A CENTRAL LIMIT THEOREM FOR NESTED OR SLICED LATIN HYPERCUBE DESIGNS

Xu He and Peter Z. G. Qian

Chinese Academy of Sciences and University of Wisconsin-Madison

Supplementary Material

In the supplementary material, we give the proofs of Propositions 1-4 and Lemma 7.

S1 The proof of Proposition 1

Proof. We first work on the cells $D = (D^1, ..., D^q)$, where $D^k \in \{[0, 1/n), [1/n, 2/n), ..., [1-1/n, 1)\}, k = 1, ..., q.$

From (2.1), for k = 1, ..., q and i = 1, ..., s - 1, $\pi_k(i) = \lfloor nX_i^k \rfloor + 1$. Because π_k is a uniform permutation on $\{1, ..., n\}$, $\pi_k(s)$ has probability $(n - s + 1)^{-1}$ to be any of the n - s + 1 elements of $\{1, ..., n\} \setminus \{\lfloor nX_i^k \rfloor + 1 : 1 \le i \le s - 1\}$. Because the π_k are generated independently, the probability of $(d_1, ..., d_q) \in D$ is $(n - s + 1)^{-q}$ if for any $1 \le i \le s - 1$ and $1 \le k \le q$, $d_k \notin \delta_n(X_i^k)$.

Because the η_i^k are generated independently by the uniform distribution on $(0,1], (d_1,\ldots,d_q)$ is uniformly distributed in any D. Because D has volume n^{-q} , $g_{\text{OLHD}}(d_1,\ldots,d_q) = \{n/(n-s+1)\}^q$ if for any $1 \leq i \leq s-1$ and $1 \leq k \leq q$, $d_k \notin \delta_n(X_i^k)$.

S2 The proof of Proposition 2

Proof. First assume $Z_s = 1$. From (2.3), for k = 1, ..., q and i = 1, ..., s - 1 with $Z_i = 1$, $\gamma_k(\pi(i)) = \lfloor mX_i^k \rfloor + 1$. Because γ_k is a uniform permutation on $\{1, ..., m\}$ and γ_k is independent of ρ_k , $\gamma_k(\pi(s))$ has probability $(m - |\{i : 1 \le i \le s - 1, Z_i = 1\}|)^{-1}$ to be any of the $m - |\{i : 1 \le i \le s - 1, Z_i = 1\}|$ elements of $\{1, ..., m\} \setminus \{|mX_i^k| + 1 : 1 \le i \le s - 1, Z_i = 1\}$.

Because τ_i^k is independent of ρ_k and the η_i^k are generated independently by the uniform distribution on (0,1], (d_1,\ldots,d_q) is uniformly distributed in $D=(D^1,\ldots,D^q)$, where $D^k\in\{[(i-1)/m,i/m)\setminus(\cup_{j=1}^{s-1}\delta_n(X_j^k)):1\leq i\leq m$, for any $1\leq c\leq s-1$ with $Z_c=1,\lfloor mX_c^k\rfloor\neq i-1\}$. The volume of D is $\prod_k\{(l-|\{i:1\leq i\leq s-1,D^k\subseteq\delta_m(X_i^k)\}|)/n\}$. Thus, $g_{\rm NLHD}(d_1,\ldots,d_q)=\prod_{k=1}^qg_k(d_k)$ if (d_1,\ldots,d_k) is in any of the D above and $g_{\rm NLHD}(d_1,\ldots,d_q)=0$ otherwise.

Next, assume $Z_s = 2$. Let $\beta_k = \lceil \rho_k/l \rceil$. From (2.3), observe that β_k maps l-1 elements to any of the elements of $\{1, \ldots, m\}$ uniformly, and β_k is independent of $\gamma_k, \tau_1^k, \ldots, \tau_m^k$. Therefore, for $j = 1, \ldots, m$, the probability of $\beta_k(\pi(s) - m) = j$ is $(l-1 - |\{i : 1 \le i \le s-1, Z_i = 2, \delta_m(X_i^k) = j, \}|)/(n-m-|\{i : 1 \le i \le s-1, Z_i = 2\}|)$.

