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Abstract: The time-varying coefficient Cox model has been widely studied and

popularly used in survival data analysis due to its flexibility for modeling covari-

ate effects. It is of great practical interest to accurately identify the structure of

covariate effects in a time-varying coefficient Cox model, covariates with null ef-

fect, constant effect and truly time-varying effect, and estimate the corresponding

regression coefficients. Combining the ideas of local polynomial smoothing and

group nonnegative garrote, we develop a new penalization approach to achieve

such goals. Our method is able to identify the underlying true model structure

with probability tending to one and can simultaneously estimate the time-varying

coefficients consistently. The asymptotic normalities of the resulting estimators are

established. We demonstrate the performance of our method using simulations and

an application to the primary biliary cirrhosis data.

Key words and phrases: Group nonnegative garrote, local polynomial smoothing,

model selection, time-varying coefficient Cox model.

1. Introduction

Cox proportional hazards model (Cox (1972)) is the standard semiparametric

model in survival analysis due to its nice hazard interpretation and easy estima-

tion based on partial likelihood principle with elegant counting process-based

martingale theory (Andersen and Gill (1982)). However, one main limitation of

the standard Cox model is to assume that the hazard ratios stay constant over

time, which may be unrealistic in practical applications. Many alternatives have

been proposed to relax the proportional hazards assumption. Among them, the

time-varying coefficient Cox model is a natural extension that allows temporal

effects of covariates; it has been widely studied in the literature (e.g. Zucker and

Karr (1990); Cai and Sun (2003); Tian, Zucker, and Wei (2005)).

An important issue in fitting a time-varying coefficient Cox model is to dis-

tinguish covariates with null effect, constant effect, or truly time-varying effect,

since this can help to build a more accurate risk model. Excluding covariates

with null effect can greatly reduce the dimension of model, which is important,

especially when p is large. Distinguishing covariates with constant effect and
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truly time-varying effect, a more easily interpreted semiparametric model re-

sults. Thus, Yu and Lin (2010), in considering data from a western Kenya par-

asitemia study, found that exposure to mosquito bites (BITE), age, and gender

have constant effects on time to onset of parasitemia, while baseline parasitemia

density (BPD) has a time-varying effect, and so considered a semiparametric

time-varying coefficient model for better risk prediction. See Zhang, Lee, and

Song (2002); Fan and Huang (2005); Ahmad, Leelahanon, and Li (2005); Wang,

Zhu, and Zhou (2009) for other demonstration of the benefits of semiparametric

varying-coefficient models.

Model selection has been extensively studied in the past few decades. Tra-

ditional model selection techniques, such as best-subset selection, coupled with

Cp (Mallows (1973)), AIC (Akaike (1973)) and BIC (Schwarz (1978)), separate

model selection and model estimation steps and are generally unstable due to

the their inherent discreteness (Breiman (1995)) and stochastic errors (Fan and

Li (2001)). They also lack asymptotic selection consistency, a desirable asymp-

totic property. More importantly, they are not computationally feasible for data

sets with moderate to large dimensions. To overcome these difficulties, various

penalization methods have been introduced, including, the nonnegative garrote

(Breiman (1995)), LASSO (Tibshirani (1996, 1997)), SCAD (Fan and Li (2001,

2002)) and adaptive LASSO (Zou (2006); Zhang and Lu (2007)). These methods

provide competing performances for simultaneously selecting important variables

and estimating their effects, but most of them focus on variable selection for sim-

ple linear regression models. Less has been studied for such model structure

selection methods as the identification of linear/nonlinear structure in partially

linear regression models or time-invariant/time-varying coefficients in regression

models with time-varying coefficients. Zhang, Cheng, and Liu (2011) proposed

a novel penalization approach in the frame of smoothing spline ANOVA for au-

tomatically discovering covariates with null, linear, and nonlinear effects in a

partially linear model. For censored data, Yan and Huang (2012) proposed an

adaptive group LASSO (AGLASSO) method based on a penalized B-spline ap-

proach for model structure selection in a time-varying coefficient Cox model.

In this paper, we propose a method for automatic model structure selection

and coefficient estimation in a time-varying coefficient Cox model by coupling the

kernel-weighted partial likelihood estimation (Cai and Sun (2003); Tian, Zucker,

and Wei (2005)) with a group nonnegative garrote penalty. Compared with the

spline method proposed in Yan and Huang (2012), our method is better able

to capture some local features of time-varying coefficient functions. By using

the local kernel estimation, we can rigorously study the asymptotic properties of

the proposed estimators for both constant and time-varying coefficients, whereas

these properties have not been established for existing approaches like that of
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Yan and Huang (2012). The proposed method also provides an automatic and

effective way to conduct structure selection for a time-varying coefficient Cox

model, that can deal with relatively large dimensions in contrast with such ex-

isting methods based on hypothesis testing as those studied in Huang, Wu, and

Zhou (2002), Fan and Huang (2005), Tian, Zucker, and Wei (2005), and Liu, Lu,

Shore, and Zeleniuch-Jacquotte (2010). The remainder of the paper is organized

as follows.

Our proposed kernel group nonnegative garrote (KGNG) method and its

variant (KGNG2) are introduced in Section 2. Asymptotic properties of KGNG

and KGNG2 estimators are presented in Section 3. Section 4 is devoted to

simulations and an application to primary biliary cirrhosis data. The proofs are

relegated to an online supplementary appendix available at http://www.stat.

sinica.edu.tw/statistica.

