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Abstract: Sample selection bias has long been recognized in many fields including

clinical trials, epidemiology studies, genome-wide association studies, and wildlife

management. This paper investigates the maximum likelihood estimation for cen-

sored survival data with selection bias under the Cox regression models where the

selection process is modeled parametrically. A novel expectation-maximization al-

gorithm is proposed and shown to have considerable computational advantages.

Rigorous asymptotic properties of the estimator are established. Extensive simu-

lation studies and a data analysis are conducted to investigate the performance of

the proposed estimation procedure.
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1. Introduction

Biased sampling is frequently encountered in the study of biology (Terwilliger

et al. (1997)), economics (Wooldridge (2010, Chap. 17)), sociology (Vella (1998)),

public health (Brookmeyer and Gail (1987)) and industrial engineering (Kvam

(2008)). Researchers have long recognized the efficiency and convenience of bi-

ased sampling, but have also noted that the observed data do not represent

the distribution of the target population (Heckman (1976, 1990); Smith (1993)).

Since Heckman’s seminal work (Heckman (1979)), many techniques for correct-

ing sample selection bias under either parametric or semi-parametric models have

been proposed, mainly for the outcome variable that has a normal distribution

(Wooldridge (2010, Chap. 17)). When the outcome is event times subject to

right censoring, sample selection bias can also occur in a wide range of appli-

cations including astronomical surveys with truncated data (Woodroofe (1985)),

gene mapping studies (Terwilliger et al. (1997)), financial performance analy-

ses with survivorship bias (Carpenter and Lynch (1999)), labor economy stud-

ies (Lancaster (1990); Vella (1998)), RNA sequencing studies with transcript
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length bias (Oshlack and Wakefield (2009)), epidemiological studies with preva-

lent cohort sampling (Brookmeyer and Gail (1987)), and wildlife studies with

area-biased sampling (Patil and Rao (1978); Horne, Garton, and Sager-Fradkin

(2007)), among many others.

Consider a univariate continuous outcome denoted by T̃ , for example, the

unemployment duration of a subject in a target population. Given covariates

X = x, assume that T̃ has the population density function denoted by f(t|x).
Suppose that a subject from the target population is selected to a study with

a probability proportional to a weight function w(t, x) such that the density

function of the observed outcome is

w(t, x)f(t|x)∫
w(u, x)f(u|x)du

. (1.1)

Clearly, the density function of the outcome variable for the sampled sujects is

a biased or weighted version of the density function f(·|x) for the targeted pop-

ulation. The sampling mechanism (1.1) is very general; with various forms of

the weight function w(t, x), it can describe situations as diverse as the truncated

survival data, size-biased data, and missing data. If the sampling weight function

w(t, x) is known completely, then this is a form of biased sampling carried inten-

tionally by design. If w(t, x) is not known completely, then this is a form of biased

sampling that occurs accidentally by the nature of the study. This includes the

selection bias or missing data problem (Chen (2001)), and the propensity score

methodology for reducing selection bias in estimating the treatment effect for

observational studies (Rosenbaum and Rubin (1984)).

In this paper, we focus on a class of the general biased-sampling mecha-

nism (1.1) when the sampling weight function is independent of the covariates,

w(t, x) = H(t), where H(t) is a positive increasing function for t > 0. If H(t) is

proportional to the length of the failure time, H(t) = t, this is the length-biased

sampling problem. The weight function H(t) may be interpreted as propor-

tional to the cumulative distribution function of the underlying truncation time.

Therefore, our model generalizes the setup for left-truncation survival data.

For left-truncation survival data, extensive efforts have been made for the

nonparametric estimation of the distribution of T̃ (Turnbull (1976); Vardi (1985);

Tsui, Jewell, and Wu (1988); Lagakos, Barraj, and Gruttola (1988); Kalbfleisch

and Lawless (1989)), and for the semiparametric estimation of the regression

models for f(t|x) (Lai and Ying (1991); Wang, Brookmeyer, and Jewell (1993);

Gross and Lai (1996)). The existing estimation methods for the regression mod-

els are largely based on the approach conditional on the observed truncation

time without modeling its distribution specifically (Keiding (1992); Andersen et

al. (1992); Klein and Moeschberger (2003)). As acknowledged in the literature,
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such conditional methods can lead to a loss of efficiency (Asgharian, M’Lan, and

Wolfson (2002)). The analysis of length-biased data has recently attracted a

considerable amount of work on nonparametric and semiparametric estimation

of the distribution of unbiased time T̃ , including the construction of consistent

estimating equations and maximum likelihood estimation (Wang (1996); Asghar-

ian and Wolfson (2005); Tsai (2009); Qin et al. (2011); Carone, Asgharian, and

Jewell (2014)). A major challenge when analyzing length-biased data is to verify

the stringent stationarity assumption (Asgharian, Wolfson, and Zhang (2006)),

w(t, x) = t, which is equivalent to check the sampling weight function as a uni-

form distribution.

We study maximum likelihood estimation (MLE) under a general biased-

sampling mechanism when w(t, x) = H(t) in (1.1), for a positive increasing

function H(t) for t > 0 that is specified parametrically. Qin et al. (2011) stud-

ied maximum likelihood estimation for a semiparametric model of f(t|x) under

length-biased data that must satisfy a stationarity assumption. We generalize

their model by considering a flexible class of parametric models for H(t). The

main focus is a semiparametric model for f(t|x) for the failure time data subject

to a general biased-sampling, often the main interest of the practitioners. By

linking the general biased-sampling problem with the truncated survival data

problem, we make two major contributions to the literature: we provide a new

approach to the maximum likelihood estimation with a general left-truncation

model; specifying H(t) parametrically allows us to alleviate the stationarity as-

sumption for length-biased data.

Research on general biased-sampling mechanisms is relatively limited, espe-

cially when the weight function is of a general form in (1.1). When the den-

sity function f(t|x) is left unspecified or specified semiparametrically, the weight

function w(t, x) have to be modeled parametrically in order for model (1.1) to be

identifiable. In the case of a left-truncated survival time, Wang (1989) showed

that a full-likelihood approach is not possible due to identifiability issues, if the

distributions of the survival time and the truncation time are both left completely

unspecified. When the weight function w(t, x) is known up to a single param-

eter, Gilbert, Lele, and Vardi (1999) showed that the biased-sampling model is

identifiable for a nonparametric estimation of the distribution of the failure time.

Kim et al. (2013) considered a general biased-sampling problem and proposed

an estimating-equation-based approach. They acknowledged that their approach

is less efficient than the likelihood-based inference that is still lacking in the

literature.

Directly maximizing the likelihood function is computationally prohibitive.

We devise an expectation-maximization (EM) algorithm that incorporates the

biased-sampling mechanism into a missing-data framework. Compared to the
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Figure 1. Sampling schema for time-to-event data (T,A).

EM method in Qin et al. (2011), the proposed EM algorithm does not need to

impute the censored observations for the sampled individuals. As a result, the

proposed procedure is computationally more efficient and can be implemented

easily. The maximum likelihood estimator is shown to be asymptotically most

efficient under the semiparametric Cox regression model. As a by-product, our

unified approach can lead to the development of tools for checking the stationarity

assumption underpinning the analysis of length-biased data.

This paper is organized as follows. In Section 2, we describe the intrinsic

connection between biased-sampled data and truncation data, derive the full

likelihood for the observed data, and present the key computational tool based

on the EM algorithm. In Section 3, we establish large sample properties for the

estimators. In Section 4, we present simulation studies and the analysis of a data

example. We make concluding remarks in Section 5. Proofs are in the Appendix.

2. Methods

2.1. Model

Let T̃ and Ã be positive random variables representing the unbiased event

time measured from an initial event to an endpoint event, and the event time

measured from the initial event to the sampling time, respectively. We model the

association between a covariate vector X and the distribution of T̃ , with observed

biased-sampling data (T,A). Under this sampling schema, the data (T,A) can

be only observed conditional on T̃ > Ã as depicted by Figure 1.

