KERNEL ADDITIVE SLICED INVERSE REGRESSION

Heng Lian and Qin Wang
University of New South Wales and Virginia Commonwealth University

Supplementary Material

S1 Proof of the main theorem.

In the proofs, C denotes a generic positive constant. We first note that $E_{X^{*}}\left[\left(\hat{f}\left(X^{*}\right)-f\left(X^{*}\right)\right)^{2}\right]=$ $\left\|\Sigma^{1 / 2}(\hat{f}-f)\right\|_{\mathcal{H}}^{2}$. From (2.3), $\Sigma^{1 / 2} \hat{f}$ satisfies the eigenvalue equation

$$
\Sigma^{1 / 2}\left(\Sigma_{n}+s I\right)^{-1} \Gamma_{n} \Sigma^{-1 / 2}\left(\Sigma^{1 / 2} \hat{f}\right)=\lambda \Sigma^{1 / 2} \hat{f}
$$

Similarly, $\Sigma^{1 / 2} f$ satisfies the eigenvalue equation

$$
\Sigma^{1 / 2} \Sigma^{-1} \Gamma \Sigma^{-1 / 2}\left(\Sigma^{1 / 2} f\right)=\lambda \Sigma^{1 / 2} f
$$

Using the perturbation theory for operators, for example as in Chapter 4 of Kato (1995), we only need to show that $\left\|\Sigma^{1 / 2}\left(\Sigma_{n}+s I\right)^{-1} \Gamma_{n} \Sigma^{-1 / 2}-\Sigma^{1 / 2} \Sigma^{-1} \Gamma \Sigma^{-1 / 2}\right\|^{2}=O_{p}\left(c_{n} n^{-d /(d+1)}\right)$, where $\|A\|$ denotes the operator norm for an operator A defined on \mathcal{H}_{K}.

We write

$$
\begin{align*}
& \left\|\Sigma^{1 / 2}\left(\Sigma_{n}+s I\right)^{-1} \Gamma_{n} \Sigma^{-1 / 2}-\Sigma^{1 / 2} \Sigma^{-1} \Gamma \Sigma^{-1 / 2}\right\| \\
= & \left\|\Sigma^{1 / 2}\left(\left(\Sigma_{n}+s I\right)^{-1} \Gamma_{n}-(\Sigma+s I)^{-1} \Gamma+(\Sigma+s I)^{-1} \Gamma-\Sigma^{-1} \Gamma\right) \Sigma^{-1 / 2}\right\| \\
= & \| \Sigma^{1 / 2}\left((\Sigma+s I)^{-1}\left(\Gamma_{n}-\Gamma\right)+(\Sigma+s I)^{-1}\left(\Sigma-\Sigma_{n}\right)\left(\Sigma_{n}+s I\right)^{-1} \Gamma_{n}\right. \\
& \left.\quad+(\Sigma+s I)^{-1} \Gamma-\Sigma^{-1} \Gamma\right) \Sigma^{-1 / 2} \| \\
\leq & \left\|\Sigma^{1 / 2}(\Sigma+s I)^{-1}\left(\Gamma_{n}-\Gamma\right) \Sigma^{-1 / 2}\right\|+\left\|\Sigma^{1 / 2}(\Sigma+s I)^{-1}\left(\Sigma-\Sigma_{n}\right)\left(\Sigma_{n}+s I\right)^{-1} \Gamma_{n} \Sigma^{-1 / 2}\right\| \\
& \quad+\left\|\Sigma^{1 / 2}\left((\Sigma+s I)^{-1} \Gamma-\Sigma^{-1} \Gamma\right) \Sigma^{-1 / 2}\right\| \\
= & (I)+(I I)+(I I I) . \tag{S1.1}
\end{align*}
$$

To simplify the proofs and notations a little bit, we assume $\overline{K(., X)}=0$ in the following, since using $\|\overline{K(., X)}\|_{\mathcal{H}}=O_{p}\left(n^{-1 / 2}\right)$, such terms does not lead to extra difficulties in the proof. By the same reason, we also replace \hat{p}_{h} by $p_{h}=P\left(Y=y_{h}\right)$ in the following expression of Γ_{n}. Obviously we can rewrite Γ_{n} and Γ as

$$
\begin{align*}
\Gamma_{n} & =\sum_{h=1}^{H} \frac{1}{p_{h}}\left(\frac{1}{n} \sum_{i=1}^{n} K\left(., X_{i}\right) I\left\{Y_{i}=y_{h}\right\}\right) \otimes\left(\frac{1}{n} \sum_{i=1}^{n} K\left(., X_{i}\right) I\left\{Y_{i}=y_{h}\right\}\right) \\
\Gamma & =\sum_{h=1}^{H} \frac{1}{p_{h}} E\left[\left(K(., X) I\left\{Y=y_{h}\right\}\right)\right] \otimes E\left[K(., X) I\left\{Y=y_{h}\right\}\right] . \tag{S1.2}
\end{align*}
$$