2. Structure Selection with Kernel Group Nonnegative Garrote

2.1. Methods

Consider a random sample of n individuals. Let Ti be the failure time, Ci be

the censoring time, and Zi be a p-vector of covariates for subject i. Conditional

on Zi, Ti and Ci are assumed independent. Take T̃i = min(Ti, Ci) and ∆i =

1(Ti ≤ Ci). The data consist of the triplets (T̃i,Zi,∆i), i = 1, . . . , n. The

time-varying coefficient Cox model has

α(t|Zi) = α0(t)e
β

T

0(t)Zi , (2.1)

where α(·|Zi) is the conditional hazard function given covariates, α0(·) is a com-

pletely unspecified baseline hazard function, and β0(t) = (β01(t), . . . , β0p(t))
T is

a p-dimensional smooth function of t.

Without loss of generality, we assume β0(t) = (βT

O(t),β
T

C(t), βT

NC(t))
T,

where βO(t) ∈ IRp1 , βC(t) ∈ IRp2 , and βNC(t) ∈ IRp3 correspond to covari-

ates with null effect, constant effect, and time-varying effect, respectively, with

p = p1 + p2 + p3. Denote the corresponding index sets of the three classes by IO,

IC , and INC , and let I = {1, . . . , p} = {IO
∪
IC
∪

INC}. Our method consists of

two steps.

In Step 1, for any fixed t, we obtain the initial estimator β̃(t) = (β̃1(t), . . .,

β̃p(t))
T ∈ IRp using the kernel-weighted partial likelihood estimation (Cai and

Sun (2003); Tian, Zucker, and Wei (2005)): maximize the local partial likelihood

L1n(β, t) =
1

n

n∑
i=1

∫ τ

0
Kh(s− t)

[
βTZi − log

( n∑
j=1

Yj(s)e
βT

Zj

)]
dNi(s), (2.2)
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with respect to β, where Kh(·) = K(·/h)/h with K(·) a symmetric kernel density

function, h a bandwidth parameter, Yj(t) = 1(T̃j ≥ t), Ni(t) = 1(T̃i ≤ t,∆i = 1),

and τ a pre-specified constant such that P (T̃i > τ) > 0. We decompose the

initial estimator β̃(t) into a mean part m̃ = (m̃1, . . . , m̃p)
T and a deviation part

β̃
∗
(t) = (β̃∗

1(t), . . . , β̃
∗
p(t))

T, where m̃k = τ−1
∫ τ
0 β̃k(u)du and β̃∗

k(t) = β̃k(t) − m̃k

for k = 1, . . . , p. Practically, we can choose M grid points TM = {t1, . . . , tM},
equally spaced between 0 and τ , where M is a large positive integer. We then

let m̃k =
∑M

i=1 β̃k(ti)/M and β̃∗
k(t) = β̃k(tj) − m̃k, where j = argmink|tk − t|

and t ∈ [0, τ ]. In our numerical studies, we set M to be 100 which, based on our

experiment, is large enough to allow good approximations of m̃k and β̃∗
k(t).

In Step 2, we adapt group nonnegative garrote penalties for structure selec-

tion. Let λ1 = (λ11, . . . , λ1p)
T, λ2 = (λ21, . . . , λ2p)

T be p-dimensional vectors. We

obtain λ̂1 and λ̂2 by minimizing

Q2n(λ1,λ2) =−
n∑

i=1

∫ τ

0

[(
m̃ ◦ λ1 + β̃

∗
(s) ◦ λ2

)
T

Zi

− log
( n∑

j=1

Yj(s)e

(
m̃◦λ1+β̃

∗
(s)◦λ2

)T

Zj
)]

dNi(s)

+ θ1

p∑
j=1

λ1j + θ2

p∑
j=1

λ2j (2.3)

subject to λ1j ≥ 0 and λ2j ≥ 0, j = 1, . . . , p, where θ = (θ1, θ2) are two-

dimensional nonnegative tuning parameters, and a ◦ b denotes the Hadamard

(element-wise) product of vectors a and b. The proposed KGNG estimator of

β0k(t) is

β̂k(t) = λ̂1km̃k + λ̂2kβ̃
∗
k(t), k = 1, . . . , p, t ∈ [0, τ ]. (2.4)

The automatic structure selection is achieved by shrinking some components of

λ̂1 and λ̂2 to zero. Specifically, we take ÎO = {k ∈ I : λ̂1k = 0, λ̂2k = 0},
ÎC = {k ∈ I : λ̂1k ̸= 0, λ̂2k = 0}, and ÎNC = {k ∈ I : λ̂2k ̸= 0} as estimated index

sets for IO, IC and INC , respectively.

When the number of covariates is large, the inclusion of many noise variables

(covariates with null effect) at Step 1 may affect the structure selection perfor-

mance. Accordingly, we propose a variant of the KGNG estimator. We add a

preliminary step (Step 0) to exclude all noise variables prior to structure selec-

tion. To do this, we conduct a standard group nonnegative garrote estimation

by minimizing

−
n∑

i=1

∫ τ

0

[ (
β̃(s) ◦ λ∗

)
T

Zi − log
( n∑

j=1

Yj(s)e

(
β̃(s)◦λ∗)T

Zj
)]

dNi(s) + θ∗
p∑

j=1

λ∗
j
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with respect to λ∗ = (λ∗
1, . . . , λ

∗
p)

T, where λ∗
j ≥ 0, j = 1, . . . , p, and θ∗ is a nonneg-

ative tuning parameter. Let λ̂
∗
= (λ̂∗

1, . . . , λ̂
∗
p)

T denote the resulting minimizer.

