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Supplementary Material

In the supplementary material, we give the proofs of Propositions 1-4 and Lemma 7.

S1 The proof of Proposition 1

Proof. We first work on the cells D = (D',..., D7), where D* € {[0,1/n), [1/n,2/n),...,[1 —
1/n, D} k=1,...,q

From (2.1), for k = 1,...,qand s = 1,...,s — 1, mx(i) = [nXF| + 1. Because 7y is a
uniform permutation on {1,...,n}, 7 (s) has probability (n —s-+1)"! to be any of the n —s+41
elements of {1,...,n}\{|nXF|+1:1<i< s—1}. Because the 7 are generated independently,
the probability of (di,...,dq) € Dis (n—s+ 1) 9 ifforany 1 <i<s—1and 1 <k <gq,
di ¢ 6,.(XF).

Because the ¥ are generated independently by the uniform distribution on (0,1], (d1, . . ., dq)
is uniformly distributed in any D. Because D has volume n™ %, gorup(di,...,dq) = {n/(n —
s+ 1)} ifforany 1<i<s—1land 1<k<gq,dy¢dn(XF). O

S2 The proof of Proposition 2

Proof. First assume Z, = 1. From (2.3), for k = 1,...,qgand i = 1,...,s — 1 with Z; = 1,
e (m(i)) = |mXF|+1. Because 7y is a uniform permutation on {1, ...,m} and  is independent
of pr, Yk (m(s)) has probability (m — |{i: 1 <i<s—1,Z; = 1}|)7" to be any of the m — |{i :
1<i<s—1,7;, =1} elementsof{L...,m}\{\_mXikJ +1:1<i<s—-1,Z; =1}.

Because 77 is independent of p; and the n¥ are generated independently by the uniform
distribution on (0,1], (d1,...,d,) is uniformly distributed in D = (D',..., DY), where D* ¢
{l(i—1)/m,i/m)\(U;Z16n(X})) : 1 < i <m, for any 1 < ¢ < s—1 with Z. =1, [mX[| #i—1}.
The volume of D is [[,{(I—[{i: 1 <i<s—1,D* C6,(XF)}|)/n}. Thus, gxLup(dy, ..., dg) =
[T7_, 9x(dr) if (d1,...,dx) is in any of the D above and gnrup(di,. .., dq) = 0 otherwise.

Next, assume Zs = 2. Let 8 = [px/l]. From (2.3), observe that 8, maps [ — 1 elements to
any of the elements of {1,...,m} uniformly, and S is independent of vy, T, ..., 7F . Therefore,
for j = 1,...,m, the probability of fx(n(s) —m) = jis (- 1—-|[{i : 1 <i<s-1,Z; =
2,8m(XE) = J})/(n—m — |{i5 1< i < 51,2 =2},

Because py, is independent of 7F and the n¥ are generated independently by the uniform
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distribution on (0,1], (d1,...,d,) is uniformly distributed in D = (D',..., DY), where D* ¢
{[(: = 1)/m,i/m) \ (U?;%SH(XJ’“)) :1<i<s—1}. The volume of D is J[,{(Il—{i:1 <3<
s —1,DF C 6,(XF)})/n}. Thus, gnLup(di, ..., dg) = [ he(dy) if (di,...,dx) is in any of the
D above and gnLup(di, . .., dq) = 0 otherwise. O

S3 The proof of Proposition 3

Proof. From (2.5), for k=1,...,qand i = 1,...,s — 1 with Z; = Z,, 7%, (n(i) — m[r(i)/m] +
m) = |mXF] + 1. Therefore, v5_(m(s) — m[n(s)/m] + m) has probability (m — [{i : 1 <
i < s—1,Z; = Z}|)"! to be any of the m — |{i : 1 < i < s —1,Z; = Zs}| elements of
{,...omI\{|mXF|+1:1<i<s—-1,Z; = Zs}.