Let f(·|x) and S(·|x) be the respective density and survival function of T̃

given X = x. The biased-sampling data are the pair (T,A) with the joint density

function
hθ(a)1(t > a)∫
S(u|x)hθ(u)du

f(t|x) = hθ(a)1(t > a)∫
Hθ(u)f(u|x)du

f(t|x), (2.1)
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where hθ(·) and Hθ(·) are proportional to the density and cumulative distribution

function of Ã, respectively, with their forms known up to some parameters θ of

finite dimension. Here, 1(C) is the indicator function taking the value 1 when C
is true and 0 otherwise. Given X = x, the density function of T is a weighted

function of f(t|x) in the form (1.1)

Hθ(t)f(t|x)∫
Hθ(u)f(u|x)du

.

When there is no censoring, the likelihood function based on (2.1) as a func-

tion of (T,A) = (t, a) can be written as, for t > a,

f(t|x)
S(a|x)

{
S(a|x)hθ(a)∫
S(u|x)hθ(u)du

}
. (2.2)

The first term of (2.2) is the conditional density function of T̃ given A = a, while

the second term is the marginal density function of A, all for given X = x and

conditional on T̃ > Ã. As the second term in (2.2) involves the distribution

function S(·|x), any inference procedure based only on the conditional density

function of T̃ given A = a (the first term) loses information for the estimation

of the distribution on T̃ , even if the density function hθ(·) in (2.2) is completely

known or known up to some parameters θ. On the other hand, if hθ depends on x

but is completely unspecified, then even with a parametric assumption on S(·|x),
the second term in the likelihood cannot contribute additional information to the

estimation of the distribution on T̃ , as the term S(·|x) is absorbed into hθ.

It is natural to base any statistical inference on the full likelihood approach

as it is the most efficient. We thus illustrate the full likelihood approach for a

general biased-sampling function hθ(·) specified parametrically in (2.2), jointly

with a commonly used semiparametric Cox model for the survival function of T̃ :

conditional on covariates X = x,

S(t|x) = exp

{
−
∫ t

0
eβ

TxdΛ(u)

}
, (2.3)

where β is the regression parameter, and the baseline cumulative hazard function

Λ(t) is not specified.

2.2. Likelihood

Denote the independently and identically distributed observed data from n

subjects as Yi = min{Ti, (Ai + Ci)} and δi = 1(Ti ≤ Ai + Ci), where Ci is the

censoring time measured from the sampling time. As illustrated in Figure 2, the

failure time Ti is subject to dependent right censoring by the time Ai + Ci.
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Figure 2. Dependent right censoring of bias-sampled data for a single sub-
ject.

Conditional on Xi, assume that the unbiased times T̃i and Ãi are indepen-

dent. We also make the commonly used assumption that Ci is independent of

(Ai, Ti) conditional on Xi. Under these assumptions, the full likelihood can be

written as

n∏
i=1

{
f(Yi|Xi)hθ(Ai)∫
S(u|Xi)hθ(u)du

ḠC(Yi −Ai|Xi)

}δi{ S(Yi|Xi)hθ(Ai)∫
S(u|Xi)hθ(u)du

gC(Ci|Xi)

}1−δi
,

where gC(·|Xi) and ḠC(·|Xi) are the respective density function and survival

function of the censoring time Ci for given Xi, and the parameters of interest are

ψ = (θ, β,Λ(·)). It is evident that the terms on the censoring distributions can be

factored out from the likelihood as they do not involve the parameters of interest

on the distribution of T̃ and Ã. The likelihood function is thus proportional to

Ln(θ, β,Λ) =

n∏
i=1

f δi(Yi|Xi)S
1−δi(Yi|Xi)∫

S(u|Xi)hθ(u)du
hθ(Ai). (2.4)

Let 0 = t0 < t1 < t2 < · · · < tK < ∞ denote distinct observed time

points, both censored and uncensored. Following an argument similar to that of

Vardi, Y. (1989) and Qin et al. (2011), the nonparametric maximum likelihood

estimator (NPMLE) for a discrete Λ has positive masses at {t1, . . . , tK} for any

given (θ, β), in contrast to the Nelson-Aalen estimator in the traditional survival

analysis. The NPMLE for the baseline function Λ is thus defined in the sense as

described in Gill (1989).

2.3. EM algorithm

In this section, we exploit the underlying feature of the biased-sampling

mechanism and devise an EM algorithm to find the MLE for ψ. Let λk ≡ dΛ(tk)

be the positive masses of the discrete baseline function Λ at the times t1, . . . , tK ,
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respectively, where Λ(u) =
∑K

k=1 λk1(tk ≤ u). Let λ = (λ1, . . . , λK)
T. The

log-likelihood function can be expressed as

n∑
i=1

[ K∑
k=1

{
δi log f(tk|Xi)− (1− δi)Λ(tk)e

βTXi

}
1(Yi = tk)

− log

∫
S(u|Xi)hθ(u)du+ log hθ(Ai)

]
.

With biased sampling, the data generating mechanism for each subject can

be considered as sampling the unbiased times (T̃ , Ã) for a random mi times until

T̃ > Ã. For i = 1, . . . , n, let the unobservable failure times be denoted by T ∗
ij and

A∗
ij , where A

∗
ij > T ∗

ij with the corresponding covariates Xi for j = 1, 2, . . . ,mi.

In the presence of right censoring, the complete data for the ith subject include

the observed data (Yi, Ai, δi, Xi) and the latent unobservable data (T ∗
ij , A

∗
ij). The

log-likelihood for the complete data can be written as

n∑
i=1

[
log hθ(Ai)+

mi∑
j=1

log hθ(A
∗
ij)+

K∑
k=1

mi∑
j=1

1(T ∗
ij = tk)

{
log λk+β

TXi−Λ(tk)e
βTXi

}
+

K∑
k=1

1(Yi = tk)
{
δi(log λk + βTXi)− Λ(tk)e

βTXi
}]
,

where Λ(tk) =
∑k

k′=1 λk′ .

Denote the observed data for the ith subject by Oi ≡ (Ai, Yi, δi, Xi) for

i = 1, . . . , n. By the biased-data generating mechanism for the ith subject, the

random integer mi follows a geometric distribution with the success probability

P (Ãi > T̃i). Denote the current parameter value in the EM step by ψ̃ = {θ̃, β̃, λ̃}.
Then, conditional on the observed data Oi the expectation of mi is

E(mi|Oi) =
1− P (Ai ≤ Ti|Xi)

P (Ai ≤ Ti|Xi)
=

1−
∫
fβ̃,λ̃(u|Xi)Hθ̃(u)du∫

fβ̃,λ̃(u|Xi)Hθ̃(u)du
,

where fβ̃,λ̃(tk|Xi)= λ̃k exp(β̃
TXi) exp{−Λ̃(tk) exp(β̃

TXi)}, and Hθ̃(u) =
∫ u
0 hθ̃(v)

dv. The expected number of truncated latent subjects who would have the event

time tk is

wik = E

[ mi∑
j=1

1(T ∗
ij = tk)

∣∣∣Oi

]
= E(mi|Oi)E

[
1(T ∗

ij = tk)
∣∣∣Oi

]

=
fβ̃,λ̃(tk|Xi)H̄θ̃(tk)∫
fβ̃,λ̃(u|Xi)Hθ̃(u)du

,
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where H̄θ̃(u) = 1 − Hθ̃(u). The expectation of log hθ(A
∗
ij) given the observed

data under the biased-sampling constraint A∗
ij > T ∗

ij is

E
{
log hθ(A

∗
ij)|A∗

ij > T ∗
ij ,Oi

}
=

∫
Fβ̃,λ̃(u|Xi)hθ̃(u) log hθ(u)du∫

Fβ̃,λ̃(u|Xi)hθ̃(u)du
,

where Fβ̃,λ̃(u|Xi) =
∫ u
0 fβ̃,λ̃(v|Xi)dv. It follows that the expected complete-data

log-likelihood function given the current parameter estimate ψ̃ = {θ̃, β̃, λ̃} is

ℓE(θ, β, λ) =

n∑
i=1

[
log hθ(Ai) + E(mi|Oi)

∫
Fβ̃,λ̃(u|Xi)hθ̃(u) log hθ(u)du∫

Fβ̃,λ̃(u|Xi)hθ̃(u)da

+
K∑
k=1

wik
{
log λk + βTXi − Λ(tk)e

βTXi
}

+
K∑
k=1

1(Yi = tk)
{
δi(log λk + βTXi)− Λ(tk)e

βTXi
}]
. (2.5)

The M-step is to maximize the expected complete-data log-likelihood func-
tion conditional on the observed data with respect to θ, β, and λ. It turns out
that the maximizer for λk has a closed form that depends only on β,

λk(β) =

∑n
i=1{wik + 1(Yi = tk)δi}∑n

i=1

∑K
k′=k{wik′ + 1(Yi = tk′)}eβTXi

. (2.6)

We notice the resemblance between (2.6) and the Breslow-type estimator in the
traditional survival analysis, but they are different as wik in (2.6) is a function
of both truncation and survival time distributions.