We exclude the kth covariate if λ̂∗
k = 0. Let Zi denote the remaining sub-vector

of Zi by keeping all important covariates. We then implement Steps 1 and 2

with Zi replaced by Zi for further structure selection. The resulting estimator

is denoted by KGNG2.

2.2. Computational aspects

We implemented the proposed method in R, and the corresponding code can

be downloaded from the author’s web page (http://www4.ncsu.edu/~wxiao/).

In Step 1, L1n(β, t) is strictly concave with probability one and thus has a unique

solution. The maximization can be realized based on a regular Newton-Raphson

iteration or an efficient iterative algorithm proposed in Cai, Fan, and Li (2000). In

Step 2, after proper transformations, the minimization problem (2.3) is equivalent

to finding the lasso solution for a Cox model with time-dependent covariates Z̃i(s)

under the nonnegative constraint of regression parameters, where

Z̃i(s) =

(
m̃ ◦Zi

β̃
∗
(s) ◦Zi

)
.

We used the R package “penalized” (Goeman (2010)) for this. The algorithm is

based on a combination of gradient ascent optimization and the Newton-Raphson

algorithm, which can also incorporate nonnegative constraints on the parameters

(Goeman (2010)). As well, the minimization in the preliminary Step 0 is equiv-

alent to finding a lasso solution for a Cox model with time-dependent covariates

β̃(s) ◦Zi, and can be computed similarly with existing R packages.

2.3. Tuning procedure

For computing KGNG, we need to choose the bandwidth h at the maximum

local partial likelihood estimation step (2.2) and (θ1, θ2) at the group nonnegative

garrote estimation step (2.3). To choose h, we use a K-fold cross-validation

method as suggested in Tian, Zucker, and Wei (2005). We randomly split the

data set into K roughly equal-sized parts, and for each k = 1, . . . ,K, we delete

the kth part and fit the time-varying coefficient Cox model with the other K − 1

parts. Then we compute the prediction error PEk(h), which measures how well

the fitted model predicts the kth part of the data. Here,

PEk(h) = −
∑
i∈Ik

∫ τ

0

[
β̃
(−k)

(s)TZi − log
(∑

j∈Ik

Yj(s)e
β̃

(−k)
(s)TZj

)]
dNi(s),

http://www4.ncsu.edu/~wxiao/
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where Ik is the index set for the kth part of the data and β̃
(−k)

(t) is the maximum

local partial likelihood estimator calculated with the kth part of the data deleted.

Last, the optimal h is obtained by minimizing the total prediction error PE(h) =∑K
k=1 PEk(h).

For (θ1, θ2), we consider a set of bivariate grid values, and choose the optimal

(θ1, θ2) by minimizing

BIC = −2 log(partial likelihood)

n
+

log n

n
× df1 + log

nh∗

nh∗
× df2,

where df1 and df2 are the number of nonzero components in λ̂1 and λ̂2, respec-

tively, and h∗ = h/τ is the effective bandwidth when we scale τ to 1. The

effective sample size nh∗ is used here for the time-varying components instead of

the original n to account for the fact that β∗
i (t) is estimated locally. A similar

strategy was adopted in Wang and Xia (2009) and Hu and Xia (2012).

Similarly, θ∗ in the preliminary Step 0 can be chosen by minimizing

BIC = −2 log(partial likelihood)

n
+ log

nh∗

nh∗
× df3,

where df3 is the number of covariates with nonzero effect.

3. Theoretical Properties

3.1. Asymptotic properties of initial estimators

Denote the true mean and deviation part of β0(t) as m0 = (m01, . . . ,m0p)
T

and β∗
0(t) = (β∗

01(t), . . . , β
∗
0p(t))

T, respectively, where

m0k = τ−1

∫ τ

0
β0k(u)du, β∗

0k(t) = β0k(t)−m0k,

for k = 1, . . . , p. Let I(β, t) = −∂2L1n(β, t)/∂β
2 = n−1

∑n
i=1

∫ τ
0 V (β, s)Khn(s−

t)dNi(s), where

V (β, t) =
S(2)(β, t)

S(0)(β, t)
−

(
S(1)(β, t)

S(0)(β, t)

)⊗2

,

S(r)(β, t) =n−1
n∑

i=1

Yi(t)Z
⊗r
i eβ

′
Zi , r = 0, 1, 2,

with ⊗ denoting the outer product. Let E(β, t) = S(1)(β, t)/S(0)(β, t), P (t|z) =
P(T̃ ≥ t|Z = z), Q0(t) = E[P (t|Z)α(t|Z)], Q1(t) = E[P (t|Z)α(t|Z)Z], and

Q2(t) = E[P (t|Z)α(t|Z)Z⊗2]. Define Σ(t) = Q2(t) − Q1(t)Q1(t)
T/Q0(t). Let

s(r)(β, t) denote the limits of S(r)(β, t), r = 0, 1, 2, as n → ∞. Let N (t, ϵ) be
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an ϵ-neighborhood of t, for ϵ > 0 and t ∈ [0, τ ], and B be a compact set of IRp

that includes a neighborhood of β0(t) for t ∈ [0, τ ]. We need certain regularity

conditions.

(A.1) The kernel function K(·) is a bounded and symmetric density with a

bounded support [-1,1].

(A.2) For t ∈ [0, τ ]

E
[
exp

{
2
(

sup
u∈N (t,ϵ)

|β0(u)|+ β
′
0(t) + 3

)
|Z|
}]

< ∞.

(A.3) Q0(t) > 0, Q1(t), and Q2(t) are continuous for t ∈ [0, τ ].