Because 7 and 4% are independent, and the n? are generated independently by the u-
niform distribution on (0,1], (d1,...,dy) is uniformly distributed in D = (D',..., D7), where
D* € {[(i — 1)/m,i/m) \ (U;;%én(XJk)) :1 <i<mforanyl < ¢ < s—1withZ. =
Zs, |mX%] #i—1}. The volume of D is [[,{(l—|{i:1<i<s—1,D" C 6,(XF)}|)/n}. Thus,
gstup(di, ..., dg) = [ gk(dg) if (d1,...,dy) is in any of the D above and gspup(d1,...,d,) =0

otherwise. O

S4 The proof of Proposition 4

Proof. First, consider the case of OLHD. Let by (i1, ...,iq) = {n/(n—s+1)}9ifiy = =iz =0
and bs (i1, ...,9¢) = 0 otherwise. From Proposition 1, (2.7) is valid.

Second, consider the case of NLHD with Z, = 1. Let bs(i1,...,4q) = 0 if there is a k and
1 < j <s—1such that ix >0, [mX}j| = |mX/ | and Z; = 1. Otherwise, let w = {k : i), # 0}

and

bs(i1,...,1q)

c, i1 =--=1g=0,

p(w), i1y...,0q > 0,]w| > 0, for any k such that iy > 0,4 is the

= smallest among {j : 1 < j <s—1, mX;|=|mX/} |}, (S4.1)

—p(’lU), Zl,,’LqSO, |’LU|>07

0, otherwise,

where c = {m/(m —|{i: 1 <i<s—1,Z; =1}|)}9, and

-1
pw) =[] (1= 151 <5 <s—1ImXJ| = mXEH/)
kew
Because [{j: 1 <j <s—1,|mX}| = [mX[ |} <1—1 for any k € w, p(w) is bounded as n
goes to infinity. Therefore, bs(i1,...,1q) is bounded as n goes to infinity and bs(0,...,0) =c=
1+ O(n™h). Using an inclusion-exclusion argument, (2.7) is verified for NLHD with Z, = 1.
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Third, consider the case of NLHD with Z; = 2. Let w = {k : i), # 0} and b, be defined as
in (S4.1), where c = {(n —m)/(n—m — [{i : 1 <i<s—1,Z; = 2}|)}?, p(w) = 0 if there is a
k € wsuch that [{j:1<j<s—1,|mX}]=|mX | Z =2} =1—1and

pw)=c]]

kew

nl—1-{j:1<j<s—1,[mX}| = [mX} |,Z; = 2}|)
(n—m)(I—-Hj:1<j<s—1,[mX}] = [mX; |}

k

otherwise. When [{j : 1 < j < s—1,|mX}| = mX/ ],Z; =2} <l-1, |{j:1<j<
s —1,mX}F| = [mX[ |} < 1— 1. Therefore, bs(i1,...,i4) is bounded as n goes to infinity
and bs(0,...,0) = c =1+ O(n""). Using an inclusion-exclusion argument, (2.7) is verified for
NLHD with Z, = 2.

Finally, consider the case for SLHD. Let bs(i1,...,74) =0 if thereisakand 1 <j <s—1
such that ix > 0, [mX}] = [mX} | and Z; = Z,. Otherwise, let w = {k : i, # 0} and b, be

k

defined as in (S4.1), where c = {m/(m — |{t:1<i<s—1,Z; = Z,}|)}?, and

pwy =[] (1~ 1 1<5<s— L lmxt] = mxb }/1)

kew

Because [{j : 1 <j <s—1,|mX}]| = [mX/ |}| <1—1 for any k € w, p(w) is bounded as n
goes to infinity. Therefore, bs(i1,...,iq) is bounded as n goes to infinity and b5(0,...,0) = c =