Maximizing the expected complete-data log-likelihood function with respect
to β is equivalent to solving the equation

∂ℓE
∂β

=

n∑
i=1

[ K∑
k=1

{
wik + 1(Yi = tk)δi − {wik + 1(Yi = tk)}eβ

TXiΛ(tk)

}
Xi

]
= 0.

(2.7)
Plugging λj(β) for j = 1, . . . ,K into (2.7), β can be solved from

n∑
i=1

[ K∑
k=1

{
wik + 1(Yi = tk)δi

− {wik + 1(Yi = tk)}
k∑
l=1

n∑
j=1

{wjl + 1(Yj = tl)δj}eβ
TXi

n∑
j=1

K∑
k′=l

{wjk′ + 1(Yj = tk′)}eβ
TXj

}
Xi

]
=0. (2.8)
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In summary, the maximization in the M-step thus cycles through θ, β, and

λ: given θ and β, the maximization with respect to λ is calculated explicitly

using (2.6); given λ and β, the maximization with respect to θ is maximizing

(2.5) with respect to θ, which only involves the first two terms; given θ and λ,

the maximization with respect to regression β can be achieved using the existing

software for the standard Cox regression model as follows.

To use the existing program for the Cox model with right-censored data, we

note that β can be estimated by (2.8). First, create a data set for the unob-

served truncated subjects, where the failure times are constructed by repeating

the observed distinct times n times as TnK = (t1, . . . , tK , . . . , t1, . . . , tK). The cor-

responding censoring indicator of TnK is an identity vector of length nK, ∆nK =

(1, . . . , 1)T. Each vector of the covariate matrix is also repeatedK times to match

the truncated latent failure times, XnK = (X1, . . . , X1, . . . , Xn, . . . , Xn)
T. The

complete data are the combination of the observed data and the created data for

unobserved truncated subjects. By using the function coxph() in S-PLUS (or

R) with the option of weight, we can find the estimator of β at the M-step,

> coxph(Surv(Tc, ∆c) ∼ Xc, weight = Wc),

where Tc=(y1, · · · , yn, TnK), ∆c=(δ1, · · · , δn,∆nK), Xc = (X1, · · · , Xn, X
T
nK)T,

and Wc = (1, · · · , 1, w11, · · · , w1K , · · · , wn1, · · · , wnK). The first n elements in

the weight vector are associated with the observed data, so they have weight 1.

3. Asymptotic Properties

We establish the asymptotic properties of the maximum likelihood estimator

(MLE), denoted by ψ̂n ≡ (θ̂n, β̂n, Λ̂n(·)), where we use subscript n to emphasize

its dependence on the sample size n. Using the counting processes formulations,

the log-likelihood function has the form

ℓn(ψ) =

n∑
i=1

[ ∫ τ

0

(
βTXi + log dΛ(u)

)
dNi(u)−

∫ τ

0
Mi(u) exp(β

TXi)dΛ(u)

+ log hθ(Ai)− log

∫ τ

0
S(u|Xi)hθ(u)du

]
, (3.1)

where τ is the upper bound of the support for T̃ , Ni(t) = 1(Ai < Yi ≤ t)δi,

and Mi(t) = 1(Yi ≥ t)1(Yi > Ai). Under some mild regularity conditions listed

in the Appendix, we first establish the strong consistency of the MLE using

the classical Kullback-Leibler information approach (Gill (1989); Parner (1998)).

We then apply the Z-theorem for the infinite-dimensional estimating equations to
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prove the weak convergence of the estimators (van der Vaart and Wellner (1996,

Thm. 3.3.1)). Proofs are in the Appendix.

3.1. Strong consistency

Let the true value be ψ0 = (θ0, β0,Λ0). As ψ̂n maximizes the log-likelihood

function, the empirical Kullback-Leibler information ℓn(ψ̂n) − ℓn(ψ0) must be

always nonnegative. If ψ̂n converges to ψ∗, say, then we can show that ℓn(ψ̂n)−
ℓn(ψ0) must converge to the negative Kullback-Leibler distance between Pψ∗ and

Pψ0 . As the Kullback-Leibler information is always nonnegative, it implies that

Pψ∗ = Pψ0 almost surely. Under condition (1) in Appendix A, the parametric

family {hθ(a)} is identifiable, while the Cox model for {fβ,Λ(t|x)} is also identi-

fiable. It follows from (2.1) that the model {Pψ} is identifiable, and ψ∗ = ψ0.

Let ∥ · ∥2 be Euclidean distance. Suppose that τ is finite with Λ(τ) <∞.

Theorem 1. Under the regularity conditions listed in Appendix A, the maximum

likelihood estimators (θ̂n, β̂n, Λ̂n(·)) are consistent: ∥θ̂n − θ0∥2, ∥β̂n − β0∥2, and
sup0≤u<τ |Λ̂n(u)− Λ0(u)| converge almost surely to 0 as n→ ∞.

3.2. Weak convergence

Using the EM algorithm, we find the MLE estimators (θ̂n, β̂n, Λ̂n) for the full

likelihood function (3.1). The MLE hence must satisfy the infinite-dimensional

score equations of (θ, β,Λ), as the baseline function Λ(·) is estimated nonpara-

metrically. We establish weak convergence by applying the Z-theorem for infinite-

dimensional estimating equations (van der Vaart andWellner (1996, Thm. 3.3.1)).

This approach has been applied to the semiparametric frailty models by Murphy

(1995, Thm. 1) and Parner (1998, Thm. 2), among many others.

The maximizer of the likelihood function, the MLE estimators (θ̂n, β̂n, Λ̂n),

satisfy jointly the infinite-dimensional score equations of (θ, β,Λ),

U1n(θ̂n, β̂n, Λ̂n) = 0, U2n(θ̂n, β̂n, Λ̂n) = 0, and U3n(t, θ̂n, β̂n, Λ̂n) = 0,

where the score functions {U1n, U2n, U3n} are calculated using the von Mises

method for semiparametric MLE (Gill (1989)), by differentiating ℓn(ψ) with re-

spect to θ, β, and a sub-model dΛη(·) = (1 + ηϕ(·))dΛ(·), for a bounded and

integrable function ϕ(·), and a constant η > 0. The infinite-dimensional score



MLE FOR BIASED-SAMPLING DATA 1097

functions have the form

U1n(ψ)=
1

n

n∑
i=1

{
ḣθ(Ai)

hθ(Ai)
1(Yi > Ai)−

∫ τ
0 S(u|Xi)ḣθ(u)du∫ τ
0 S(u|Xi)hθ(u)du

}
, (3.2)

U2n(ψ)=
1

n

n∑
i=1

[∫ τ

0
Xi

{
dNi(u)−

(
Mi(u)−

∫ τ
u S(v|Xi)hθ(v)dv∫ τ
0 S(v|Xi)hθ(v)dv

)
eβ

TXidΛ(u)

}]
,

(3.3)

U3n(t, ψ)=
1

n

n∑
i=1

[ ∫ t

0

{
dNi(u)−

(
Mi(u)−

∫ τ
u S(v|Xi)hθ(v)dv∫ τ
0 S(v|Xi)hθ(v)dv

)
eβ

TXidΛ(u)

}]
,

(3.4)

where ḣθ(·) is the first partial derivative of hθ(·) with respect to θ. Under (2.1),

it can be easily confirmed that, conditional on T̃ > Ã, the estimating equations

are of mean zero, E{U1n(ψ)} = 0, E{U2n(ψ)} = 0 and E{U3n(t, ψ)} = 0.

Let Un(·, ψ) ≡ {U1n(ψ), U2n(ψ), U3n(·, ψ)}, and denote its expectation under

the true values ψ0 = (θ0, β0,Λ0) by

U0(·, ψ) ≡ {U10(ψ), U20(ψ), U30(·, ψ)}
= {E0{U1n(ψ)}, E0{U2n(ψ)}, E0{U3n(·, ψ)}}.

