (0.0680, 0.1172) (0.0595, 0.1115) (91.7, 94.3)

β̂chan (0.0034, 0.0014) (0.0788, 0.1357) (0.0763, 0.1322) (93.5, 93.4)

n=300

(0,0) 10 β̂d (0.0038, -0.0009) (0.0626, 0.1141) (0.0635, 0.1110) (95.8, 94.2)

β̂ (-0.0279, -0.0008) (0.0634, 0.1131) (0.0643, 0.1105) (93.1, 94.5)

β̂double (0.0035, -0.0006) (0.0619, 0.1106) (0.0623, 0.1083) (95.4, 94.4)

β̂chan (0.0029, -0.0011) (0.0629, 0.1142) (0.0642, 0.1107) (95.3, 94.1)

30 β̂d (-0.0034, -0.0023) (0.0785, 0.1418) (0.0759, 0.1348) (94.3, 92.7)

β̂ (-0.1216, -0.0027) (0.0785, 0.1251) (0.0782, 0.1247) (66.4, 94.0)

β̂double (0.0008, -0.0014) (0.0697, 0.1170) (0.0607, 0.1168) (91.8, 95.2)

β̂chan (0.0021, -0.0002) (0.0704, 0.1203) (0.0700, 0.1195) (95.4, 94.2)

(0.2,0.4) 10 β̂d (0.0009, -0.0038) (0.0513, 0.0820) (0.0503, 0.0857) (94.1, 96.1)

β̂ (-0.0156, -0.0028) (0.0511, 0.0830) (0.0502, 0.0865) (92.8, 96.4)

β̂double (-0.0002, -0.0039) (0.0511, 0.0818) (0.0499, 0.0849) (94.6, 96.1)

β̂chan (0.0025, -0.0021) (0.0585, 0.1027) (0.0579, 0.1000) (93.6, 94.6)

30 β̂d (-0.0006, -0.003) (0.0576, 0.098) (0.0553, 0.0982) (94.5, 94.5)

β̂ (-0.0620, -0.0005) (0.0588, 0.0977) (0.0563, 0.0983) (79.7, 95.3)

β̂double (-0.0047, -0.0049) (0.0547, 0.0915) (0.0488, 0.0916) (92.5, 95.2)

β̂chan (0.0023, -0.0043) (0.0620, 0.1118) (0.0623, 0.1082) (94.5, 94.5)

Note: c%: the censoring %; Bias: the bias of the estimators; se: the standard error of the estimators;

sd: the mean of the standard deviation of the estimators; CP: the empirical 95% covering

probability.

and the 95% simultaneously confidence bands. The legends in the figure are the

same as those in Figure 1. Our approach provides a good estimate of m0(t), and
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Figure 2. The estimation of m0(t) when C depends on the covariates.

as expected, the simultaneously confidence band is wider than the point by point

confidence interval.
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Table 6. Covariate effects on mean residual life.

Adjusted method(se) Naive method(se) Improved estimator(se)
male -0.0172 (0.0229) -0.0455 (0.0294) -0.0156 (0.0228)
Note: Adjusted method: adjust the length bias; Naive method: ignoring the length bias;
Improved estimator: obtained by the improved method proposed in this paper.

5. Data Example

In this section, we illustrate our method using the Channing House data.

A description of this data set can be found in Klein and Moeschberger (1997).

Channing House is a retirement center located in Palo Alto, California. The data

were collected from January 1964 to July 1975, with 97 male and 365 female

individuals. For each individual, the age at entry and leaving or death were

recorded. During the study, 46 men and 130 women died at Channning House.

Since an individual must survive to a sufficient age to enter the retirement center,

the data are left truncated and right censored. Here, truncation times were the

ages in years when individuals entered the retirement community.

We used a subsample of this data set with individuals who lived longer than

786 months (65.5 years old), consisting of 448 individuals. This subsample is a

length-biased data set satisfying the stationarity assumption. For this data set,

the stationarity assumption was formally checked by the methods in Addona and

Wolfson (2006) and Asgharian, Wolfson, and Zhang (2006). We took gender as

the covariate X and evaluated its effect on mean residual life.