The term (III) is easy to deal with as follows. Using

$$
\begin{aligned}
& \left\|\Sigma^{1 / 2}\left((\Sigma+s I)^{-1}-\Sigma^{-1}\right)\left(E\left[K(., X) I\left\{Y=y_{h}\right\}\right] \otimes E\left[K(., X) I\left\{Y=y_{h}\right\}\right]\right) \Sigma^{-1 / 2}\right\|^{2} \\
= & \left\|s \Sigma^{1 / 2}(\Sigma+s I)^{-1}\left(\Sigma^{-1} E\left[K(., X) I\left\{Y=y_{h}\right\}\right]\right) \otimes\left(\Sigma^{-1 / 2} E\left[K(., X) I\left\{Y=y_{h}\right\}\right]\right)\right\|^{2} \\
= & O\left(\left\|s \Sigma^{1 / 2}(\Sigma+s I)^{-1}\right\|^{2}\right) \\
= & O(s),
\end{aligned}
$$

we have $(I I I)^{2}=O(s)$.
For the term (II), writing $\Sigma(x)=K(., x) \otimes K(., x)$ and using that

$$
\begin{aligned}
& E\left\|\Sigma^{1 / 2}(\Sigma+s I)^{-1} \Sigma(x)\right\|_{H S}^{2} \\
= & E \operatorname{tr}\left(\Sigma(x)^{2}(\Sigma+s I)^{-1} \Sigma(\Sigma+s I)^{-1}\right) \\
\leq & C E \operatorname{tr}\left(\Sigma(x)(\Sigma+s I)^{-1} \Sigma(\Sigma+s I)^{-1}\right) \\
= & C \operatorname{tr}\left(\Sigma(\Sigma+s I)^{-1} \Sigma(\Sigma+s I)^{-1}\right) \\
= & C \sum_{j} \frac{\lambda_{j}^{2}}{\left(\lambda_{j}+s\right)^{2}},
\end{aligned}
$$

where $\|\cdot\|_{H S}$ is the Hilbert-Schmidt norm. In the inequality above we used that $\|\Sigma(x) f\|_{\mathcal{H}}=$ $\|K(., x) f(x)\|_{\mathcal{H}}=\sqrt{f^{2}(x) K(x, x)} \leq C\|f\|_{\infty} \leq C\|f\|_{\mathcal{H}}$ and thus $\|\Sigma(x)\| \leq C$, and the inequality $\operatorname{tr}(A B) \leq\|A\| \operatorname{tr}(B)$.

Thus using the Markov inequality, we have

$$
\begin{aligned}
& (I I)^{2} \\
\leq & \left\|\Sigma^{1 / 2}(\Sigma+s I)^{-1}\left(\Sigma-\Sigma_{n}\right)\right\|^{2} \cdot\left\|\left(\Sigma_{n}+s I\right)^{-1} \Gamma_{n} \Sigma^{-1 / 2}\right\|^{2} \\
= & O_{p}\left(\sum_{j} \frac{\lambda_{j}^{2}}{n\left(\lambda_{j}+s\right)^{2}}\right)\left\|\left(\Sigma_{n}+s I\right)^{-1} \Gamma_{n} \Sigma^{-1 / 2}\right\|^{2} .
\end{aligned}
$$

We will argue later that actually $\left\|\left(\Sigma_{n}+s I\right)^{-1} \Gamma_{n} \Sigma^{-1 / 2}\right\|^{2}=O_{p}(1)$.
The term (I) is more complicated. Let $\Gamma_{n h}$ and Γ_{h} be the terms on the right hand side of the sums in S1.2 such that $\Gamma_{n}=\sum_{h} p_{h}^{-1} \Gamma_{n h}, \Gamma=\sum_{h} p_{h}^{-1} \Gamma_{h}$. To bridge $\Gamma_{n h}$ and Γ_{h}, we further define

$$
\Gamma_{n h}^{\prime}=\left(\frac{1}{n} \sum_{i=1}^{n} K\left(., X_{i}\right) I\left\{Y_{i}=y_{h}\right\}\right) \otimes E\left[K(., X) I\left\{Y=y_{h}\right\}\right] .
$$