(A.4) α0(t) is positive and continuous, P (t|z) > 0, and the coefficient functions

{β0j(t)} have a continuous second derivatives for t ∈ [0, τ ].

(A.5) The matrix Σ(t) is positive definite for t ∈ [0, τ ].

(A.6) s(r)(β, t) is uniformly continuous with respect to (βT, t)T ∈ B × [0, τ ] for

t ∈ [0, τ ].

Lemma 1. If hn = O(n−ν) with ν ∈ [1/5, 1), β̃(t)
p→β0(t), 0 ≤ t ≤ τ . If

1/5 < ν < 1, we have, for fixed t ∈ (0, τ),

(nhn)
1/2
(
β̃(t)− β0(t)

)
d→N

{
0, Σ−1(t)

∫ 1

−1
K2(s)ds

}
,

where Σ(t) can be consistently estimated by I(β̃(t), t).

Lemma 2. If hn = O(n−ν) with 1/4 < ν < 1/2, n1/2 (m̃−m0)
d→N (0, Σm),

where Σm =
∫ τ
0 Σ−1(u)du/τ2 can be consistently estimated by

Σ̂m =

∫ τ−h

h

I−1(β̃(u), u)du

(τ − 2h)2
.

The proof of Lemma 1 follows Cai and Sun (2003) and the proof of Lemma

2 follows steps given in Section 5 of Tian, Zucker, and Wei (2005).

3.2. Asymptotic properties of KGNG estimators

Let λ01 and λ02 denote the true values of λ1 and λ2, respectively, and

partition them as: λ01 = (λO
01

T

,λC
01

T

,λNC
01

T

)T and λ02 = (λO
02

T

,λC
02

T

,λNC
02

T

)T,

according to the true index sets IO, IC and INC , respectively. Then

λO
01 = 0p1 , λC

01 = 1p2 , λO
02 = 0p1 , λC

02 = 0p2 , λNC
02 = 1p3 ,
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and λNC
01,j = 0 or 1 for j ∈ INC , where λNC

01,j is the jth component of λNC
01 and

corresponds to the mean part of the jth covariate with time-varying effect. If

λNC
01,j = 0, the jth time-varying effect has zero mean effect; otherwise, it has

nonzero mean effect. As we do not distinguish between the two types of time-

varying effects, without loss of generality, we assume λNC
01 = 1p3 in our theoretical

derivations. Let λ0 = (λT

01,λ
T

02)
T. We further partition λ0 as λ

(1)
0 representing all

the ones and λ
(0)
0 representing all the zeros, where λ

(1)
0 = (λC

01
T

,λNC
01

T

,λNC
02

T

)T =

1p2+2p3 and λ
(0)
0 = (λO

01
T

,λO
02

T

,λC
02

T

)T = 02p1+p2 . In a similar manner we define

λ, λ(1), λ(0), λ̂, λ̂
(1)

and λ̂
(0)

.

Note that the KGNG estimator defined in (2.4) takes the form β̂(t) =

λ̂1 ◦ m̃ + λ̂2 ◦ β̃
∗
(t). To derive its asymptotic properties, we need to study

the asymptotic properties of m̃, β̃
∗
(t), and λ̂. In Lemmas 1 and 2, we have es-

tablished the asymptotic properties of m̃ and β̃
∗
(t). In the following, we derive

the asymptotic properties of λ̂
(1)

and λ̂
(0)

. Specifically, we establish the root-n

consistency of λ̂
(1)

in Theorem 1 and the sparsity property of λ̂
(0)

in Theorem 2.

Theorem 1. Let hn = O(n−ν) with 1/4 < ν < 1/2. Under (A1)−(A6), if

max(θ1, θ2)/
√
n is bounded, then ∥λ̂

(1)
− λ

(1)
0 ∥ = Op(n

−1/2).

Theorem 2. Let hn = O(n−ν) with 1/4 < ν < 1/2. Under (A1)−(A6), if

∥λ̂
(1)

− λ
(1)
0 ∥ = Op(n

−1/2) and h
1/2
n min (θ1, θ2) → ∞, then P (λ̂

(0)
= 0) → 1.

Combining Theorems 1 and 2, we can prove the selection consistency of the

KGNG estimator, summarized in part (a) of Theorem 3. We further establish

the asymptotic normality of the KGNG estimators for both nonzero constant

and time-varying regression coefficients in Theorem 3. With our standard par-

titioning, we write m0 = (mT

O,m
T

C ,m
T

NC)
T and β∗

0(t) = (β∗
O

T,β∗
C

T,β∗
NC

T(t))T,

and partition β̂(t), β̃(t), m̃, and β̃
∗
(t) accordingly.

Theorem 3. Let hn = O(n−ν) with 1/4 < ν < 1/2. Under (A1)-(A6), if

max(θ1, θ2)/
√
n is bounded and h

1/2
n min (θ1, θ2) → ∞, then

(a) (Selection consistency) with probability tending to one, ÎO = IO, ÎC = IC
and ÎNC = INC ;

(b) (Root-n consistency of β̂C) β̂C is a root-n consistent estimator for βC .

(c) (Asymptotic normality of β̂C) If we further assume max(θ1, θ2)/
√
n → 0,

(n)1/2
(
β̂C − βC

)
d→N

{
0, ΣF

m

}
,

where

ΣF
m =

∫ τ

0

(
D(u) +

1

τ
B10Σ

−1(u)

)
Σ(u)

(
D(u) +

1

τ
B10Σ

−1(u)

)
T

du. (3.1)
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Here D(u) is a p2 × p matrix given in (S3.8) in the Supplement and B10 =

(0p2×p1 |Ip2 |0p2×p3).