To gain some insights into the dependence of C and X, we assumed that C

followed a Cox proportional hazard model. The covariate effect was not signifi-

cant with p-value 0.898. Notice that there is a possibility that C does not follow

a Cox model and C depends on X in some other model structures. For purposes

of illustration, we assumed a Cox model with C correct for the time being.

The analysis results are given in Tables 6−7. Table 6 shows the estimated

covariate effect based on the methods with and without the length-biased adjust-

ment. The Adjusted method is the simple inverse probability weighted method

described in Section 2 with H(t) = t, that adjusts the length bias, the Naive

method ignores the length bias, and the Improved estimator is the estimator ob-

tained by the improved method proposed in the efficiency study. From Table 6-7,

the results from the Adjusted method and the Improved estimator are almost

the same. It is clear from the results that the effect of gender on mean residual

lifetime is not statistically significant.

Comparing the results from the naive method, we found a weaker effect be-

tween gender and residual life time, even though both methods yield statistically

insignificant differences. Thus, the mean residual life times m(T − t0|T > t0, X)

at given years t0 = 70, 75, 80, 85, 90, 95 are listed in Table 7. For example, for a
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Table 7. Estimated mean residual life m(T − t0|T > t0, X).

t0(years)
70 75 80 85 90 95

Adjusted method:
female 13.6 9.4 6.2 4.4 3.4 3.0
male 13.3 9.3 6.1 4.4 3.3 3.0

Naive method:
female 18.1 13.6 9.6 6.8 5.0 3.5
male 17.3 13.0 9.1 6.5 4.8 3.3

Improved estimator:
female 13.5 9.4 6.2 4.4 3.4 3.0
male 13.3 9.3 6.1 4.4 3.3 3.0

Note: Adjusted method: adjust the length bias; Naive method: ignoring the length bias;
Improved estimator: obtained by the improved method proposed in this paper.

Figure 3. The estimation of m0(t) in data example.

female who has survived up to 70 years old, when ignoring the length bias, the

estimated mean residual lifetime is 18.1 years, and when adjusting the length

bias, the estimated mean residual lifetime is 13.6 years.

The baseline mean residual function m0(t) can also be estimated. The esti-

mated curve, the 95% point by point confidence interval and 95% simultaneous

confidence band are given in Figure 3.
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6. Concluding Remarks

In this paper, we focus on proportional mean residual life model with length-

biased data. Usually, the model structure for the observed data is different from

that assumed for the true failure time and the censoring is informative. Making

use of the inverse probability weighted approach, unbiased estimating equations

are constructed to adjust the bias induced by the length bias and information

censoring. In this way, the covariate effects on the mean residual life can be

estimated based on the model. Moreover, we study the efficiency and double

robustness of the proposed estimator. A new and more efficient estimator is

derived.

There are many interesting problems about the mean residual life model.

For example, with proportional mean residual life model, a natural restriction is

that the derivative of m(t|X) + t be monotone. It would be interesting to study

how to incorporate this restriction into estimation. Another interesting issue is

that when data are heavily skewed to the right or have heavy tails, the mean life

may not exist or is not a reasonable summary of residual life. Here, the median

residual life function may be more reasonable.

Supplementary Materials

Proofs of the main results in this paper are in the online Supplementary

Material.
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Appendix

We give an outline of the proofs of the main results. More detail is in the

Supplementary Material. Denote the true values of β and m(t) by β0 and m0(t),

respectively.

We require the following technical assumptions.

(A1) m0(t) is continuously differential in [0, τ ].
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(A2) H(t) converges almost surely to a nonrandom and bounded function h(t)

uniformly in [0, τ ].

(A3) X is bounded.

(A4) B = E
[ ∫ τ

0 µ
−1(X)S

T̃
(t|X)(X −x(t))⊗2m0(t) exp(β

T
0 X)dh(t)

]
is nonsingu-

lar where x(t) = limX(t, β0) is a nonrandom function.