Because ρ_k is independent of τ_i^k and the η_i^k are generated independently by the uniform

distribution on (0,1], (d_1,\ldots,d_q) is uniformly distributed in $D=(D^1,\ldots,D^q)$, where $D^k\in\{[(i-1)/m,i/m)\setminus(\cup_{j=1}^{s-1}\delta_n(X_j^k)):1\leq i\leq s-1\}$. The volume of D is $\prod_k\{(l-|\{i:1\leq i\leq s-1,D^k\subseteq\delta_m(X_i^k)\}|)/n\}$. Thus, $g_{\rm NLHD}(d_1,\ldots,d_q)=\prod h_k(d_k)$ if (d_1,\ldots,d_k) is in any of the D above and $g_{\rm NLHD}(d_1,\ldots,d_q)=0$ otherwise.

S3 The proof of Proposition 3

Proof. From (2.5), for k = 1, ..., q and i = 1, ..., s - 1 with $Z_i = Z_s, \gamma_{Z_i}^k(\pi(i) - m\lceil \pi(i)/m\rceil + m) = \lfloor mX_i^k \rfloor + 1$. Therefore, $\gamma_{Z_s}^k(\pi(s) - m\lceil \pi(s)/m\rceil + m)$ has probability $(m - |\{i : 1 \le i \le s - 1, Z_i = Z_s\}|)^{-1}$ to be any of the $m - |\{i : 1 \le i \le s - 1, Z_i = Z_s\}|$ elements of $\{1, ..., m\} \setminus \{\lfloor mX_i^k \rfloor + 1 : 1 \le i \le s - 1, Z_i = Z_s\}$.

Because τ_b^k and γ_a^k are independent, and the η_i^k are generated independently by the uniform distribution on (0,1], (d_1,\ldots,d_q) is uniformly distributed in $D=(D^1,\ldots,D^q)$, where $D^k\in\{[(i-1)/m,i/m)\setminus(\cup_{j=1}^{s-1}\delta_n(X_j^k)):1\leq i\leq m,$ for any $1\leq c\leq s-1$ with $Z_c=Z_s,\lfloor mX_c^k\rfloor\neq i-1\}$. The volume of D is $\prod_k\{(l-|\{i:1\leq i\leq s-1,D^k\subseteq\delta_m(X_i^k)\}|)/n\}$. Thus, $g_{\rm SLHD}(d_1,\ldots,d_q)=\prod g_k(d_k)$ if (d_1,\ldots,d_k) is in any of the D above and $g_{\rm SLHD}(d_1,\ldots,d_q)=0$ otherwise.

S4 The proof of Proposition 4

Proof. First, consider the case of OLHD. Let $b_s(i_1, \ldots, i_q) = \{n/(n-s+1)\}^q$ if $i_1 = \cdots = i_q = 0$ and $b_s(i_1, \ldots, i_q) = 0$ otherwise. From Proposition 1, (2.7) is valid.

Second, consider the case of NLHD with $Z_s=1$. Let $b_s(i_1,\ldots,i_q)=0$ if there is a k and $1 \le j \le s-1$ such that $i_k>0$, $\lfloor mX_j^k \rfloor = \lfloor mX_{i_k}^k \rfloor$ and $Z_j=1$. Otherwise, let $w=\{k: i_k \ne 0\}$ and

$$b_{s}(i_{1},\ldots,i_{q})$$

$$\begin{cases}
c, & i_{1}=\cdots=i_{q}=0, \\
p(w), & i_{1},\ldots,i_{q}\geq0,|w|>0, \text{ for any } k \text{ such that } i_{k}>0,i_{k} \text{ is the} \\
& \text{smallest among } \{j:1\leq j\leq s-1,\lfloor mX_{j}^{k}\rfloor=\lfloor mX_{i_{k}}^{k}\rfloor\}, \\
-p(w), & i_{1},\ldots,i_{q}\leq0,|w|>0, \\
0, & \text{otherwise,}
\end{cases}$$
(S4.1)

where $c = \{m/(m - |\{i : 1 \le i \le s - 1, Z_i = 1\}|)\}^q$, and

$$p(w) = c \prod_{k \in w} \left(1 - |\{j : 1 \le j \le s - 1, \lfloor mX_j^k \rfloor = \lfloor mX_{i_k}^k \rfloor\}|/l \right)^{-1}.$$