Since

$$
\begin{aligned}
& E \| \Sigma^{1 / 2}(\Sigma+s I)^{-1}\left(K(., X) I\left\{Y=y_{h}\right\}-E\left[K(., X) I\left\{Y=y_{h}\right\}\right]\right) \\
& \otimes\left(\Sigma^{-1 / 2} E\left[K(., X) I\left\{Y=y_{h}\right\}\right]\right) \|_{H S}^{2} \\
\leq & C E\left\|\Sigma^{1 / 2}(\Sigma+s I)^{-1}\left(K(., X) I\left\{Y=y_{h}\right\}-E\left[K(., X) I\left\{Y=y_{h}\right\}\right]\right)\right\|_{\mathcal{H}}^{2} \\
\leq & C E\left\|\Sigma^{1 / 2}(\Sigma+s I)^{-1} K(., X) I\left\{Y=y_{h}\right\}\right\|_{\mathcal{H}}^{2} \\
= & C E\left[I\left\{Y=y_{j}\right\}\left\langle\Sigma(\Sigma+s I)^{-2} K(., X), K(., X)\right\rangle_{\mathcal{H}}^{2}\right] \\
= & C E\left[I\left\{Y=y_{j}\right\} \operatorname{tr}\left(\Sigma(\Sigma+s I)^{-2} \Sigma(X)\right)\right] \\
= & C E\left[\operatorname{tr}\left(\Sigma(\Sigma+s I)^{-2} \Sigma(X)\right) E\left[I\left\{Y=y_{j}\right\} \mid X\right]\right] \\
\leq & C \operatorname{tr}\left(\Sigma^{2}(\Sigma+s I)^{-2}\right) \\
= & C \sum_{j} \frac{\lambda_{j}^{2}}{\left(\lambda_{j}+s\right)^{2}},
\end{aligned}
$$

by Markov inequality,

$$
\left\|\Sigma^{1 / 2}(\Sigma+s I)^{-1}\left(\Gamma_{n h}^{\prime}-\Gamma_{h}\right) \Sigma^{-1 / 2}\right\|^{2}=O_{p}\left(\sum_{j} \frac{\lambda_{j}^{2}}{n\left(\lambda_{j}+s\right)^{2}}\right) .
$$

Similarly one can show

$$
\left\|\Sigma^{1 / 2}(\Sigma+s I)^{-1}\left(\Gamma_{n}-\Gamma_{n h}^{\prime}\right) \Sigma^{-1 / 2}\right\|^{2}=O_{p}\left(\sum_{j} \frac{\lambda_{j}^{2}}{n\left(\lambda_{j}+s\right)^{2}}\right) .
$$

These imply that

$$
(I I)^{2}=O_{p}\left(\sum_{j} \frac{\lambda_{j}^{2}}{n\left(\lambda_{j}+s\right)^{2}}\right) .
$$

Once we have shown $\left\|\left(\Sigma_{n}+s I\right)^{-1} \Gamma_{n} \Sigma^{-1 / 2}\right\|=O_{p}(1)$, the bounds given above will combine to obtain that S1.1 is bounded by $O_{p}\left(s+\sum_{j} \frac{\lambda_{j}^{2}}{n\left(\lambda_{j}+s\right)^{2}}\right)$ and direct calculations by plugging in $\lambda_{j} \asymp j^{-d}$ and $s=c_{n} n^{-d /(d+1)}$ shows that this is $O_{p}\left(c_{n} n^{-d /(d+1)}\right)$.

What is left is to show $\left\|\left(\Sigma_{n}+s I\right)^{-1} \Gamma_{n} \Sigma^{-1 / 2}\right\|=O_{p}(1)$, which is equivalent to showing $\left\|\left(\Sigma_{n}+s I\right)^{-1} \Gamma_{n} \Sigma^{-1 / 2}-\Sigma^{-1} \Gamma \Sigma^{-1 / 2}\right\|=O_{p}(1)$. Note this equation is actually similar to S1.1. Following similar lines that are used to upper bound the terms (I)-(III) in S1.1, we will get

$$
\begin{aligned}
& \left\|\left(\Sigma_{n}+s I\right)^{-1} \Gamma_{n} \Sigma^{-1 / 2}-\Sigma^{-1} \Gamma \Sigma^{-1 / 2}\right\|^{2} \\
= & O_{p}\left(\sum_{j} \frac{\lambda_{j}}{n\left(\lambda_{j}+s\right)^{2}}\right)\left\|\left(\Sigma_{n}+s I\right)^{-1} \Gamma_{n} \Sigma^{-1 / 2}\right\|^{2}+O_{p}\left(1+\sum_{j} \frac{\lambda_{j}}{n\left(\lambda_{j}+s\right)^{2}}\right) .
\end{aligned}
$$

When $s=c_{n} n^{-d /(d+1)}$ with $c_{n} \rightarrow \infty$, by direct calculations we have $\sum_{j} \frac{\lambda_{j}}{n\left(\lambda_{j}+s\right)^{2}}=o(1)$ and thus the above displayed equation implies $\left\|\left(\Sigma_{n}+s I\right)^{-1} \Gamma_{n} \Sigma^{-1 / 2}\right\|=O_{p}(1)$.