(A5) Bd = E
[ ∫ τ

0 µ
−1(X)S

T̃
(t|X)(X − x∗d(t))

⊗2m0(t) exp(β
T
0 X)dh(t)

]
is nonsin-

gular where x∗d(t) = limX
∗
d(t, β0) is a nonrandom function.

Proof of Theorem 1. It can be shown that m̂0(t, β) converges almost surely

and uniformly to m0(t, β) in t ∈ [0, τ ] and β ∈ B = {β : ||β − β0|| ≤ ε}. Here,

m∗
0(t) = m0(t, β0). Therefore, in order to prove the existence and uniqueness of

β̂1 and m̂0(t), it suffices to show that there exists a unique solution to U(β) = 0.

Let Â(β) = −(1/n)(∂U(β)/∂βT ), which is always nonnegative definite. It

can be easily shown that X(t, β) converges to some nonrandom function x(t, β)

uniformly in t ∈ [0, τ ]. Together with the uniformly convergence of m̂0(t, β) to

m0(t, β) in t ∈ [0, τ ] and β ∈ B = {β : ||β − β0|| ≤ ε}, we conclude that Â(β)

converges uniformly to a nonrandom function A(β) uniformly in β ∈ B = {β :

||β − β0|| ≤ ε}. Let B = A(β0) and ST̃ (t|X) be the survival function of T̃ , where

A(β) = E
[ ∫ τ

0 µ
−1(X)S

T̃
(t|X)(X − x(t, β))⊗2m0(t, β) exp(β

TX)dh(t)
]
.

It can be checked easily that (1/n)U(β0) converges to 0 almost surely. By

(A4), A is nonsingular. On the other hand, Â(β) converges uniformly to a non-

random function A(β) uniformly in β ∈ B = {β : ||β−β0|| ≤ ε}; thus there exists
a small neighborhood of β0 in which Â(β), especially Â(β0), is nonsingular for

sufficient large n. It follows from the Inverse Function Theorem(Rudin (1976)))

that within a small neighborhood of β0, there exists a unique solution β̂ to the

equation U(β) = 0 when n is large enough. Furthermore by the nonnegative

definiteness of Â(β) in the entire domain of β, the solution β̂ is global unique.

Hence, there exists a unique estimator β̂ and m̂0(t), for t ∈ [0, τ ]. Following the

proof of the estimator’s uniqueness, we can see that β̂ is actually strongly con-

sistent and then m̂0(t) = m̂0(t, β̂) converges uniformly to m0(t) almost surely in

t ∈ [0, τ ].

Proof of Theorem 2.

(1) Let π(t) = P (Y −A ≥ t) and

X
∗
(t) =

∑
δiI(Yi > t){YiŜC(Yi −Ai)}−1 exp(βT0 Xi)Xi∑
δiI(Yi > t){YiŜC(Yi −Ai)}−1 exp(βT0 Xi)

.
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Let x∗(t) be the limit of X
∗
(t). After some calculation, we obtain

U(β0) =

n∑
i=1

∫ τ

0
Mi(t){Xi − x∗(t)}dh(t) +

n∑
i=1

∫ τ

0

Q(t)

π(t)
dMC

i (t) + op(n
1/2),

where Q(t) = (1/n)
∑n

i=1

∫ τ
0 Mi(s){Xi − x∗(s)}dh(s)I(Yi − Ai ≥ t) and

Q(t) converges to some nonrandom process q(t). By Lemma 1 in Lin et

al. (2000), we have (1/
√
n)U(β0) = (1/

√
n)

∑n
i=1 ξi + op(1), where ξi =∫ τ

0 Mi(t){Xi−x∗}dh(t)+
∫ τ
0 (q(t)/π(t))dM

C
i (t). It follows from the Multivari-

ate Central Limit Theorem that n−1/2U(β0) is asymptotically normal with

mean 0 and covariance matrix Σ = E[ξ⊗2
i ]. By the Taylor expansion of U(β)

at β0, we have n
1/2(β̂−β0) = B−1n−1/2U(β0)+op(1). Therefore,

√
n(β̂−β0)

is asymptotically zero-mean normal with covariance matrix B−1ΣB−1, which

can be consistently estimated by B̂−1Σ̂B̂−1.