(d) (Asymptotic normality of β̂NC(t))

(nhn)
1/2
(
β̂NC(t)− βNC(t)

)
d→N

{
0, {Σ−1(t)}NC,NC

∫ 1

−1
K2(s)ds

}
,

where {Σ−1(t)}NC,NC is the submatrix of Σ−1(t) corresponding to INC .

The asymptotic variance-covariance matrices given in parts (c) and (d) can

be consistently estimated by the usual plug-in method. We note that the limiting

distribution of the KGNG estimator for the time-varying coefficients given in

part (d) is the same as that of the corresponding initial estimator. Actually in

the proof of part (d), we show that the difference between β̂NC(t) and β̃NC(t)

is uniformly asymptotically negligible in t. Thus we can construct confidence

bands of β̂NC(t) using the resampling technique proposed in Tian, Zucker, and

Wei (2005).

3.3. Asymptotic properties of KGNG2 estimator

Let Z = (ZT

O,Z
T

C ,Z
T

NC)
T and Z = (ZT

C ,Z
T

NC)
T be the subvector of Z

with only important covariates kept. Let β
0
(t) = (βT

C(t),β
T

NC(t))
T, α(t|Z) =

α0(t)e
β

0
(t)TZ

, P (t|Z) = P (Y ≥ t|Z = z), Q
0
(t) = E[P (t|Z)α(t|Z)], Q

1
(t) =

E[P (t|Z)α(t|Z)Z], and Q
2
(t) = E[P (t|Z)α(t|Z)Z⊗2]. Define Σ(t) = Q

2
(t) −

Q
1
(t)Q

1
(t)T/Q

0
(t). We add “*” to distinguish the KGNG2 estimator from the

KGNG estimator. We summarize the asymptotic properties of KGNG2 estimator

in Theorem 4.

Theorem 4. Let hn = O(n−ν) with 1/4 < ν < 1/2. Under (A1)−(A6), if θ∗/
√
n

is bounded, h
1/2
n θ∗ → ∞, max(θ1, θ2)/

√
n is bounded, and h

1/2
n min (θ1, θ2) → ∞,

then

(a) (Selection consistency of preliminary Step 0) with probability tending

to one, λ̂∗
k = 0, for k ∈ IO and λ̂∗

k ̸= 0, for k ∈ IC
∪

INC ;

(b) (Selection consistency) with probability tending to one, Î∗O = IO, Î
∗
C = IC

and Î∗NC = INC ;

(c) (Root-n consistency of β̂
∗
C) β̂

∗
C(t) is a root-n consistent estimator for βC ;

(d) (Asymptotic normality of β̂
∗
C) if we further assume max(θ1, θ2)/

√
n → 0,

(n)1/2
(
β̂
∗
C − βC

)
d→N

{
0, ΣF

m

}
,

where ΣF
m can be computed following (3.1) with some obvious changes;
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(e) (Asymptotic normality of β̂
∗
NC(t))

(nhn)
1/2
(
β̂
∗
NC(t)− βNC(t)

)
d→N

{
0, {Σ−1(t)}NC,NC

∫ 1

−1
K2(s)ds

}
,

where {Σ−1(t)}NC,NC is the submatrix of Σ−1(t) corresponding to INC .

The proof of Theorem 4 is similar to that of Theorem 3 and is omitted.

Based on Theorem 3 and 4, β̂
∗
NC(t) is strictly more efficient than β̂NC(t) if IO is

not empty. However, there is no clear order between the efficiencies of β̂
∗
C and

β̂C .

4. Numerical Studies

4.1. Simulation studies

We generated failure times from the varying-coefficient Cox model (2.1).

The covariate vector Z was generated from a multivariate normal with mean 0,

variance 0.5 and correlation coefficient 0.5|j−k| for any pair (j, k). We considered

both the low-dimensional and the high-dimensional cases, with p = 10 and 50.

There are three nonzero coefficients in β0(t): β02(t) = −{1 + cos(πt)}1(0 < t <

1), β03(t) = 1.5{cos(πt/2)}, and β08(t) = −1. Thus two covariates with time-

varying effects, one with constant effect, and all others with null effect. The

baseline hazard function α0(t) = exp{− cos(πt/2)}. We considered cases with

censoring times dependent and independent of the covariates. When p = 10, the

censoring times of ith subject were mixtures of W and a point mass at 2, where

W = min(exp(Zi2−Zi5), Unif(0, 2)). When p = 50, we generated censoring times

from a mixture of Unif(0, 2)) and a point mass at 2. In both cases the mixing

probability was chosen to have the censoring proportion cp = 20% or 40%. For

each scenario, we conducted 100 simulation runs with sample size n = 200 and

400. We compared the proposed KGNG and KGNG2 with the AGLASSO of

Yan and Huang (2012). For our estimators, we used the Epanechnikov kernel

K(x) = 3(1 − x2)/4, −1 ≤ x ≤ 1. The bandwidth h was chosen using 5-fold

cross validation as discussed in Section 2.3. For KGNG2, the same bandwidth

was used for Step 1 as for Step 0. We used the proposed BIC criterion in Section

2.3 to tune (θ1, θ2) and θ∗. In addition, we compared the proposed methods

with a conventional method based on the confidence bands, denoted as the CB

method. Specifically, in the CB method, we first constructed confidence bands

based on the initial estimates of time-varying coefficients as done in Tian, Zucker,

and Wei (2005). When the zero-line was contained in the estimated confidence

band, we classified the corresponding covariate as a null-effect covariate. If a

constant-line but not the zero-line, was contained in the estimated confidence
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Table 1. Variable selection and estimation results for p = 10. MSE stands
for mean-squared error. Standard deviations of the Monte Carlo estimates
are given in parentheses.