Because $|\{j: 1 \leq j \leq s-1, \lfloor mX_j^k \rfloor = \lfloor mX_{i_k}^k \rfloor\}| \leq l-1$ for any $k \in w$, p(w) is bounded as n goes to infinity. Therefore, $b_s(i_1, \ldots, i_q)$ is bounded as n goes to infinity and $b_s(0, \ldots, 0) = c = 1 + O(n^{-1})$. Using an inclusion-exclusion argument, (2.7) is verified for NLHD with $Z_s = 1$.

Third, consider the case of NLHD with $Z_s=2$. Let $w=\{k:i_k\neq 0\}$ and b_s be defined as in (S4.1), where $c=\{(n-m)/(n-m-|\{i:1\leq i\leq s-1,Z_i=2\}|)\}^q$, p(w)=0 if there is a $k\in w$ such that $|\{j:1\leq j\leq s-1,\lfloor mX_j^k\rfloor=\lfloor mX_{i_k}^k\rfloor,Z_i=2\}|=l-1$ and

$$p(w) = c \prod_{k \in w} \frac{n(l-1-|\{j: 1 \leq j \leq s-1, \lfloor mX_j^k \rfloor = \lfloor mX_{i_k}^k \rfloor, Z_j = 2\}|)}{(n-m)(l-|\{j: 1 \leq j \leq s-1, \lfloor mX_j^k \rfloor = \lfloor mX_{i_k}^k \rfloor\}|)}$$

otherwise. When $|\{j: 1 \leq j \leq s-1, \lfloor mX_j^k \rfloor = \lfloor mX_{i_k}^k \rfloor, Z_j = 2\}| < l-1, |\{j: 1 \leq j \leq s-1, \lfloor mX_j^k \rfloor = \lfloor mX_{i_k}^k \rfloor\}| \leq l-1$. Therefore, $b_s(i_1, \ldots, i_q)$ is bounded as n goes to infinity and $b_s(0, \ldots, 0) = c = 1 + O(n^{-1})$. Using an inclusion-exclusion argument, (2.7) is verified for NLHD with $Z_s = 2$.

Finally, consider the case for SLHD. Let $b_s(i_1, \ldots, i_q) = 0$ if there is a k and $1 \le j \le s - 1$ such that $i_k > 0$, $\lfloor mX_j^k \rfloor = \lfloor mX_{i_k}^k \rfloor$ and $Z_j = Z_s$. Otherwise, let $w = \{k : i_k \ne 0\}$ and b_s be defined as in (S4.1), where $c = \{m/(m - |\{i : 1 \le i \le s - 1, Z_i = Z_s\}|)\}^q$, and

$$p(w) = c \prod_{k \in w} \left(1 - |\{j : 1 \le j \le s - 1, \lfloor mX_j^k \rfloor = \lfloor mX_{i_k}^k \rfloor\}|/l \right)^{-1}.$$

Because $|\{j: 1 \leq j \leq s-1, \lfloor mX_j^k \rfloor = \lfloor mX_{i_k}^k \rfloor\}| \leq l-1$ for any $k \in w$, p(w) is bounded as n goes to infinity. Therefore, $b_s(i_1, \ldots, i_q)$ is bounded as n goes to infinity and $b_s(0, \ldots, 0) = c = 1 + O(n^{-1})$. Using an inclusion-exclusion argument, (2.7) is verified for SLHD.