(2) We first show the weak convergence of m̂0(t). Note that

√
n(m̂0(t)−m0(t)) =

√
n(m̂0(t, β̂)− m̂0(t, β0)) +

√
n(m̂0(t, β0)−m0(t)).

Let Φ(t) = (1/n)
∑n

i=1 δiI(Yi > t){YiŜC(Yi−Ai)}−1 exp(βT0 Xi) and R(t, µ) =

(1/n)
∑n

i=1Mi(t)I(Yi −Ai ≥ µ). After some derivation, we obtain

√
n(m̂0(t, β̂)−m̂0(t, β0))=−x∗(t)m0(t)

1√
n

n∑
i=1

B−1ξi+op(1),

√
n(m̂0(t, β0)−m0(t))=ϕ(t)

−1 1√
n

n∑
i=1

[
Mi(t)+

∫ τ

0

r(t, µ)

π(µ)
dMC

i (µ)
]
+op(1),

where ϕ(t) and r(t, µ) is the corresponding nonrandom limit of Φ(t) and

R(t, µ).

Therefore
√
n(m̂0(t)−m0(t)) = (1/

√
n)

∑n
i=1 ψi(t) + op(1), where

ψi(t) = ϕ(t)−1[Mi(t) +

∫ τ

0

r(t, µ)

π(µ)
dMC

i (µ)]− x(t, β0)m0(t)B
−1ξi.

Since the terms in last equation are independent zero-mean random variables

for every fixed t, the Multivariate Central Limit Theorem implies that the

finite dimensional distributions of the process
√
n{m̂0(t)−m0(t)}(0 ≤ t ≤ τ)

converge to those of a zero-mean Gaussian process. To prove weak con-

vergence, it suffices to show the tightness. This reduces to the tightness

of n−1/2
∑n

i=1Mi(t). By (A1), m0(t) is of bounded variation. Since Mi(t)

can be written as the sum or product of monotone functions of t and is

thus manageable, it follows from the functional central limit theorem that

n−1/2
∑n

i=1Mi(t) is tight. Therefore n
1/2{m̂0(t)−m0(t)}(0 ≤ t ≤ τ) is tight
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and converges weakly to a zero-mean Gaussian process with the covariance
function Γ(s, t) = E{ψi(s)ψi(t)} at (s, t), which can be consistently estimated
by Γ̂(s, t).

Proof of Theorem 3. By the maximum partial likelihood theory in Flemming
and Harrington (1991), we can obtain the uniform consistency of α̂ and Λ̂0(t) in
[0, τ ]. Then similar arguments as that in the proof of Theorem 1 can be used to
obtain the conclusion of Theorem 3. We omit the details.

Proof of Theorem 4. (1) Since C follows the Cox proportional hazards model,
from Flemming and Harrington (1991), we can obtain

α̂− α0 = Ω−1 1

n

n∑
i=1

∫ τ

0
(Zi − z(t))dMd

i (t) + op(n
−1/2),

Λ̂0(t)− Λ0(t) =
1

n

n∑
i=1

∫ t

0

Md
i (u)

s(0)(u)
−

∫ t

0
z(u)′dΛ0(u)(α̂− α0) + op(n

−1/2), (A.1)

whereMd
i (t) = NC

i (t)−
∫ t
0 Yi(u) exp(α

T
0 Zi)dΛ0(u), s

(k)(t;α) = limn→∞ S(k)(t;α),

s(0)(t) = S(0)(t;α0), z(t;α) = limn→∞ Z(t;α), z(t) = z(t;α0), Ω = limn→∞ Ω̂.
Then combined with functional delta method in Van der Vaart and Wellner

(1996), similar arguments as those in the proof of Theorem 2 can be used to
complete the proof. We omit the details.

