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Abstract: In recent years, nonlinear sufficient dimension reduction (SDR) methods

have gained increasing popularity. While there is a large literature on semipara-

metric models in regression, parsimonious structured nonlinear SDR has attracted

little attention so far. In this paper, extending kernel sliced inverse regression,

we study additive models in the context of SDR and demonstrate its potential

usefulness due to its flexibility and parsimony. We clarify the improved conver-

gence rate using additive structure due to the faster rate of decay of the kernel’s

eigenvalues. Additive structure also opens the possibility of nonparametric variable

selection. This sparsification of the kernel, however, does not introduce additional

tuning parameters, in contrast with sparse regression. Simulations and data sets

are presented to illustrate the benefits and limitations of the approach.

Key words and phrases: Kernel method, nonlinear dimension reduction, sliced in-

verse regression, variable selection.

1. Introduction

In the classical theory of linear sufficient dimension reduction, with a p-

dimensional predictor X and a univariate response Y as in the regression setting,

we say the subspace spanned by a p × d matrix B with d ≤ p is a sufficient

dimension reduction space if Y⊥X|BTX, where ⊥ denotes independence. Thus,

BTX summarizes the information in the predictors relevant to predicting Y .

Under mild assumptions, the intersection of all SDR spaces is itself an SDR

space, termed the central subspace (Cook (1994, 1996, 1998); Yin, Li, and Cook

(2008)).

Under some mild assumptions including the linear design condition, sliced

inverse regression (SIR) extracts directions in the central subspace by the eigen-

vectors of the matrix

Cov(X)−1Cov(E[X|Y ]), (1.1)

which can be easily estimated by slicing the range of Y given a sample and hence,

the name of SIR (Li (1991)). Wu (2008) and Yeh, Huang, and Lee (2009) ex-

tended standard SIR to nonlinear dimension reduction via the kernel method.

The kernel method is popular in machine learning that maps predictors into a

typically infinite-dimensional space and performs linear operations in this new
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feature space that correspond to nonlinear operations when mapped back to the

original space. This can be formulated via the theory of reproducing kernel

Hilbert spaces (RKHS), a familiar topic in the statistical literature. Fukumizu,

Bach, and Jordan (2004, 2009) and Fukumizu and Leng (2014) proposed the use

of a cross-covariance operator on RKHS to characterize the conditional indepen-

dence Y⊥X|BTX so as to achieve linear dimension reduction.

As with all other fully nonparametric approaches, the kernel method suf-

fers from low convergence rate when p is sufficiently large. In regression, semi-

parametric models such as those with additive structures have a long history in

statistics (Stone (1985); Liang et al. (2008); Xue (2009); Wang et al. (2011);

Ma (2012)). Such efforts are not present in nonlinear SDR. Commonly used

product/tensor kernels in multi-dimensional setting try to incorporate all-way

interactions, infeasible and uninteresting, and using such kernels is sub-optimal

when additive structures are present.

In Section 2, we show that additive structures in kernel SIR can be eas-

ily realized by using the additive kernel instead of the product/tensor kernel.

Establishing theoretical advantages for doing so is nontrivial. We establish the

convergence rate for kernel SIR (KSIR) and clarify that the faster convergence

rate in kernel additive SIR (KASIR) is related to the faster rate of decay in

the eigenvalues of the additive kernel operator. In the special case that the

RKHS is the periodic Sobolev space and that the true dimension reduction di-

rections have an additive structure, the convergence rate is n−2m/(2m+1) where m

is the smoothness parameter of the Sobolev space, the well-known optimal rate

in regression (for fixed dimension asymptotics). Unlike nonparametric regres-

sion, kernel SIR requires no optimization procedure. In Section 3, we propose a

method to sparsify the additive kernel that corresponds to sparse additive mod-

els in regression for nonparametric variable selection. However, the optimization

problem in sparse kernel additive SIR (SKASIR) turns out to be much harder

and thus we only investigate the case of p relatively small (up to about 20) com-

pared to sample size. Another notable practical difference from sparse additive

regression is that no extra tuning parameter is introduced in SKASIR. Section 4

contains our simulation studies as well as an application to a data set to demon-

strate the performance of KASIR and SKASIR, in comparison with KSIR and

standard linear SIR. We conclude the paper with a discussion on limitations and

future plans. The proof of the main result is contained in the supplementary

material.

2. Kernel Additive SIR using Additive Kernel

We first review some theory of RKHS and kernel sliced inverse regression

proposed in Wu (2008); Yeh, Huang, and Lee (2009); Wu, Liang, and Mukherjee
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(2013). Let L2(PX) be the space of square integrable functions with probability

measure PX on Rp. Given a kernel K(·, .), positive definite on Rp×Rp, with the

spectral decomposition

K(x, y) =

∞∑
j=1

λjϕj(x)ϕj(y), (2.1)

where λ1 ≥ λ2 ≥ · · · ≥ 0 are the eigenvalues and ϕj are the eigenfunctions

orthonormal in L2(PX), the induced RKHS is

HK =
{
f : f(x) =

∑
j

ajϕj(x), with
∑
j

a2j
λj

<∞
}
.