S5 The proof of Lemma 7

We first give the key steps of the proof. Let $r_i = r(X_i)$ by (3.2). Then

$$E\{(n^{1/2}\bar{R})^p\} = n^{-p/2} \sum_{a_1 + \dots + a_n = p, a_1, \dots, a_n > 0} E\left(\prod_{i=1}^n r_i^{a_i}\right).$$
 (S5.2)

Let t be the number of a_i 's being one and s be the number of non-zero a_i 's. There are at most $O(n^s)$ terms in (S5.2). Thus, it suffices to show that for any $s \leq p$,

$$E\left(\prod_{i=1}^{s} r_i^{a_i}\right) - E_{\text{IID}}\left(\prod_{i=1}^{s} r_i^{a_i}\right) = o(n^{p/2-s}).$$

If t = 0, then $s \le p/2$. From Lemma 6,

$$E\left(\prod_{i=1}^{s} r_i^{a_i}\right) - E_{\text{IID}}\left(\prod_{i=1}^{s} r_i^{a_i}\right) = O(n^{-1}) = o(n^{p/2-s}).$$

If t > 0, $E_{\text{IID}}\left(\prod_{i=1}^{s} r_i^{a_i}\right) = 0$. Thus, it suffices to show that for any $1 \le t \le s \le p$, $t + a_{t+1} + \ldots + a_s = p, a_{t+1}, \ldots, a_s > 1$,

$$E\left(\prod_{i=1}^{s-t} r_i^{a_i} \prod_{i=s-t+1}^{s} r_i\right) = o(n^{p/2-s}).$$

Because $t + 2(s - t) \le p$, $-t/2 \le p/2 - s$. Since $r_i = \sum_{|u|>1} f_u(X_i)$, it suffices to show for any $1 \le t \le s$, $|u_{s-t+1}|, \ldots, |u_s| > 1$, continuous functions f and bounded function h(x),

$$E\left\{h(X_1,\dots,X_{s-t})\prod_{i=s-t+1}^s f_{u_i}(X_i)\right\} = o(n^{-t/2}).$$
 (S5.3)

To show (S5.3), express

$$E\left\{h(X_1, \dots, X_{s-t}) \prod_{i=s-t+1}^{s} f_{u_i}(X_i)\right\}$$

$$= E\left[h(X_1, \dots, X_{s-t}) \prod_{i=s-t+1}^{s-1} f_{u_i}(X_i) E\left\{f_{u_s}(X_s) \mid X_1, \dots, X_{s-1}\right\}\right].$$

From Proposition 4,

$$E\{f_{u_s}(X_s) \mid X_1, \dots, X_{s-1}\} = \sum_{i_1, \dots, i_q} b_s(i_1, \dots, i_q) \left(\int_{D_s} f_{u_s}(y) dy \right),$$

where $i_1, \ldots, i_q = -(s-1), \ldots, s-1, b_s(i_1, \ldots, i_q)$ is a deterministic function on $n, m, i_1, \ldots, i_q, Z_1, \ldots, Z_s, M_{s-1}$ and bounded as n goes to infinity, $D_s = D_{i_1}^1 \times \cdots \times D_{i_q}^q$ and

$$D_i^k = \begin{cases} [0,1) \setminus \bigcup_{j=1}^{s-1} \delta_m(X_j^k), & i = 0, \\ \delta_m(X_i^k), & i > 0, \\ \delta_n(X_{-i}^k), & i < 0. \end{cases}$$

By an inclusion-exclusion argument, rewrite

$$E\{f_{u_s}(X_s) \mid X_1, \dots, X_{s-1}\} = \sum_{i_1, \dots, i_q} \tilde{b}_s(i_1, \dots, i_q) \left(\int_{\tilde{D}_s} f_{u_s}(y) dy \right),$$

where $i_1, \ldots, i_q = -(s-1), \ldots, s-1, \tilde{b}_s(i_1, \ldots, i_q)$ is a deterministic function on $n, m, i_1, \ldots, i_q, Z_1, \ldots, Z_s, M_{s-1}$ and bounded as n goes to infinity, $\tilde{D}_s = \tilde{D}_{i_1}^1 \times \cdots \times \tilde{D}_{i_q}^q$ and

$$\tilde{D}_{i}^{k} = \begin{cases} [0,1), & i = 0, \\ \delta_{m}(X_{i}^{k}), & i > 0, \\ \delta_{n}(X_{-i}^{k}), & i < 0. \end{cases}$$