It can be confirmed that the true value ψ0 satisfies the population score equations

U0(t, ψ0) = 0. Evaluated at the true value ψ0 the estimating functions can be

written as an empirical process
√
nUn(t, ψ0) =

√
n{Un(t, ψ0)−U0(t, ψ0)} indexed

by t.

By the uniform central limit theorem,
√
nUn(·, ψ0) converges weakly to W(·)

= {W1,W2(·)}, where W1 is a Gaussian random vector and W2(·) is a tight

Gaussian process. Letting x⊗2 = xxT, the marginal covariance function for W
has the form

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where

Σ11 = E0

(
U11(ψ0)

U21(ψ0)

)⊗2

, Σ12(t) = Σ21(t)
T = E0

{(
U11(ψ0)

U21(ψ0)

)
U31(t, ψ0)

}
,

Σ22(t1, t2) = E0{U31(t1, ψ0)U31(t2, ψ0)}.

Denote the Fréchet derivative of U0(ψ) evaluated at ψ = ψ0 by U̇0. We con-

firm that the operator U̇0 is continuously invertible using the classical Fredholm

theorem for the integral equations (Tricomi (1985)). To apply the Z-theorem

for the infinite-dimensional estimating equations (van der Vaart and Wellner
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(1996, Thm. 3.3.1)), we outline our proof in the Appendix by confirming the

three main conditions of the Z-theorem: Fréchet differentiability and invertibil-

ity, weak convergence of
√
nUn(ψ0), and a stochastic approximation condition of

the estimating equations. Theorem 2 summarizes the results.

Theorem 2. Under the regularity conditions listed in Appendix A,
√
n(ψ̂n−ψ0)

converges weakly to a tight mean zero Gaussian process −U̇−1
0 (W).

3.3. Asymptotic normality

We characterize the asymptotic distribution of the sequence
√
n(ψ̂n−ψ0) that

is completely determined by the tightness of U̇−1
0 (W) and its marginal covariance

function. Let ḧθ(t) = d2hθ(t)/dθ
2, h0(·) = hθ0(·), ḣ0(·) = ḣθ0(·), and ḧ0(·) =

ḧθ0(·). Denote for l = 0, 1, 2,

Q0(·, X) =
exp

{
−
∫ ·
0 e

βT
0 XdΛ0(u)

}∫ τ
0 exp

{
−
∫ u
0 e

βT
0 XdΛ0(u)

}
h0(u)du

,

κ0 = E0

[ ∫ τ

0
Q(u,X)ḧ0(u)du+

(∫ τ

0
Q(u,X)ḣ0(u)du

)2

−
{
ḧ0(A)

h0(A)
−
(
ḣ0(A)

h0(A)

)2}
1(Y > A)

]
,

κ
(l)
1 (u) =

∫ τ

u
E0

[{
h0(v)

∫ τ

0
Q0(z,X)ḣ0(z)dz − ḣ0(v)

}
Q0(v,X)eβ

T
0 XX⊗l

]
dv,

κ
(l)
2 (u) =

∫ τ

u
E0

[{
Λ0(v)−

∫ τ

0
Q0(z,X)Λ0(z)h0(z)dz

}
Q0(v,X)e2β0

TXX⊗l
]

h0(v)dv,

κ
(l)
3 (u) = E0

[{
M(u)−

∫ τ

u
Q0(z,X)h0(z)dz

}
eβ0

TXX⊗l
]
,

κ4(u, v) =

∫ τ

u
E0

{(
1(z ≥ v)−

∫ τ

u
Q0(s,X)h0(s)ds

)
Q(z,X)e2β0

TX

}
h0(z)dz,

J11 =

(
κ0 {

∫ τ
0 κ

(1)
1 (u)dΛ0(u)}T∫ τ

0 κ
(1)
1 (u)dΛ0(u)

∫ τ
0 {κ

(2)
2 (u) + κ

(2)
3 (u)}dΛ0(u)

)
,

J21(u) = J12(u)
T =

(∫ u
0 κ

(0)
1 (z)dΛ0(z)

∫ u
0 {κ

(1)
2 (z) + κ

(1)
3 (z)}TdΛ0(z)

)
.

By straightforward calculation, the Fréchet derivative of U0(ψ) is

U̇0(ψ) =

(
σ11 σ12
σ21 σ22

)(
ξ

Λ

)
=

(
σ11(ξ) + σ12(Λ)

σ21(ξ) + σ22(Λ)

)
,
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where ξ = (θT, βT)T are the finite dimensional parameters, and

σ11(ξ) = J11ξ, σ12(Λ) =

∫ τ

0
J12(u)dΛ(u), σ21(ξ)(t) = J21(t)ξ,

σ22(Λ)(t) =

∫ t

0

{∫ τ

0
κ4(u, v)dΛ(v)

}
dΛ0(u) +

∫ t

0
κ
(0)
3 (u)dΛ(u).

Here, J11 is the Fisher information for the finite diminutional parameters ξ when

the true value Λ0 is known. The derivative U̇ψ0 is continuously invertible with

this form:

U̇−1
ψ0

(ψ) ≡
(
σ−1
11 + σ−1

11 σ12Φ
−1σ21σ

−1
11 −σ−1

11 σ12Φ
−1

Φ−1σ21σ
−1
11 Φ−1

)(
ξ

Λ

)
,

where σ−1
11 (ξ) = J−1

11 ξ. Here, Φ = σ22−σ21σ−1
11 σ12 is continuously invertible with

the inverse as a function of t that has the form

Φ−1(Λ)(t) =

∫ t

0

dΛ(u)

κ
(0)
3 (u)

+

∫ τ

0

(∫ t

0
R(v, u)dv

)
dΛ(u)

κ
(0)
3 (u)

, (3.5)

where R(t, u) satisfies the equation

R(t, u) = K(t, u) +

∫
K(t, v)R(v, t)dv,

K(t, u) =
λ0(t)

κ
(0)
3 (t)

{(
κ
(0)
1 (t)

κ
(1)
2 (t) + κ

(1)
3 (t)

)T

J−1
11 J12(u)− κ4(t, u)

}
. (3.6)

It follows that the process
√
n(Λ̂n−Λ0) converges weakly to a tight Gaussian

process Φ−1σ21σ
−1
11 (W1)+Φ−1(W2), where Φ

−1(W2) is a Gaussian process given

by

Φ−1(W2)(t) =

∫ t

0

dW2(u)

κ
(0)
3 (u)

+

∫ τ

0

(∫ t

0
R(v, u)dv

)
dW2(u)

κ
(0)
3 (u)

.

The stochastic integral is defined via integration by parts. Furthermore, for the

estimator ξ̂n = {θ̂Tn, β̂T
n}T of the finite dimensional parameters, the random vector√

n(ξ̂n − ξ0) converges in distribution to a mean zero normal random vector

σ−1
11 (W1) + σ−1

11 σ12Φ
−1σ21σ

−1
11 (W1)− σ−1

11 σ12Φ
−1(W2). (3.7)

The first term σ−1
11 (W1) in (3.7) has mean zero and the sandwich covariance

matrix J−1
11 Σ11J

−1
11 . The extra terms σ−1

11 σ12Φ
−1σ21σ

−1
11 (W1) − σ−1

11 σ12Ψ
−1(W2)

in (3.7) indicate the extra variability due to Λ̂n. The asymptotic variance of the

finite dimensional estimator ξ̂n is thus quite complicated, as it involves both W1



1100 HAO LIU, JING NING, JING QIN AND YU SHEN

and W2, which depend on the randomness of the estimator Λ̂n of the infinite-

dimensional parameter.

While the asymptotic variance of the estimator for the finite-dimensional

parameters can be calculated as the inverse of the empirical information matrix

of the likelihood function profiled over (θ, βT), direct evaluation of the variance-

covariance matrix is extremely difficult as there is no explicit form for the infor-

mation matrix. Since the rate of convergence for ψ̂n is shown to be n−1/2, we use

an EM-aided computational differentiation approach (Chen and Little (1999)) to

approximate the information matrix. For notation clarity, we drop the subscript

n in the description of computational algorithm:

(i) Perturb each component of ξ̂ = (θ̂1, . . . , θ̂q, β̂1, . . . , β̂p) by a small value ϵ =

1/n in its neighborhood in both directions to obtain the perturbed estimators

ξ̂ϵ+l = ξ̂ + (0, . . . , ϵ, . . . , 0) and ξ̂ϵ−l = ξ̂ − (0, . . . , ϵ, . . . , 0), respectively, for

l = 1, . . . , q + p.