n cp method Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 MSE (SD)
200 20 KGNG 7 100 99 9 5 10 10 100 11 7 0.180 (0.107)

KGNG2 3 100 100 4 2 5 4 100 6 1 0.172 (0.126)
AGLASSO 6 100 73 5 2 2 8 100 5 4 0.444 (0.103)
CB 0 87 92 1 0 0 0 88 1 1

400 20 KGNG 1 100 100 4 2 3 6 100 4 3 0.114 (0.053)
KGNG2 0 100 100 0 1 0 1 100 4 0 0.114 (0.054)
AGLASSO 0 100 100 2 2 0 1 100 2 0 0.268 (0.055)
CB 3 100 100 1 1 0 5 100 2 0

200 40 KGNG 10 100 98 14 10 9 11 100 14 5 0.244 (0.151)
KGNG2 7 100 100 7 5 3 5 100 11 3 0.227 (0.176)
AGLASSO 7 100 82 9 4 4 6 100 6 1 0.492 (0.122)
CB 0 33 26 0 0 0 0 29 0 0

400 40 KGNG 5 100 100 3 3 4 4 100 7 2 0.117 (0.080)
KGNG2 2 100 100 1 1 0 1 100 3 1 0.110 (0.126)
AGLASSO 1 100 100 2 0 0 3 100 5 1 0.303 (0.096)
CB 0 100 98 0 0 0 2 98 1 0

band, we classified the corresponding covariate as a constant-effect covariate.

If these conditions did not hold, we classified the corresponding covariate as a

time-varying-effect covariate.

Tables 1 and 2 summarize the mean squared errors and variable selection

results for p = 10 and 50, respectively. The selection frequency of each variable

over 100 runs is reported, where the important covariates are Z2, Z3, and Z8.

The mean squared error (MSE) was calculated as

1

100

100∑
i=1

{
β̂(ti)− β0(ti)

}
T

V
{
β̂(ti)− β0(ti)

}
,

where {t1, . . . , t100} are 100 equally-spaced grid points in the time interval (0, 2)

and V is the population covariance matrix of covariates.

From Tables 1 and 2, we make the following observations. First, KGNG2

shows the best performance in terms of variable selection and MSE in almost all

scenarios, especially for the high-dimension case. This is expected since KGNG2

is a two-stage approach, first excluding the noise variables. KGNG and KGNG2

outperform AGLASSO with deduction in MSE as large as 60%, and they select

Z2, Z3, and Z8 as important covariates nearly all the times while AGLASSO

misses Z3 occasionally, especially when the sample size is small. When p = 10,

the CB method overall has comparable performance as the proposed methods

except for n = 200 and cp = 40%, where the CB method misses the important
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Table 2. Variable selection and estimation results for p = 50. MSE stands
for mean-squared error. Standard deviations of the Monte Carlo estimates
are given in parentheses.

n cp Method Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 − Z50 MSE (SD)
200 20 KGNG 5 100 100 3 3 3 1 100 3 3 2.9 0.297 (0.095)

KGNG2 3 99 87 3 3 3 3 100 3 2 2.4 0.291 (0.130)
AGLASSO 10 100 79 4 5 3 7 100 7 2 3.3 0.425 (0.099)
CB 0 0 0 0 0 0 0 0 0 0 0.0

400 20 KGNG 1 100 100 2 1 2 0 100 3 2 2.4 0.168 (0.056)
KGNG2 0 100 100 2 0 1 0 100 1 0 0.6 0.134 (0.053)
AGLASSO 3 100 100 2 1 1 4 100 0 2 1.2 0.261 (0.053)
CB 0 2 0 0 0 0 0 1 0 0 0.0

200 40 KGNG 2 97 92 3 5 4 2 100 5 3 3.9 0.403 (0.147)
KGNG2 2 98 87 4 3 2 2 100 5 1 2.0 0.367 (0.222)
AGLASSO 12 100 91 12 11 6 10 100 11 9 6.2 0.494 (0.137)
CB 0 0 0 0 0 0 0 2 0 1 0.0

400 40 KGNG 0 100 100 4 0 1 2 100 2 5 2.1 0.195 (0.058)
KGNG2 0 100 100 1 0 0 1 100 1 0 1.3 0.181 (0.076)
AGLASSO 5 100 100 4 1 2 3 100 6 2 4.3 0.292 (0.079)
CB 0 0 0 0 0 0 0 0 0 0 0.0

covariates frequently over simulations. When p = 50, the performance of the CB
method is very bad since it cannot identify any important covariates in almost
all simulations.

Table 3 summarizes the structure selection result of the three covariates with
nonzero effect. We report the frequencies of each covariate being classified into
the categories IO, IC and INC . In summary, the proposed KGNG and KGNG2
outperform AGLASSO for all covariates, exhibiting the most significant improve-
ment for Z2. The AGLASSO tends to falsely select the time-varying-effect Z2 as
a constant-effect covariate. For example, when p = 10, n = 200, and cp = 20%,
AGLASSO correctly classifies Z2 only 34 times out of 100, while KGNG and
KGNG2 classify Z2 correctly more than 80 times. Similarly, the CB method has
very poor structure selection results when p = 50.