From (3.1),

$$\int_{\tilde{D}^1 \times \dots \times \tilde{D}^q} f_u(y) dy = 0$$

if there is at least one k such that $\tilde{D}^k=[0,1)$ and $k\in u$. Therefore, let $w(d_1,\ldots,d_q)=\{k:d_k\neq 0\}$, then $\int_{\tilde{D}_s}f_{u_s}(y)dy$ has order $O(n^{-|w(d_1,\ldots,d_q)\cup u_s|})=O(n^{-2})$ and

$$E\left\{h(X_{1},...,X_{s-t})\prod_{i=s-t+1}^{s}f_{u_{i}}(X_{i})\right\}$$

$$=\sum_{i_{1},...,i_{q}=-(s-1)}^{s-1}E\left\{h(X_{1},...,X_{s-t})\prod_{i=s-t+1}^{s-1}f_{u_{i}}(X_{i})\tilde{b}_{s}(i_{1},...,i_{q})\int_{\tilde{D}_{s}}f_{u_{s}}(y)dy\right\}$$

$$=O(n^{-2}). \tag{S5.4}$$

We can further reduce the order of (S5.4) if t > 1. For any term in the sum of (S5.4),

$$E\left\{h(X_{1},\ldots,X_{s-t})\prod_{i=s-t+1}^{s-1}f_{u_{i}}(X_{i})\tilde{b}_{s}(i_{1},\ldots,i_{q})\int_{\tilde{D}_{s}}f_{u_{s}}(y)dy\right\}$$

$$=\sum_{j_{1},\ldots,j_{q}=-(s-2)}^{s-2}E\left[h(X_{1},\ldots,X_{s-t})\prod_{i=s-t+1}^{s-2}f_{u_{i}}(X_{i})b_{s-1}(j_{1},\ldots,j_{q})\left\{\int_{\tilde{D}_{s}}\tilde{b}_{s}(i_{1},\ldots,i_{q})\left(\int_{\tilde{D}_{s}}f_{u_{s}}(y_{s})dy_{s}\right)f_{u_{s-1}}(X_{s-1})dX_{s-1}\right\}\right],$$

where $b_{s-1}(i_1,\ldots,i_q)$ is a deterministic function on $n,m,i_1,\ldots,i_q,Z_1,\ldots,Z_{s-1},M_{s-2}$ and bounded as n goes to infinity, $D_{s-1}=D^1_{j_1}\times\cdots\times D^q_{j_q}$ and

$$D_{j}^{k} = \begin{cases} [0,1) \setminus \bigcup_{i=1}^{s-2} \delta_{m}(X_{i}^{k}), & j = 0, \\ \delta_{m}(X_{j}^{k}), & j > 0, \\ \delta_{n}(X_{-j}^{k}), & j < 0. \end{cases}$$

In any area of D_{s-1} , $\tilde{b}_s(i_1, \ldots, i_q)$ becomes a deterministic function on $n, m, i_1, \ldots, i_q, Z_1, \ldots, Z_{s-1}, M_{s-2}$ and bounded as n goes to infinity. Therefore,

$$E\left\{h(X_{1},\ldots,X_{s-t})\prod_{i=s-t+1}^{s-1}f_{u_{i}}(X_{i})\tilde{b}_{s}(i_{1},\ldots,i_{q})\int_{\tilde{D}_{s}}f_{u_{s}}(y)dy\right\}$$

$$=\sum_{j_{1},\ldots,j_{q}=-(s-2)}^{s-2}E\left[h(X_{1},\ldots,X_{s-t})\prod_{i=s-t+1}^{s-2}f_{u_{i}}(X_{i})\hat{b}_{s-1}(j_{1},\ldots,j_{q})\right]$$

$$\left\{\int_{D_{s-1}}\left(\int_{\tilde{D}_{s}}f_{u_{s}}(y_{s})dy_{s}\right)f_{u_{s-1}}(X_{s-1})dX_{s-1}\right\},$$

where $\hat{b}_{s-1}(i_1,\ldots,i_q)$ is a deterministic function on $n,m,i_1,\ldots,i_q,Z_1,\ldots,Z_{s-1},M_{s-2}$ and bounded as n goes to infinity and D_{s-1} defined as before.