(ii) With ξ = ξ̂ϵ+l or ξ = ξ̂ϵ−l , we calculate the conditional expectations required

in the E-step, and update the respective estimate λ̂ξ̂ϵ+l
or λ̂ξ̂ϵ−l

by maximizing

the expected log-likelihood in the M-step. We repeat the steps (i)−(ii) until

convergence is achieved.

(iii)Calculate the expected complete-data scores with respect to (θ, β), evaluated

at (ξ̂ϵ+l , λ̂ξ̂ϵ+l
) and (ξ̂ϵ−l , λ̂ξ̂ϵ−l

) and denoted by νE(ξ̂
ϵ+
l , λ̂ξ̂ϵ+l

) and νE(ξ̂
ϵ−
l , λ̂ξ̂ϵ−l

),

respectively.

(iv)Approximate the lth row of the information matrix of ξ̂ by

1

2ϵ

{
νE(ξ̂

ϵ−
l , λ̂ξ̂ϵ−l

)− νE(ξ̂
ϵ+
l , λ̂ξ̂ϵ+l

)

}
.

4. Numerical Results

4.1. Simulation

We conducted simulation studies to evaluate the finite sample performance

of the proposed estimators and the variance estimation procedure. We also com-

pared the efficiency of the proposed method with that of an existing MLE method

for length-biased data (Qin et al. (2011)) and an conditional method for left-

truncated data (Wang, Brookmeyer, and Jewell (1993)).

We generated the survival time T̃ from a proportional hazards model with

baseline function Λ(t) = t2 and two covariates (X1, X2), with X1 a binary covari-

ate following a Bernoulli distribution with parameter 0.5, and X2 a continuous

covariate generated from a uniform distribution on (−0.5, 0.5). The regression

coefficients β = (β1, β2) was set to be (0.5, 1). The underlying truncation time Ã
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was independently generated from an exponential distribution of a single param-

eter θ. For length-biased data, the truncation time was generated independently

from the uniform distribution. To form a prevalent cohort, we kept only the

subjects satisfing the sampling constraint T̃ ≥ Ã. The censoring time C in the

prevalent cohort was generated from a uniform distribution on the interval [0, τc],

where τc was chosen so that the overall censoring rate was approximately 20%,

30%, and 50%, respectively. Sample sizes of 100, 200, and 400 were used, and

each scenario used 500 simulation replicates.

We first compare the performance of three methods in analyzing length-

biased data: the proposed method, the method described in Qin et al. (2011), and

the conditional method of Wang, Brookmeyer, and Jewell (1993). The simulation

results are summarized in Table 1, including the empirical means, the average

of the asymptotic standard error estimators and the mean squared errors based

on 500 replicates. The two maximum likelihood estimators have lower MSEs

than the conditional method. As the data were generated under the length-

biased sampling, the method of Qin et al. (2011) has a slightly lower MSE than

the proposed method that is developed for general left-truncation data. This is

expected because the proposed method has more parameters to estimate than

the method by Qin et al. (2011). The proposed method has relatively smaller

bias than the method of Qin et al. (2011) under high censoring rate (50%). In

the simulation studies, the proposed EM algorithm was computationally more

efficient than that of Qin et al. (2011) in terms of the CPU times under the two

computational algorithm.

Table 2 summarizes the simulation results with left truncation data. We

report the empirical means, the average of the asymptotic standard error estima-

tors, the empirical standard deviations, and the mean squared errors based on 500

replicates. With a light (20%) or moderate (30%) censoring percentage, all three

model parameters θ, β1, and β2 were well-estimated by the proposed method in

that the biases of the estimates were small and the estimated standards errors

were close to the empirical standard deviations, even with a small sample size

(100). With heavy censoring (50%) and a small sample size (100), the biases of

the estimated parameters were around 10%, but decreased when the sample size

increased or the censoring rates were reduced. In additional simulation studies

(results not shown), the bias vanished when sample size is very large (n =1,000).

In Table 2, we present the simulation results using the conditional method for

left-truncated data (Wang, Brookmeyer, and Jewell (1993)). As expected, the

conditional method is less efficient than the proposed MLE method with larger

mean squared errors.
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Table 3. Estimates (Standard Errors) of Regression Coefficients for Demen-
tia Data.

Proposed MLE Qin et al. (2011) Conditional method
Probable Alzheimer’s 0.130 (0.064) 0.125 (0.062) 0.037 (0.093)
Vascular dementia 0.193 (0.078) 0.185 (0.077) 0.124 (0.113)

θ 0.0002(0.013) NA NA

4.2. Application

We applied the proposed method to a cohort of prevalent cases in one of the

largest epidemiological studies of dementia, the Canadian Study of Health and

Aging (The Canadian Study of Health and Aging Working Group (1994)), which

has been analyzed previously (Asgharian, M’Lan, and Wolfson (2002); Qin et al.

(2011); Carone, Asgharian, and Jewell (2014)). In the study, a total of 10,263

people agreed to participate, and were then screened for dementia. Among them,

1,132 individuals were identified as having the disease and their dates of dementia

onset were ascertained from their medical records. These individuals identified

as having dementia were followed until death or last follow-up in 1996. Excluding

the participants with missing dates of disease onsets or classification of dementia

subtype, the data set included 818 participants: 393 with probable Alzheimer’s

disease, 252 with possible Alzheimer’s disease and 173 with vascular dementia.

We used the semiparametric maximum likelihood estimation as described in

Section 2.3 to analyze the survival differences among the three dementia subtypes.

We used the subgroup with possible Alzheimer’s disease as the baseline group and

included two binary indicators for the other two subtypes of dementia in the Cox

proportional hazards model for the overall survival time from dementia onset.

We assumed the truncation time followed truncated exponential distribution on

(0, τmax), where τmax is the maximum observed time from dementia onset.

The estimated covariate effects of the two subtypes of dementia from the

two estimation methods and the estimated parameter of the exponential dis-

tribution for the truncation time by our method are summarized in Table 3.

The proposed semiparametric MLE suggested a statistically significant survival

difference between the group with possible Alzheimer’s disease and the group

with vascular dementia (0.193, SE=0.078), and a marginally significant differ-

ence between the groups with possible versus probable Alzheimer’s disease (0.130,

SE=0.064). The results are comparable with those reported in Qin et al. (2011),

where the estimate was 0.185 (SE=0.077) for comparing possible Alzheimer’s

disease with vascular dementia, and was 0.125 (SE=0.062) for comparing proba-

ble Alzheimer’s disease with possible Alzheimer’s disease. The estimated effects

using the conditional method do not show any statistically significant survival

differences among the three subtypes of dementia. The estimated parameter for
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the truncated exponential distribution was very small (0.0002) compared with

its standard error (0.013), suggesting that the truncation time could be approx-

imately uniformly distributed. This result is consistent with a previous finding

by Asgharian, Wolfson, and Zhang (2006), who showed that the dementia data

satisfied the stationarity assumption.

5. Discussion

Biased sampling is well recognized in a wide range of applications. Jointly

modeling the bias selection process with a parametric specification and the sur-

vival time with a semiparametric specification, we propose a full maximum likeli-

hood approach that works well for the problem of general left-truncation data, a

special case of biased sampling. The proposed MLE is shown to be asymptotically

consistent and efficient. A novel EM algorithm with desirable computational ad-

vantages is developed to find the semiparametric MLE with infinite-dimensional

parameters. The M-step for the regression coefficient can be easily implemented

by the existing software for the Cox regression model with right-censored sur-

vival data. As demonstrated in the numerical studies, the proposed MLEs are

more efficient than the estimating equations approach based on the conditional

likelihood. The proposed EM algorithm does not need to impute the censored ob-

servation. In spite of the additional step to estimate the parameters for the trun-

cation time distribution, the proposed EM algorithm is computationally more

efficient than the EM algorithm developed by Qin et al. (2011).

From scientific and statistical points of view, it is of great interest to estimate

the truncation time distribution. In the setting of biased sampling, the truncation

time is only partially observed because only subjects who had not have the failure

event before the recruitment time are recruited. The proposed method has the

advantage of evaluating the distribution of the underlying selection process in

addition to efficiency improvements in estimating the survival functions of the

failure events.