1+ O(n™h). Using an inclusion-exclusion argument, (2.7) is verified for SLHD. O

S5 The proof of Lemma 7

We first give the key steps of the proof. Let r; = r(X;) by (3.2). Then
E{(n*?R)*} = n /2 > E (H r;”) : (S5.2)
ai1+...+an=p,ai,..., an>0 i=1

Let t be the number of a;’s being one and s be the number of non-zero a;’s. There are at

most O(n®) terms in (S5.2). Thus, it suffices to show that for any s < p,

s s
E (H T?i> — EHD (H T?i> = O(np/2_s).
=1 =1

If £ =0, then s < p/2. From Lemma 6,

E (H 7’?) — Fip <H r;“) =0(nY) = o(n?/?7%).

If t > 0, Eup ([[;_, r{") = 0. Thus, it suffices to show that for any 1 <t < s < p,

i=1"1

t4+ a1+ ...+ as =p,arg1,...,a5 > 1,

s

E (1:[11“:“ H ri> = o(nP/?7%).

i=s—t+1
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Because t +2(s —t) <p, —t/2 <p/2—s. Since r; = 33, fu(Xi), it suffices to show for

any 1 <t <s, |us—¢+1],...,|us| > 1, continuous functions f and bounded function h(z),

E{h(Xl,...,Xst) 11 fui(Xi)}:o(n_t/Q). (S5.3)

i=s—t+1

To show (S5.3), express

F {h(X1, vy Xort) ﬁ Jus (Xl)}

i=s—t+1

= E{h(xl,...,xst) 1:[ fui(Xi)E{qu(Xs)Xl,...,Xsl}].

i=s—t+1

From Proposition 4,
E{fus(XS) |X17---7XS—1}: § b~9(i17"'7i9) (/ fuc(y)dy>7
) ) D
11 ,00052g s

wherei1,...,iq = —(s—1),...,5—1, bs(i1, . . ., 4q) is a deterministic function on n,m, i1,...,iq, Z1,
and bounded as n goes to infinity, D, = D} x --- x D and
[0, 1)\ UjZi0m (X)), i=0,
Df =S 6, (X5, i>0,
5n(XE,), i <0.

By an inclusion-exclusion argument, rewrite

B (X)X X} = 3 b()( [ fus(y)dy>7

wherei1,...,1q = —(s—1),...,5—1, bs(41, .. ., q) is a deterministic function on n,m, i1, ... ,iq, Z1,
S

and bounded as n goes to infinity, D, = 1-11 X ++-x D? and

D
[07 1)a 1= 07
DY ={ 6, (XF), i>0,
5.(XE), i<o.
From (3.1),

/_  fuly)dy =0
Dlx...xD4

if there is at least one k such that D* = [0,1) and k € u. Therefore, let w(ds,...,dy) = {k :
di # 0}, then [ fu,(y)dy has order O(n~1wldida)Vusly — O(n~=2) and

E{h(Xh...,Xs—t) H fuz(Xl)}

i=s—t+1
s—1 s—1 B
- Z E{h(Xla"'7Xst) H ful(Xz)bs(71177’Lq) ~ fub(y)dy}
i1, yig=—(s—1) i=s—t+1 Ds

s Ze Moy

ey T, Moy
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We can further reduce the order of (S5.4) if ¢ > 1. For any term in the sum of (S5.4),

E{h(X1,..., Xees T w, (Xi)bs (i, . . . g . (y)d
{( | EC X )/Dsf(y) y}
5—2 s—2

= > E {h(Xl, o Xew) ] fuX)bsa (s da)