By an inclusion-exclusion argument, rewrite

$$E\left\{h(X_{1},\ldots,X_{s-t})\prod_{i=s-t+1}^{s-1}f_{u_{i}}(X_{i})\tilde{b}_{s}(i_{1},\ldots,i_{q})\int_{\tilde{D}_{s}}f_{u_{s}}(y)dy\right\}$$

$$=\sum_{j_{1},\ldots,j_{q}=-(s-2)}^{s-2}E\left[h(X_{1},\ldots,X_{s-t})\prod_{i=s-t+1}^{s-2}f_{u_{i}}(X_{i})\tilde{b}_{s-1}(j_{1},\ldots,j_{q})\right]$$

$$\left\{\int_{\tilde{D}_{s-1}}\left(\int_{\tilde{D}_{s}}f_{u_{s}}(y_{s})dy_{s}\right)f_{u_{s-1}}(X_{s-1})dX_{s-1}\right\},$$
(S5.5)

where $\tilde{b}_{s-1}(i_1,\ldots,i_q)$ is a deterministic function on $n,m,i_1,\ldots,i_q,Z_1,\ldots,Z_{s-1},M_{s-2}$ and bounded as n goes to infinity, $\tilde{D}_{s-1}=\tilde{D}^1_{j_1}\times\cdots\times\tilde{D}^q_{j_q}$ and

$$\tilde{D}_{j}^{k} = \begin{cases} [0,1), & j = 0, \\ \delta_{m}(X_{j}^{k}), & j > 0, \\ \delta_{n}(X_{-j}^{k}), & j < 0. \end{cases}$$

The first two steps shown above reduce the order of magnitudes for $E\{h(X_1,\ldots,X_{s-t})\prod_{i=s-t+1}^s f_{u_i}(X_i)\}$. In (S5.4), we took $f_{u_s}(X_s)$ out of the product and reached the $O(n^{-2})$ order. Continuing taking out the $f_{u_i}(X_i)$ terms as in (S5.5), we obtain on a more general formula given by

$$\left(\prod_{j=1}^{J} |D_j|\right)^{-1} E\left\{h(M_s) \prod_{i=s-t+1}^{s} f_{u_i}(X_i) \int_{\prod_{j=1}^{J} D_j} \prod_{j=1}^{J} f_{v_j}(y_j) dy_1 \cdots dy_J\right\}.$$
 (S5.6)

Suppose G is an arbitrary term by (S5.6) with the following parameters: $0 \leq t \leq s \leq p$, $|u_{s-t+1}|, \ldots, |u_s| > 1$, J is a nonnegative integer, $h(M_s)$ is a deterministic function on $n, m, Z_1, \ldots, Z_n, X_1, \ldots, X_{s-t}, M_s$ and bounded as n goes to infinity, $v_j \subseteq \{1, \ldots, q\}$, $D_j = D_j^1 \times \cdots \times D_j^q$, and D_j^k is either [0,1), or $\delta_m(X_i^k)$ with $1 \leq i \leq s$, or $\delta_n(X_i^k)$ with $1 \leq i \leq s$, or $\delta_m(y_i^k)$ with $j < i \leq J$, or $\delta_n(y_i^k)$ with $j < i \leq J$. Suppose that C is a $t \times q$ zero-one matrix with the (i,k)th element being one if and only if $k \in u_{i-s+t}$ and $D_j^k \not\subseteq \delta_m(X_{i-s+t}^k)$ for any $1 \leq j \leq J$. Let θ be the total number of ones. The following lemma gives the orders of G by θ .

Lemma S1. The quantity G has order $O(n^{-\theta/2})$.