For the purpose of model identifiability, a parametric model hθ(·) without

covariate is assumed for the distribution of the truncation time. It is critical to

develop model checking techniques to test the goodness-of-fit of the parametric

model assumption. In practice, one approach is to use a rich parameter family

and then examine the model fitting. Additionally, the proposed approach can

be generalized to include X in the weight function with a properly assumed

parametric structure for hθ(a|x).
Although statistical methodology has been proposed to verify the stationar-

ity assumption for length-biased data (Asgharian, Wolfson, and Zhang (2006)),

the proposed modeling framework can be used to develop a formal test of whether

hθ(·) is uniformly distributed. Indeed, verifying whether the underlying disease
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process is stationary can be of research interest in itself. In our numerical study,

we considered a single parameter θ = 0 for the left truncation distribution. How-

ever, testing θ = 0 is on the boundary of the parameter space that requires

special considerations. While asymptotic theory with boundary problems has

been well developed for parametric models (Self and Liang (1987)), yo the best

of our knowledge, little has been done in semiparametric modeling with bound-

ary problems. The situation is more complicated in the setting of the biased

sampling problem, which remains a future research topic.

We have focused on the Cox model for the survival data because of its pop-

ularity and availability in standard statistical software. More general survival

models such as the transformation models can also be investigated. However,

the extension of the EM algorithm for these models is not straightforward. Fur-

ther investigation is warranted.
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Appendix: Proofs of Asymptotic Properties

Appendix A. Regularity conditions

We summarize the regularity conditions:

1. The parameter {θ, β} is in a compact set B in the real space Rq × Rp. The

parametric model {hθ(·) : θ ∈ B} is identifiable. The parameter Λ is in the

set A of nondecreasing functions with Λ(0) = 0 and Λ(τ−) < ∞. The true

parameter Λ0(·) is continuous and differentiable, and P (Ã+ C > τ) > 0.

2. The function hθ(a) ≥ δ1 for some constant δ1 > 0 for every a.

3. The function ḣθ(·) and hθ(·) satisfy a Lipschitz condition in θ. More specifi-

cally, there exist functions, F1 and F2 such that

|ḣθ1(a)−ḣθ2(a)| ≤ ∥θ1−θ2∥2F1(a), and |hθ1(a)−hθ2(a)| ≤ ∥θ1−θ2∥2F2(a),
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where E0{F1(Ã)
2} <∞ and E0{F2(Ã)

2} <∞.

4. The covariate X is bounded, and E0∥X∥22, E0{e|β
TX|} are all bounded for

every β in B.
5. The matrix J11 is positive definite and the bivariate function K(t, u) in (3.6)

is square integrable.

Appendix B. Proof of consistency

To avoid the measurability issues, the probability measure is understood as

the outer probability (van der Vaart and Wellner (1996)). As technical details

are similar to those in the literature for semiparametric maximum likelihood es-

timation, see for example, Parner (1998), we provide only a sketch of the proof.

The first step is to show that ψ̂n = (θ̂n, β̂n, Λ̂n) stays bounded, in particular,

limnΛ̂n < ∞. As {θ̂n, β̂n} are found in a bounded compact set of finite di-

mensions, we can find a convergence subsequence of {θ̂n, β̂n}. To show that Λ̂n
stays bounded, we use proof by contradiction as follows. Suppose that Λ̂n(·) di-
verges. We can then construct some sequence (θ̄n, β̄n, Λ̄n) such that the empirical

Kullback-Leibler distance ℓn(θ̂n, β̂n, Λ̂n)−ℓn(θ̄n, β̄n, Λ̄n) goes to negative infinity.

This is a contradiction because ψ̂n maximizes the log-likelihood function so that

ℓn(θ̂n, β̂n, Λ̂n)− ℓn(θ̄n, β̄n, Λ̄) ≥ 0 for every (θ̄n, β̄n, Λ̄) in the parameter set. The

construction of the contradiction is along the lines of that in Parner (1998) for

the gamma frailty model. Briefly, choose {θ̄n, β̄n} = {θ0, β0}, and choose Λ̄n to

be

Λ̄n(t) =

∫ t

0

{ n∑
i=1

(
Mi(u)−

∫ τ
u S0(v|Xi)h0(v)dv∫ τ
0 S0(v|Xi)h0(v)dv

)
eβ

T
0 Xi

}−1

d

{ n∑
j=1

Nj(u)

}
,

where S0(·|Xi) = exp{−
∫ ·
0 e

βT
0 XdΛ0(u)} and h0(·) = hθ0(·). It can be easily

shown that using the mean-zero estimating equation (3.4), Λ̄n(t) converges to

Λ0 almost surely and uniformly in t by an application of the Glivenko-Cantelli

theorem. Using a technical argument similar to that in Parner (1998), we can

show that ℓn(θ̂n, β̂n, Λ̂n)−ℓn(θ̄n, β̄n, Λ̄n) → −∞ as n→ ∞, but this is impossible

so Λ̂n must stay bounded.

As Λ̂n stays bounded, we can apply Helly’s selection principle to find a

convergent subsequence of (θ̂n, β̂nk
, Λ̂nk

) for an arbitrary subsequence from the

sequence indexed by {1, . . . , n}. We can then show that by the strong law of

large numbers, such convergent subsequence must converge to (θ0, β0,Λ0), us-

ing the classical Kullback-Leibler information approach. For any given subse-

quence {nk}, we can identify a further subsequence of (θ̂nk
, β̂nk

, Λ̂nk
) that con-

verges to (θ0, β0,Λ0). Helly’s selection theorem implies that the entire sequence

(θ̂n, β̂n, Λ̂n(t)) must converge to (θ0, β0,Λ0(t)) for each t. By the assumption that
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Λ0(·) is continuous, the convergence of Λ̂n(t) at each t is also uniform in t. The

convergence can be made almost-surely convergence by carrying out the proof

for a fixed ω in the underlying probability space Ω, and applying the law of large

numbers only countable many times.

Appendix C. Proof of asymptotic normality

C.1. Score equations

We first calculate the score equations for a single subject with the log-

likelihood function

ℓ(ψ) =

∫ τ

0

(
βTX + log dΛ(u)

)
dN(u)−

∫ τ

0
M(u)eβ

TXdΛ(u)

+ log hθ(A)− log

∫ τ

0
S(u|X)hθ(u)du, (C.1)

where N(t) = 1(A < Y ≤ t)δ andM(t) = 1(Y ≥ t)1(Y > A). The score function

for the infinite dimensional parameter Λ(·) is calculated through a submodel

dΛη(·) = (1 + ηϕ(·))dΛ(·), where ϕ(·) is a bounded and integrable function, and

η > 0 is a constant. By taking the derivative ℓ(θ, β,Λη) with respect to η and

evaluating at η = 0, the score operator for Λ has the form

ℓ̇3(ψ,O)(ϕ)=

∫ τ

0
ϕ(u)

[
dN(u)−

{
M(u)−

∫ τ
u S(v|X)hθ(v)dv∫ τ
0 S(v|X)hθ(v)dv

}
eβ

TXdΛ(u)

]
. (C.2)

Taking ϕ(·) = 1(· ≤ t) in (C.2), we have the equivalent score function for Λ

ℓ̇3(t, ψ,O) =

∫ t

0

[
dN(u)−

{
M(u)−

∫ τ
u S(v|X)hθ(v)dv∫ τ
0 S(v|X)hθ(v)dv

}
eβ

TXdΛ(u)

]
. (C.3)

The score function for β has the form

ℓ̇2(ψ,O) =

∫ τ

0
X

[
dN(u)−

{
M(u)−

∫ τ
u S(v|X)hθ(v)dv∫ τ
0 S(v|X)hθ(v)dv

}
eβ

TXdΛ(u)

]
=

∫ τ

0
Xdℓ̇3(t,O, ψ). (C.4)

The score function for θ has the form

ℓ̇1(ψ,O) =
ḣθ(A)

hθ(A)
−
∫
S(u|X)ḣθ(u)du∫
S(u|X)hθ(u)du

, (C.5)

where ḣθ(·) is the first partial derivative of hθ(·) with respect to θ.
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C.2. Fréchet derivative