We plot the initial estimator, KGNG, and AGLASSO for the nonzero coeffi-
cients and their pointwise 95% confidence intervals based on 100 simulations for
p = 10. The plots for cp = 20% and cp = 40% are given in Figures 1 and 2,
respectively. Here the performance of KGNG and AGLASSO improve substan-
tially when the sample size increases. KGNG has smaller biases in the estimation
of time-varying coefficients than does AGLASSO in all cases, while KGNG and
AGLASSO give comparable estimates for the constant coefficient. The improve-
ment of KGNG over the initial estimator for time-varying coefficients is not
obvious, but, the improvement for the constant coefficient is significant. This
agrees with our Theorem 3, parts (c) and (d).
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Table 3. Structure selection results for covariates 2, 3 and 8. Here O is for
null effect, C for constant effect, and NC for time-varying effect.

p=10 p=50

Z2 Z3 Z8 Z2 Z3 Z8

n cp method O C NC O C NC O C NC O C NC O C NC O C NC

200 20 KGNG 0 19 81 1 1 98 0 97 3 0 62 38 0 1 99 0 99 1

KGNG2 0 10 90 0 1 99 0 94 6 1 38 61 13 0 87 0 95 5

AGLASSO 0 66 34 27 2 71 0 86 14 0 56 44 21 0 79 0 92 8

CB 13 79 8 8 42 50 12 88 0 100 0 0 100 0 0 100 0 0

400 20 KGNG 0 1 99 0 0 100 0 97 3 0 1 99 0 0 100 0 97 3

KGNG2 0 1 99 0 0 100 0 91 9 0 0 100 0 0 100 0 97 3

AGLASSO 0 51 49 1 0 99 0 96 4 0 41 59 0 0 100 0 95 5

CB 0 8 92 0 0 100 0 100 0 98 2 0 100 0 0 99 1 0

200 40 KGNG 0 31 69 2 4 94 0 97 3 3 57 40 8 11 81 0 98 2

KGNG2 0 23 77 0 5 95 0 89 11 2 27 71 13 1 86 0 92 8

AGLASSO 0 75 25 18 10 72 0 84 16 0 50 50 9 9 82 0 91 9

CB 67 33 0 74 23 3 71 29 0 100 0 0 100 0 0 98 2 0

400 40 KGNG 0 0 100 0 0 100 0 97 3 0 16 84 0 0 100 0 99 1

KGNG2 0 0 100 0 0 100 0 95 5 0 5 95 0 0 100 0 98 2

AGLASSO 0 35 65 0 0 100 0 94 6 0 4 96 0 0 100 0 94 6

CB 0 55 45 2 13 85 2 98 0 100 0 0 100 0 0 100 0 0

4.2. Analysis of primary biliary cirrhosis (PBC) data

We applied our KGNG and KGNG2 methods to analyze the PBC data

(Fleming and Harrington (1991)). The data is from the Mayo Clinic trial in

primary biliary cirrhosis (PBC) of the liver conducted between 1974 and 1984.

The primary biliary cirrhosis is a chronic disease in which the bile ducts in one’s

liver are slowly destroyed. In the study, 312 out of 424 patients who partici-

pated in the randomized trial were eligible for the analysis. There are 17 co-

variates: trtmt=treatment (Yes/No), age (in 10 years), gender=female/male, as-

cites=presence of ascites (Yes/No), hypato=presence of hepatomegaly (Yes/No),

spiders=presence of spiders, edema=severity of oedema (0 denotes no oedema,

0.5 denotes untreated or successfully treated oedema and 1 denotes unsuccess-

fully treated oedema), logbili=logarithm of serum bilirubin (mg/dl), chol=serum

cholesterol (mg/dl), logalb=logarithm of albumin (gm/dl), copper=urine cop-

per (mg/day), alk=alkaline phosphatase (U/liter), sgot=liver enzyme (U/ml),

trig=triglicerides (mg/dl), platelet=platelets per 10−3 ml3, logprotime=logarithm

of prothrombin time (seconds), stage=histologic stage of disease (category: 1, 2,

3 or 4).

Model selection here has been previously studied in the context of the Cox

model with time-independent coefficients (Tibshirani (1997); Zhang and Lu (2007))

and Cox model with time-varying coefficients (Tian, Zucker, and Wei (2005); Yan

and Huang (2012)). To ease the comparison, we analyzed the data of 276 patients
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(a) n = 200. Upper: Initial estimate. Middle: KGNG. Lower: AGLASSO.

(b) n = 400. Upper: Initial estimate. Middle: KGNG. Lower: AGLASSO.
Figure 1. Estimated curves (gray) of the three nonzero coefficients from 100
replicates when cp = 20% and p = 10. The dark lines are the true curves.
The dashed lines are the average of 100 estimates. The dotted lines are the
simulation-based pointwise 95% confidence intervals.

with no missingness in covariates and took log transformation of serum bilirubin,

albumin, and prothrombin time, as did Yan and Huang (2012). We used 10-fold
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(a) n = 200. Upper: Initial estimate. Middle: KGNG. Lower: AGLASSO.

(b) n = 400. Upper: Initial estimate. Middle: KGNG. Lower: AGLASSO.
Figure 2. Estimated curves (gray) of the three nonzero coefficients from 100
replicates when cp = 40% and p = 10. The dark lines are the true curves.
The dashed lines are the average of 100 estimates. The dotted lines are the
simulation-based pointwise 95% confidence intervals.

cross validation to find the optimal bandwidth in the initial estimator, 2,000

(days). We chose τ = 3,200, which covers around 90% of the observed survival
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Table 4. Analysis results for PBC data. TV stands for time-varying coeffi-
cients.