Proof. We show this by induction on t. If t=0, then $\theta=0$ and the result holds. Next, assume the result holds for $t=0,\ldots,z-1$ with $z\geq 1$. It suffices to show the result holds for t=z. Express

$$G = \left(\prod_{j=1}^{J} |D_{j}|\right)^{-1} E\left\{h(M_{s}) \prod_{i=s-t+1}^{s} f_{u_{i}}(X_{i}) \int_{\prod_{j=1}^{J} D_{j}} \prod_{j=1}^{J} f_{v_{j}}(y_{j}) dy_{1} \cdots dy_{J}\right\}$$

$$= \left(\prod_{j=1}^{J} |D_{j}|\right)^{-1} E\left[\prod_{i=s-t+1}^{s} f_{u_{i}}(X_{i}) E\left\{h(M_{s}) f_{u_{s}}(X_{s})\right\}\right]$$

$$\int_{\prod_{i=1}^{J} D_{j}} \prod_{i=1}^{J} f_{v_{j}}(y_{j}) dy_{1} \cdots dy_{J} |X_{1}, \dots, X_{s-1}|$$

From Proposition 4 and similar to (S5.4) and (S5.5),

$$E\left\{h(M_s)f_{u_s}(X_s)\left(\int_{\prod_{j=1}^J D_j} \prod_{j=1}^J f_{v_j}(y_j)dy_1\cdots dy_J\right) \mid X_1,\dots,X_{s-1}\right\}$$

$$= \sum_{i_1,\dots,i_q=-(s-1)}^{s-1} b_s(i_1,\dots,i_q)\int_{D_{J+1}} h(M_s)f_{u_s}(X_s)\left(\int_{\prod_{j=1}^J D_j} \prod_{j=1}^J f_{v_j}(y_j)dy_1\cdots dy_J\right)dX_s$$

$$= \sum_{i_1,\dots,i_q=-(s-1)}^{s-1} b_s(i_1,\dots,i_q)\tilde{h}(M_{s-1})\int_{D_{J+1}} f_{u_s}(X_s)\left(\int_{\prod_{j=1}^J D_j} \prod_{j=1}^J f_{v_j}(y_j)dy_1\cdots dy_J\right)dX_s$$

$$= \sum_{i_1,\dots,i_q=-(s-1)}^{s-1} \tilde{b}_s(i_1,\dots,i_q)\tilde{h}(M_{s-1})\int_{\tilde{D}_{J+1}} f_{u_s}(X_s)\left(\int_{\prod_{j=1}^J D_j} \prod_{j=1}^J f_{v_j}(y_j)dy_1\cdots dy_J\right)dX_s$$

where $b_s(i_1, \ldots, i_q)$ is a deterministic function on $n, m, i_1, \ldots, i_q, Z_1, \ldots, Z_s, X_1, \ldots, X_{s-t}, M_{s-1}$ and bounded as n goes to infinity, $D_{J+1} = D^1_{J+1} \times \cdots \times D^q_{J+1}$,

$$D_{J+1}^{k} = \begin{cases} [0,1) \setminus \bigcup_{j=1}^{s-1} \delta_m(X_j^k), & i_k = 0, \\ \delta_m(X_{i_k}^k), & i_k > 0, \\ \delta_n(X_{-i_k}^k), & i_k < 0, \end{cases}$$

 $\tilde{h}(M_{s-1})$ is a deterministic function on $n, m, Z_1, \ldots, Z_{s-1}, X_1, \ldots, X_{s-t}, M_{s-1}$ and bounded as n goes to infinity, $\tilde{b}_s(i_1, \ldots, i_q)$ is a deterministic function on $n, m, i_1, \ldots, i_q, Z_1, \ldots, Z_s, M_{s-1}$ and bounded as n goes to infinity, $\tilde{D}_{J+1} = \tilde{D}_{J+1}^1 \times \cdots \times \tilde{D}_{J+1}^q$ and

$$\tilde{D}_{J+1}^{k} = \begin{cases} [0,1), & i_k = 0, \\ \delta_m(X_{i_k}^k), & i_k > 0, \\ \delta_n(X_{-i_k}^k), & i_k < 0. \end{cases}$$