We first confirm that the expectation of the estimating equations is Fréchet

differentiable and its Fréchet derivative is continuously invertible. Denote the

expectation of the estimating equations by U0(ψ) = {U10(ψ), U20(ψ), U30(·, ψ)},
where

U10(ψ)=E0

[{
ḣθ(A)

hθ(A)
1(Y >A)−

∫ τ
0 S(u|X)ḣθ(u)du∫ τ
0 S(u|X)hθ(u)du

}]
, (C.6)

U20(ψ)=

∫ τ

0
E0

[
X

{
dN(u)−

(
M(u)−

∫ τ
uS(v|X)hθ(v)dv∫ τ
0S(v|X)hθ(v)dv

)
eβ

TXdΛ(u)

}]
, (C.7)

U30(t, ψ)=

∫ t

0
E0

[{
dN(u)−

(
M(u)−

∫ τ
u S(v|X)hθ(v)dv∫ τ
0 S(v|X)hθ(v)dv

)
eβ

TXdΛ(u)

}]
. (C.8)

The Fréchet differentiability of U0(ψ) at ψ = ψ0 can be verified by the

definition, and the derivation can be calculated using the Gâteaux variations

of U0(ψ). This is done by the differentiation of U0(ψη) with respect to η and

evaluated at η = 0, where ψη = (θη, βη,Λη) = (β0, θ0,Λ0(·)) + η(β, θ,Λ(·)).
The Gâteaux derivative of U10(ψ) evaluated at ψ0 is −{s11(θ) + s12(β) +

s13(Λ)}, where

s11(θ) ≡
∂

∂η
U10(θη, β0,Λ0)

∣∣∣
η=0

= θκ0,

s12(β) ≡
∂

∂η
U10(θ0, βη,Λ0)

∣∣∣
η=0

= βT

∫ τ

0
κ
(1)
1 (u)dΛ0(u),

s13(Λ) ≡
∂

∂η
U10(θ0, β0,Λη)

∣∣∣
η=0

=

∫ τ

0

(∫ τ

u
κ
(0)
1 (v)dv

)
dΛ(u).

The Gâteaux derivative of U20(ψ) evaluated at ψ0 is −{s21(θ)+s22(β)+s23(Λ)},
where

s21(θ) ≡
∂

∂η
U10(θη, β0,Λ0)

∣∣∣
η=0

= θ

∫ τ

0
κ
(1)
1 (u)dΛ0(u),

s22(β) ≡
∂

∂η
U10(θ0, βη,Λ0)

∣∣∣
η=0

= βT

[ ∫ τ

0
{κ(2)2 (u) + κ

(2)
3 (u)}dΛ0(u)

]
,

s23(Λ) ≡
∂

∂η
U10(θ0, β0,Λη)

∣∣∣
η=0

=

∫ τ

0
{κ(1)2 (u) + κ

(1)
3 (u)}dΛ(u).

The Gâteaux derivative of U30(t, ψ) evaluated at ψ0 is −{s31(θ)(t) + s32(β)(t) +
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s33(Λ)(t)}, where

s31(θ)(t) ≡
∂

∂η
U30(t, θη, β0,Λ0)

∣∣∣
η=0

= θ

∫ t

0
κ
(0)
1 (u)dΛ0(u),

s32(β)(t) ≡
∂

∂η
U30(t, θ0, βη,Λ0)

∣∣∣
η=0

= βT

[ ∫ t

0
{κ(1)2 (u) + κ

(1)
3 (u)}dΛ0(u)

]
,

s33(Λ)(t) ≡
∂

∂η
U30(t, θ0, β0,Λη)

∣∣∣
η=0

=

∫ t

0

{∫ τ

0
κ4(u, v)dΛ(v)

}
dΛ0(u) +

∫ t

0
κ
(0)
3 (u)dΛ(u).

It follows by straightforward calculation that the Fréchet derivative U̇0(ψ0) has

the form

U̇ψ0(ψ) ≡

s11 s12 s13s21 s22 s23
s31 s32 s33

 θ

β

Λ

 ≡

s11(θ) + s12(β) + s13(Λ)

s21(θ) + s22(β) + s23(Λ)

s31(θ) + s32(β) + s33(Λ)

 . (C.9)

Denote the finite dimensional parameters by ξ = (θ, β)T. Take

J11 =

(
κ0 {

∫ τ
0 κ

(1)
1 (u)dΛ0(u)}T∫ τ

0 κ
(1)
1 (u)dΛ0(u)

∫ τ
0 {κ

(2)
2 (u) + κ

(2)
3 (u)}dΛ0(u)

)
,

J21(t) = J12(u)
T =

(∫ t
0 κ

(0)
1 (u)dΛ0(u)

∫ t
0{κ

(1)
2 (u) + κ

(1)
3 (u)}TdΛ0(u)

)
.

Then the Fréchet derivative U0(ψ0) can be written as

U̇0(ψ) =

(
σ11 σ12
σ21 σ22

)(
ξ

Λ

)
=

(
σ11(ξ) + σ12(Λ)

σ21(ξ) + σ22(Λ)

)
,

where σ22(Λ) = s33(Λ),

σ11(ξ) = −
(
s11(θ) + s12(β)

s21(θ) + s22(β)

)
= J11ξ,

σ21(ξ)(t) = −{s31(θ)(t) + s32(β)(t)} = J21(t)ξ,

σ12(Λ) =

(
s13(Λ)

s23(Λ)

)
=

∫ τ

0
J12(u)dΛ(u).

If the inverse of U̇ψ0 exists, then its inverse must have the form:

U̇−1
ψ0

(ψ) ≡
(
Σ−1
11 +Σ−1

11 σ12Φ
−1σ21σ

−1
11 −σ−1

11 σ12Φ
−1

Φ−1σ21σ
−1
11 Φ−1

)(
ξ

Λ

)
, (C.10)

where Φ = σ22 − σ21σ
−1
11 σ12. Thus, to show that U̇ψ0 is continuously invertible,

we need only show that σ11 and Φ are continuously invertible.
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First, the operator σ11 is identical to the symmetric matrix J11. This matrix

is the Fisher information on the estimation of (β0, θ0) when the baseline function

Λ0 is known. It is reasonable to assume that the information matrix J11 is

positive definite so that it has inverse J−1
11 . It follows that the operator σ11 is

continuously invertible with the inverse σ−1
11 (ξ) = J−1

11 ξ.

To determine whether the operator Φ is invertible, note that it has the form

Φ(Λ) =σ22(Λ)− σ21σ
−1
11 σ12(Λ)

=

∫ t

0

{∫ τ

0
κ4(u, v)dΛ(v)

}
dΛ0(u) +

∫ t

0
κ
(0)
3 (u)dΛ(u)

−
∫ τ

0
J21(t)J

−1
11 J12(u)dΛ(u).

Showing that the operator Φ is continuously invertible is equivalent to showing

that there exists a unique solution to the operator equation Φ(Λ) = Λ̌ for each

bounded function Λ̌. This can be written as an integral equation∫ t

0

{∫ τ

0
κ4(u, v)dΛ(v)

}
dΛ0(u) +

∫ t

0
κ
(0)
3 (u)dΛ(u)−

∫ τ

0
J21(t)J

−1
11 J12(u)dΛ(u)

= Λ̌(t).

Taking the derivative with respect to t on both sides,

λ0(t)

∫ τ

0
κ4(t, v)dΛ(v)+κ

(0)
3 (t)dΛ(t)−

∫ τ

0
J̇21(t)J

−1
11 J12(u)dΛ(u)=dΛ̌(t), (C.11)

where

J̇21(t) =
(
κ
(0)
1 (t)λ0(t) {κ(1)2 (t) + κ

(1)
3 (t)}Tλ0(t).

)
This can be written as a Fredholm integral equation of the second type:

dΛ̌(t)

κ
(0)
3 (t)

= dΛ(t)−
∫ τ

0
K(t, u)dΛ(u), (C.12)

K(t, u) =
λ0(t)

κ
(0)
3 (t)

{(
κ
(0)
1 (t)

κ
(1)
2 (t) + κ

(1)
3 (t)

)T

J−1
11 J12(u)− κ4(t, u)

}
. (C.13)

The existence and uniqueness of its solution for given Λ̌(·) are well known (Tri-

comi (1985)). Under the regularity conditions, we have∫ ∣∣∣∣ λ̌(t)
κ
(0)
3 (t)

∣∣∣∣2dt <∞,

∫ ∫
|K(t, u)|2dtdu <∞.
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By the classical existence and uniqueness theorems for Fredholm integral equa-

tions, there exists one and only one solution to (C.11). It follows that the inverse

operator Φ−1 exists and has the form

Φ−1(Λ̌) =

∫ t

0

dΛ̌(u)

κ
(0)
3 (u)

+

∫ τ

0

∫ t

0

R(v, u)

κ
(0)
3 (u)

dvdΛ̌(u),

where R(t, u) is independent of Λ̌(·) and satisfies the equation

R(t, u) = K(t, u) +

∫
K(t, v)R(v, t)dv.