Proof of the double robustness of the most efficient estimator. To show
double robustness, it suffices to show that

E
{ δiDi

S̃C(Ti −Ai)
−(1− δi)Q̃T (Yi −Ai, Xi, Ai)

S̃C(Yi −Ai)
+

∫ Yi−Ai

0
Q̃T (u,Xi, Ai)

dΛC
i (u)

S̃C(u)

}
= 0,

if SC(t) = S̃C(t) or ST (t|X,A) = S̃T (t|X,A).
Let Q̃T (t,X,A) = (1/S̃T (A+ t|X,A))

∫ τ
A+tD(u,X)dS̃T (u|X,A). Under the

assumptions on the two survival functions, (3.7) in the paper becomes

δiDi

S̃C(Ti −Ai)
− (1− δi)Q̃T (Yi −Ai, Xi, Ai)

S̃C(Yi −Ai)
−

∫ Yi−Ai

0
Q̃T (u,Xi, Ai)

dS̃C(u)

S̃2
C(u)

.

(A.2)
First of all,

E
[ δD

S̃C(T −A)

∣∣X,A] = −
∫ τ

a

D(u,X)SC(u− a)

S̃C(u−A)
dST (u|X,A),

then,

E
[
(1− δ)

Q̃T (Y −A,X,A)

S̃C(Y −A)

∣∣X,A] = −
∫
Q̃T (c,X,A)

S̃C(c)
ST (a+ c|X)dSC(c)



1156 FANGFANG BAI, JIAN HUANG AND YONG ZHOU

= −
∫ τ

a

∫ u−a

0

ST (a+ c|X,A)
S̃T (a+ c|X,A)

dSC(c)

S̃C(c)
D(u,X)dS̃T (u|X,A),

and then,

E
[ ∫ Y−A

0
Q̃T (u,X,A)

dS̃C(u)

S̃2
C(u)

∣∣X,A] = E
[ ∫ Y−A

0

dS̃C(u)

S̃2
C(u)

Q̃T (u,X,A)
∣∣X,A]

=

∫ τ

a

∫ u−a

0

ST (t+ a|X,A)SC(t)
S̃2
C(t)S̃T (t+ u|X,A)

dS̃C(t)D(u,X)dS̃T (u|X,A).

Since d(SC(t)S̃C(t)
−1) = dSC(t)S̃C(t)

−1 − SC(t)S̃
−2
C (t)dS̃C(t), then

E
{ δiDi

S̃C(Ti −Ai)
− (1− δi)Q̃T (Yi −Ai, Xi, Ai)

S̃C(Yi −Ai)

+

∫ Yi−Ai

0
Q̃T (u,Xi, Ai)

dΛC
i (u)

S̃C(u)
|X,A

}
= −

∫ τ

a

SC(u− a)

S̃C(u− a)
D(u,X)dST (u|X,A)

+

∫ τ

a

∫ u−a

0

ST (a+ c|X,A)
S̃T (a+ c|X,A)

d
(SC(c)
S̃C(c)

)
D(u,X)dS̃T (u|X,A),

if ST (t|X,A) = S̃T (t|X,A), then

E
{ δiDi

S̃C(Ti−Ai)
− (1−δi)Q̃T (Yi −Ai, Xi, Ai)

S̃C(Yi −Ai)
+

∫ Yi−Ai

0
Q̃T (u,Xi, Ai)

dΛC
i (u)

S̃C(u)
|X

}
= 0,

and if SC(t) = S̃C(t), then

E
{ δiDi

S̃C(Ti−Ai)
− (1−δi)Q̃T (Yi −Ai, Xi, Ai)

S̃C(Yi −Ai)
+

∫ Yi−Ai

0
Q̃T (u,Xi, Ai)

dΛC
i (u)

S̃C(u)
|X

}
= 0,

since d
(
SC(c)/S̃C(c)

)
= 0 and EA

[
−
∫ τ
a [SC(u− a)/S̃C(u− a)]D(u,X)dST (u|X,

A)
]
= EA

[
DI(T > a)|X,A

]
= 0 by the mean residual life assumption. There-

fore, the most efficient estimator possesses double robustness.
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