Thus,

$$G = \sum_{i_1,\dots,i_q=-(s-1)}^{s-1} \left\{ \left(\prod_{j=1}^{J} |D_j| \right)^{-1} E \left(\prod_{i=s-t+1}^{s-1} f_{u_i}(X_i) \tilde{b}_s(i_1,\dots,i_q) \tilde{h}(M_{s-1}) \right. \right.$$

$$\left. \int_{\tilde{D}_{J+1} \times \prod_{j=1}^{J} D'_j} \prod_{j=1}^{J+1} f_{v_j}(y_j) dy_1 \cdots dy_J \right) \right\},$$
(S5.7)

where $v_{J+1} = u_s$, $\tilde{D}_{J+1} = \tilde{D}_{J+1}^1 \times \cdots \times \tilde{D}_{J+1}^q$,

$$\tilde{D}_{J+1}^{k} = \begin{cases} [0,1), & i_k = 0, \\ \delta_m(X_{i_k}^k), & i_k > 0, \\ \delta_n(X_{-i_k}^k), & i_k < 0, \end{cases}$$

 $D'_j = D_j^{1\prime} \times \cdots \times D_j^{q\prime}$ and

$$D_{j}^{k\prime} = \begin{cases} \delta_{m}(y_{J+1}^{k}), & D_{j}^{k} = \delta_{m}(X_{s}^{k}), \\ \delta_{n}(y_{J+1}^{k}), & D_{j}^{k} = \delta_{n}(X_{s}^{k}), \\ D_{j}^{k}, & \text{otherwise.} \end{cases}$$

Therefore, G can be expressed as

$$G = \sum_{i_1,...,i_q} (|D_{J+1}|G'_{i_1,...,i_q}),$$

where $i_1, \ldots, i_q = -(s-1), \ldots, s-1, u_s \subseteq w(i_1, \ldots, i_q) = \{k : i_k \neq 0\}, |D_{J+1}| \leq n^{-|w(i_1, \ldots, i_q)|}$ and G'_{i_1, \ldots, i_q} is a term by (S5.6) with the associated matrix C'_{i_1, \ldots, i_q} and the total number of ones $\theta'_{i_1, \ldots, i_q}$. Furthermore, C'_{i_1, \ldots, i_q} is a $(t-1) \times q$ matrix with equal or fewer elements of ones

than the first t-1 rows of C. If $|i_k| > s-t$, the $(|i_k| - s + t, k)$ th element of $C'_{i_1,...,i_q}$ is zero. Other elements of $C'_{i_1,...,i_q}$ are the same with that of the first t-1 rows of C. The last row of C has at most $|u_s|$ ones. Therefore, for any $(i_1,...,i_q)$,

$$\theta'_{i_1,\ldots,i_q} \ge \theta - |w(i_1,\ldots,i_q)| - |u_s| \ge \theta - 2|w(i_1,\ldots,i_q)|.$$

By induction,

$$G = O(n^{-\theta'_{i_1,\dots,i_q}/2} n^{-|w(i_1,\dots,i_q)|}) = O(n^{-\theta/2}).$$
 (S5.8)

Consequently, G has order $O(n^{-\theta/2})$.

We now give the proof of Lemma 7.

Proof. We have argued in (S5.3) that it suffices to show for any $1 \le t \le s \le p$, $|u_{s-t+1}|, \ldots, |u_s| > 1$, a continuous function f and a bounded function h,

$$E\left\{h(X_1,\ldots,X_{s-t})\prod_{i=s-t+1}^s f_{u_i}(X_i)\right\} = o(n^{-t/2}).$$

Therefore, $E\left\{h(X_1,\ldots,X_{s-t})\prod_{i=s-t+1}^s f_{u_i}(X_i)\right\}$ is a term by (S5.6) with $\theta=\sum_{i=s-t+1}^s |u_i|\geq 2t$. From Lemma S1, $E\left\{h(X_1,\ldots,X_{s-t})\prod_{i=s-t+1}^s f_{u_i}(X_i)\right\}=O(n^{-t})=o(n^{-t/2})$.