C.3. Weak convergence

Both the score function Un and its expectation U0 are defined on the param-

eter set B × A, where B is an open convex set in Rp+q, and A is in the space

of functions of bounded variation. As the true value ψ0 satisfies the population

estimating equations U0(ψ0) = 0, we have

√
nUn(ψ0) =

√
n
{
U1n(ψ0)−U10(ψ0), U2n(ψ0)−U20(ψ0), U3n(t, ψ0)−U30(t, ψ0)

}
.

As the summation of independently and identically distributed (i.i.d.) random

vectors,
√
n{U1n(ψ0) − U10(ψ0), U2n(ψ0) − U20(ψ0)} converges in law to W1 by

the multivariate central limit theorem. The process
√
n{U3n(t, ψ0)− U30(t, ψ0)}

is a sum of i.i.d. processes of bounded variation. By a lemma for the central limit

theorem for processes of bounded variation (van der Vaart and Wellner (1996,

Example 2.11.16)),
√
n{U3n(t, ψ0)−U30(t, ψ0)} converges to a tight Gaussian pro-

cess, denoted by W2(·). The weak convergence of
√
nUn(ψ0) to W = {W1,W2(·)}

follows by the continuous mapping theorem (van der Vaart and Wellner (1996,

Thm. 1.3.6)).

C.4. Stochastic approximation

To confirm the conditions for the Z-theorem (van der Vaart and Wellner

(1996, Thm. 3.3.1)), we prove the stochastic approximation
√
n
{
(Un − U0)(ψn)− (Un − U0)(ψ0)

}
≡

√
n
[
{Un(·, ψn)− U0(·, ψn)} − {Un(·, ψ0)− U0(·, ψ0)}

]
= oP ∗(1).

Let Pn be the empirical measure and let ℓ̇(t, ψ,O) = {ℓ̇1(ψ,O), ℓ̇2(ψ,O),

ℓ̇3(t, ψ,O)}. Write Un(ψ) = Pnℓ̇(·, ψ,O) = n−1
∑n

i=1 ℓ̇(·, ψ,Oi). Denote the

empirical process by Gnf =
√
n(Pnf − P0f), where P0 denote the expectation

under the true value ψ0. Then
√
n(Un − U0)(ψ) = Gnℓ̇(·, ψ,O) is the empirical
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process indexed by the class of functions {ℓ̇(t, ψ,O), ψ ∈ B × A, t ∈ [0, τ)}. Let

the norm ∥ · ∥H on H = B × A be defined as ∥ψ∥H = |β| + ∥Λ∥∞. Then the

stochastic condition is

∥Gnℓ̇(t, ψ̂n,O)−Gnℓ̇(t, ψ0,O)∥H = oP ∗(1).

We follow van der Vaart and Wellner (1996, Lemma 3.3.5) in proving the stochas-

tic approximation. First, we show that the difference of the score functions

{ℓ̇(t, ψ,O) − ℓ̇(t, ψ0,O) : t ∈ [0, τ), ∥ψ − ψ0∥H < δ} is P0-Donsker. This is done

by showing that the functions are sum, products and continuous transformations

of P0-Donsker classes.

Under regularity condition 3, the functions ḣθ and hθ satisfy a Lipschitz

condition. Thus, there exist functions, F1 and F2 such that

|ḣθ1(a)− ḣθ2(a)| ≤ ∥θ1 − θ2∥2F1(a), and |hθ1(a)− hθ2(a)| ≤ ∥θ1 − θ2∥2F2(a),

where E0{F1(Ã)
2} < ∞ and E0{F2(Ã)

2} < ∞. It follows that the classes of

functions {ḣθ : ∥ψ−ψ0∥H < δ} and {hθ : ∥ψ−ψ0∥H < δ} are P0-Donsker (van der

Vaart and Wellner (1996, Thm. 2.7.11)). We have assumed that hθ ≥ δ1 for some

constant δ1 > 0 for every θ satisfying ∥ψ − ψ0∥H < δ. Then by the permanence

of the Donsker property, the class of functions {ḣθ/hθ : ∥ψ − ψ0∥H < δ} is also

P0-Donsker (van der Vaart and Wellner (1996, Example 2.10.9)).

Now

ℓ̇3(t, ψ,O)− ℓ̇3(t, ψ0,O)

=

∫ t

0
M(u)eβ

T
0 XdΛ0(u)−

∫ t

0
Y (u)eβ

TXdΛ(u)

+

∫ t

0

S(v|X)hθ(v)dv∫ τ
0 S(v|X)hθ(v)dv

eβ
TXdΛ(u)−

∫ t

0

S0(v|X)h0(v)dv∫ τ
0 S0(v|X)h0(v)dv

eβ
T
0 XdΛ0(u).

Under the regularity conditions, β is in the compact set B so that |β| is bounded.
We assume that E0{exp(2|βTX|)} < ∞ for every β in B. It follows that the

class of functions {exp(βTX) : ∥ψ − ψ0∥H < δ} is P0-Donsker. The class

of all monotone functions on a bound set [0, τ) is P0-Donsker (van der Vaart

and Wellner (1996, Thm. 2.7.5)). It then follows that the class of functions

{
∫ t
0 Y (u)dΛ(u) : t ∈ [0, τ), ∥ψ − ψ0∥H < δ} is P0-Donsker, and so is the class

of functions {
∫ t
0 Y (u)eβ

TXdΛ(u) : t ∈ [0, τ), ∥ψ − ψ0∥H < δ}. Furthermore, the

following classes of functions are also P0-Donsker:

{exp{− exp(βTX)Λ(t)hθ(t)} : t ∈ [0, τ), ∥ψ − ψ0∥H < δ},
{exp{− exp(βTX)Λ(t)ḣθ(t)} : t ∈ [0, τ), ∥ψ − ψ0∥H < δ}.
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The map φ : f 7→
∫ τ
0 f(u)du is a continuous map for f in the set of bounded

variations. Hence, it follows that by the continuous mapping theorem, the fol-

lowing classes of functions are P0-Donsker: {
∫ τ
t S(u|X)hθ(u)du : t ∈ [0, τ), ∥ψ −

ψ0∥H < δ} = {
∫ τ
0 1(u ≥ t) exp{− exp(βTX)Λ(u)hθ(u)du} : ∥ψ − ψ0∥H < δ}, and

{
∫ τ
t S(u|X)ḣθ(u)du : t ∈ [0, τ), ∥ψ − ψ0∥H < δ} = {

∫ τ
0 1(u ≥ t) exp{− exp(βTX)

Λ(u)ḣθ(u)du} : ∥ψ − ψ0∥H < δ}. Finally, by the permanent property of Donsker

classes and assuming that βTX is bounded for every β in B, we have confirmed

the following classes of functions are P0-Donsker:

{ℓ̇1(ψ,O)− ℓ̇1(ψ0,O) : ∥ψ − ψ0∥H < δ},
{ℓ̇2(ψ,O)− ℓ̇2(ψ0,O) : ∥ψ − ψ0∥H < δ},

{ℓ̇3(t, ψ,O)− ℓ̇3(t, ψ0,O) : t ∈ [0, τ), ∥ψ − ψ0∥H < δ}.

When ∥ψ − ψ0∥H → 0, ℓ̇(t, ψ,O) converges to ℓ̇(t, ψ0,O) for each t. The

convergence also holds in the square moment by the dominated convergence

theorem. Hence,

sup
t∈[0,τ)

E0∥ℓ̇(t, ψ,O)− ℓ̇(t, ψ0,O)∥2H → 0.

The stochastic approximation of (Un − U0)(ψ̂n) to (Un − U0)(ψ0) follows by ap-

plying a result of van der Vaart and Wellner (1996, Lemma 3.3.5).
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