Covariate MPLE ALASSO AGLASSO KGNG KGNG2
trtmt -0.062 (0.211)
age 0.261 (0.113) 0.270 (0.124) 0.263 (0.126) 0.211 (0.111) 0.253 (0.113)
gender -0.256 (0.317)
ascites 0.162 (0.381)
hypato -0.100 (0.254)
spiders 0.049 (0.243)
edema 0.926 (0.378) 0.842 (0.410) 0.932 (0.443) TV TV
logbili 0.723 (0.162) 0.699 (0.115) TV 0.716 (0.096) 0.718 (0.116)
chol 0.000 (0.000)
logalb -2.270 (0.947) -2.538 (0.762) -2.440(0.789) -2.173 (0.934) -2.294 (1.183)
copper 1.694 (1.251) 2.218 (1.236) 2.089(1.261) TV 1.379 (1.419)
alk 0.000 (0.000)
sgot 0.003 (0.002)
trig -0.002 (0.001)
platelet 0.001 (0.001)
logprotime 2.335 (1.321) 2.099 (1.241) 1.822 (1.249) TV TV
stage 0.381 (0.176) 0.274 (0.140) 0.278 (0.143) 0.244 (0.110) 0.218 (0.130)

times. Table 4 gives the estimates of coefficients by five methods: the maximum

partial likelihood estimator (MPLE), the adaptive LASSO (ALASSO) estimator

of Zhang and Lu (2007) based on a standard Cox model, the AGLASSO, and

KGNG and KGNG2 based on a time-varying coefficient Cox model. The num-

bers given in parenthesis are the estimated standard errors for important constant

coefficients selected by each method. The results for ALASSO and AGLASSO

are copied directly from Yan and Huang (2012). Here ALASSO, AGLASSO,

KGNG, and KGNG2 all select the same seven important covariates: age, cooper,

edema, logbili, logalb, logprotime, and stage. KGNG identifies three covariates

with time-varying coefficients and KGNG2 identifies two, in which edema and

logprotime are the common covariates. On the other hand, AGLASSO only se-

lects logbilli as the covariate with time-varying coefficient. These results partly

agree with the findings of Tian, Zucker, and Wei (2005), where only 5 covariates

age, edema, logbili, logalb and logprotime were considered in their time-varying

coefficient Cox model, and three covariates edema, logprotime and logbili were

identified as having time-varying coefficients. In Figures 3−4, we plotted the es-

timated coefficients by the initial step (maximum local partial likelihood estima-

tor), KGNG, and KGNG2 for the seven important covariates and their associated

95% pointwise confidence intervals and simultaneous confidence bands.
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Figure 3. Estimated coefficients for covariates: edema, copper, and logpro-
time. Left panel: initial estimator in KGNG; Middle panel: KGNG; Right
panel: KGNG2. Solid lines: estimated curves; Dashed lines: 95% pointwise
confidence intervals; Dotted lines: 95% simultaneous confidence bands.

5. Discussion

We propose a kernel group nonnegative garrote (KGNG) estimation method

and its variant (KGNG2) for automatic structure selection and coefficient estima-

tion in a time-varying coefficient Cox model. We establish the asymptotic prop-

erties, including structure selection consistency and asymptotic distributions, of

our estimators for both constant and time-varying coefficients. Numerical stud-

ies have shown the competitive performance of the proposed methods compared

with existing approaches.

We have focused on the case with fixed dimension p, with p smaller than n.

For the p > n case, a penalty term needs to be added to (2.2) to get reasonable

initial estimates of the coefficient functions. Then Step 2 and 3 can follow, as

proposed in this paper. If p ≫ n, a screening procedure can be utilized to

remove the noisy covariates beforehand. Then the dimension of the model can

be decreased to a value that can be handled directly. However, a screening
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Figure 4. Estimated coefficients for covariates: age, logbili, logalb and stage.
Left panel: initial estimator in KGNG; Middle panel: KGNG; Right panel:
KGNG2. Solid lines: estimated curves; Dashed lines: 95% pointwise confi-
dence intervals; Dotted lines: 95% simultaneous confidence bands.

procedure for the time-varying coefficient Cox model has yet to be developed;

this needs further investigation.

Since the proposed procedure depends on a large number of tuning param-

eters, it is worthwhile to develop a statistical test to check the goodness-of-fit

of the final estimated model. We think that a cumulative sums of martingale

residuals-based goodness-of-fit test can be derived for the final estimated model,

following the techniques of Lin, Wei, and Ying (1993). A similar goodness-of-fit
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test procedure was developed for the Dantzig selector in Cox’s proportional haz-

ards model (Antoniadis, Fryzlewicz, and Letué (2010)). This is an interesting

topic that needs further investigation.

Another interesting problem, as suggested by a referee, is to extend the pro-

posed methods a procedure that estimates the coefficients as zero on parts of

the time domain, and as nonzero (and time-varying) on the remaining parts.

A simple solution would be to chop the coefficient functions evenly into small

pieces on the study time domain and then apply the group nonnegative garrote

penalty to identify the significant pieces. However, when there are a large num-

ber of covariates, this approach is computationally challenging. The proposed

KGNG/KGNG2 methods for structure selection can be regarded as a preliminary

step for domain selection since they can help to remove all the covariates with

null or constant effects and thus achieve effective dimension reduction. Then, the

domain selection can focus only on the selected covariates with truly time-varying

coefficients. This is an extension that warrants future research.

Supplementary Materials

The online supplementary materials contain the proofs of Theorem 1, 2, and

3 in the main paper.
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