J1,-dq=—(5—2) i=s—t+1

{/D bs(iv,- .- iq) (/D fu <ys)dys) fu“(xsl)dXHH ,

where bs_1(i1,...,1q) is a deterministic function on n,m,i1,...,iq, Z1,...,Zs—1, Ms—2 and

bounded as n goes to infinity, Ds_1 = D]1~1 X +or X D;?q and

[0, 1)\ U;Z36m(XT), J=0,

k .
Dj = 6W(X]k)7 7> 07
S (XE)), j<O0.
In any area of Ds_1, 55(1'1, ...,iq) becomes a deterministic function on n, m, i1, ...,%q, Z1,..., Zs—1, Ms_2

and bounded as n goes to infinity. Therefore,

E{h(Xl,...,Xst) 1:[ fui(Xi)Es(il,...,iq)/ fus(y)dy}

i=s—t+1 Ds

s—2 s—2
= Z E |:h(X1,...,st) H fui(Xi)Bs—l(jlynqu)

1eedq=—(5—2) i=s—t+1

{ / ( 5 fus<ys)dys) fu51<Xsl>dX51H ,

where bs_1(i1,...,i,) is a deterministic function on n,m,i1,...,ig, Z1,..., Zs—1, Ms_o and
bounded as n goes to infinity and Ds_; defined as before.

By an inclusion-exclusion argument, rewrite

h(X1,. .., Xs_s T w, (Xi)bs (i, . . . g w. (y)d
E{ (X1, X >i251jt+lf@<x> (i )/stf ) y}
s—2

= Z E {h(Xl, ey Xs—t) 1:[ Fu, (X)bs—1(j1, - - 7q)

J1s-dq=—(5—2) i=s—t+1

{/Dsl < 5 fus(ys)dys) fusl(Xsl)dXsl}] , (85.5)

where bs_1(i1,...,iq) is a deterministic function on n,m,i1,...,ig, Z1,..., Zs—1, Ms_o and
bounded as n goes to infinity, DS,1 = ﬁjll X e X l~)§q and
[07 1)7 Jj=0
Ak .
Dj = 6m(X]k)7 J > 07
Sn(XF)), j<o.
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The first two steps shown above reduce the order of magnitudes for E{h(X1,..., Xs_¢)
[T, i1 fus(X0)}. In (S5.4), we took fu,(Xs) out of the product and reached the O(n~?)
order. Continuing taking out the fy;(X;) terms as in (S5.5), we obtain on a more general

formula given by

(HDﬂ) E{h(%) I st f Hfmyj)dyl---dy‘,}‘ (85.6)

j=1 i=s—t+1 j=1 Dj j=1

Suppose G is an arbitrary term by (S5.6) with the following parameters: 0 < ¢t < s <
D, |us—t+1l,-..,|us| > 1, J is a nonnegative integer, h(M,) is a deterministic function on
nym, Z1, ..., Zn, X1,...,Xs—t, Ms and bounded as n goes to infinity, v; C {1,...,q}, D; =
Dj x -+ x DY and D¥ is either [0, 1), or d,n(XF) with 1 <i <'s, or §,(Xf) with 1 <i <, or
Sm(yF) with j < i < J, or 6,(y¥) with j <4 < J. Suppose that C is a t x g zero-one matrix
with the (¢, k)th element being one if and only if k¥ € w;—s4+ and Df Z Sm(XE .1y) for any
1 < j < J. Let 0 be the total number of ones. The following lemma gives the orders of G by 6.

Lemma S1. The quantity G has order O(n=%/?).

Proof. We show this by induction on ¢. If ¢ = 0, then 8 = 0 and the result holds. Next, assume
the result holds for t = 0,...,z — 1 with z > 1. It suffices to show the result holds for ¢t = z.

Express

G

-1 S ,
Dj|> E {h(MS) fu (X /n TT o, (i) - dyJ}

i=s—t+1 J]l

I
<
H'Ek

H fus (Xi) E{R(My) fu, (Xs)

i=s—t+1

J
»/]_[’ vaj(yj)dyl"'dyJ | X17-~7Xsl}:| .

G=1Dj j=1

I
<.
jamb
~—
\

From Proposition 4 and similar to (S5.4) and (S5.5),

B {h(Ms)fus(Xs) (/H T eyt --dyl) X X}

J j=1
s—1 J
= Z bs(ilv"'7ifl) h(MS)fUa(Xé) (/ vaj(yj)dyl"'dyJ> an
i1yenrig=—(s—1) Dyt1 [1{=1 Dj j=1

s—1 J
= > bu(in,. .., ig)h(My 1) / fus(X5) < / 11 o (ws)dys - --dyJ> X,
i1,eig=—(s—1) Dyt -, Dj j=1

J

= Z Bs(il,...,iq)ﬁ(Ms_l)/ Jua (X </n HfuJ yj)dy1 - -dyJ> dX,

i1,eig=—(s—1) Dy Dj j=1
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where bs (i1, . .. ,1q) is a deterministic function on n, m, 41, ...,%0q, Z1,. .., Zsy, X1, .., Xs—t, Ms_1

and bounded as n goes to infinity, Dj4y1 = Dy q x -+ x DYy,

[0,1) \ USZ16m (X)), ix =0,

k .

Djy= 57,1()(1-’1)7 ir >0,

5n(XE5,), ir <0,
B(Ms_l) is a deterministic function on n,m, Z1,...,Zs—1,X1,...,Xs—t, Ms_1 and bounded as
n goes to infinity, Bs(il, ...,1q) is a deterministic function on n,m,i1,...,iq, Z1,...,Zs, Ms—1

and bounded as n goes to infinity, DJ+1 = D§+1 X oo X lNDqJ_H and

[07 1)7 Zk - 07
DY = 6n(XE), i >0,
6n(XF;), ik <O.

Thus,

G = i (HIDJ) E( ]:[ Fu, (X)bs(in, ... ig)h(Ms_1)

i1,eig=—(s—1) j=1 i=s—t+1

J+1
/ 11 fo; i)y - d?—,U) } ; (S5.7)
D1 xIT{_, D]

5 i=1

. - -
where vy11 = us, Dyp1 = Djyq X --- x D4,

[07 1)7 i = Oa
D§+1 = 5m(X7,kk)7 Zk > 07
5”(Xk )7 i < 07

—ip

D;:Djlv'x~~><Dg'and

6m(y§+1)a D;C = 6m(X§)a

kt
Dj = 6n(y§+1)7 D;C = 6”(X5)7
Dk

7 otherwise.

Therefore, G can be expressed as

G= Z (IDs11GYy i) >

11,eenslq

where i1,...,iqg = —(s—1),...,58 — 1, us Cw(i,...,iq) = {k: ix # 0}, |Dys1| < n~ w01l
andGél ..... iq

ones OQIquq. Furthermore, Cgl,“.,iq is a (t — 1) x ¢ matrix with equal or fewer elements of ones

is a term by (S5.6) with the associated matrix Cj, and the total number of

..... iq
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than the first ¢ — 1 rows of C. If |ix| > s — ¢, the ([ix] — s +t, k)th element of C}, ;. is zero.

tq
Other elements of Cl{lyuwiq are the same with that of the first £ — 1 rows of C. The last row of
C has at most |us| ones. Therefore, for any (i1,...,1q),

0y iy = 0= |w(in, ... ig)| — |us| >0 = 2Jw(ir, ..., ig)|.

By induction,
G =0(n "1 Py idly — O(n7072), (85.8)

Consequently, G has order O(n~%/2). O
We now give the proof of Lemma 7.

Proof. We have argued in (S5.3) that it suffices to show forany 1 <t < s < p, |[us—t+1], ..., |us| >

1, a continuous function f and a bounded function h,
E {h(Xl, vy Xsoy) H fus (Xz)} _ O(n—t/Q).
i=s—t+1

Therefore, E {h(X1, ..., Xo—t) [T;_,_s 41 fu: (Xi)} is aterm by (S5.6) with 6 = 377, [us| >
2t. From Lemma S1, E {h(X1,..., X ¢) [ B (X))} =0 = o(n~t?). 0