The inner product on HK is ⟨f, g⟩H =
∑

j ajbj/λj if f =
∑

j ajϕj and g =∑
j bjϕj . As ⟨f,K(·, x)⟩H = f(x), K is called the reproducing kernel. A popular

approach in the machine learning literature constructs the feature map Φ : x →
Φ(x) = (

√
λ1ϕ1(x),

√
λ2ϕ2(x), . . .) ∈ l2, where l2 is the the space of square-

summable sequences and thus, based on (2.1), K(x, y) is just the inner product

⟨Φ(x),Φ(y)⟩2 in l2. Using this feature map, performing standard linear SIR in

the feature space l2 corresponds to nonlinear SIR in the original space Rp. Thus,

following the SIR procedure (1.1), we can extract directions β ∈ l2 from the

eigenvalue problem

Cov(E[Φ(X)|Y ])β = µCov(Φ(X))β,

where Cov(Φ(X)) = E[(Φ(X) − E[Φ(X)]) ⊗ (Φ(X) − E[Φ(X)])], for example.

Mathematically, since ⟨K(·, x),K(·, y)⟩H = K(x, y), we can just take the feature

map to be x→ K(·, x) ∈ HK , and the eigenvalue problem becomes

Γf = µΣf, (2.2)

where Γ = Cov(E[K(·, X)|Y ]) and Σ = Cov(K(·, X)). For simplicity of notation

we assume without loss of generality that EXK(·, X) = 0, where the subscript

in the expectation indicates the variable over which the expectation is taken, for

clarity.

Given an i.i.d. sample (Xi, Yi), i = 1, . . . , n, the relevant covariance opera-

tors can be easily estimated by slicing moment estimators as in linear SIR; Σ =

Cov(K(·, X)) = EX [K(·, X)⊗K(·, X)] can be estimated by Σn=n
−1

∑
i(K(·, Xi)

−K(·, X))⊗(K(·, Xi)−K(·, X)) where K(·, X)=n−1
∑

iK(·, Xi). If EXK(X,X)

<∞, Σ has a spectral decomposition, say

Σ =
∑
j

λjψj ⊗ ψj ,



530 HENG LIAN AND QIN WANG

with λ1 ≥ λ2 ≥ · · · and ⟨ψj , ψk⟩H = δjk. With the assumption EXK(·, X) = 0,
by direct calculation Σf = EXK(·, X)f(X), and thus the eigenvalues of Σ and
K (as in (2.1)) are the same. The eigenvectors here are chosen to be orthonormal
in H instead of in L2(PX). Even without the assumption EXK(·, X) = 0, it can
be shown that eigenvalues of Σ and K decay at the same rate which does not
affect our arguments, for example in Proposition 1, which only depend on the
rate of decay of eigenvalues.

To obtain the slicing estimator of Γ = Cov(E[K(·, X)|Y ]), the range of Y is
divided into H slices and we estimate Γ by

Γn =

H∑
h=1

p̂h(Kh(·, X)−K(·, X))⊗ (Kh(·, X)−K(·, X)),

where Kh(·, X) is the average of K(·, Xi) concomitant to the Yi in the hth slice,
and p̂n = nh/n where nh is the number of observations in the hth slice. To
stabilize the eigenvalue problem, a scalar multiple of the identity operator I is
added to Σn resulting in

Γnf̂ = µ(Σn + sI)f̂ . (2.3)

To find the eigenfunction above, the representer theorem for kernel SIR al-
lows us to write f̂ =

∑n
i=1 ci(K(·, Xi) −K(·, X)) and, plugging this expression

into the above displayed equation, the eigenvalue problem can be written in terms
of c = (c1, . . . , cn) as

KJKc = µK(K+ sI)c. (2.4)

This is used for computation, where K is the centered n × n kernel matrix, J
is the n × n matrix with Jij = 1/nh if Yi and Yj are in the hth slice and zero
otherwise.

By the representer theorem, it is easy to see that if we use kernel K that has
an additive form, K(x, y) = K1(x1, y1)+ · · ·+Kp(xp, yp) for x = (x1, . . . , xp), y =
(y1, . . . , yp) and p kernels K1, . . . ,Kp, then f (as well as all functions in HK)
also has this additive form. Theoretically, we need to assume the true f , the
eigenfunction in (2.2), is in the RKHS generated by K(x, y) = K1(x1, y1)+ · · ·+
Kp(xp, yp). This is equivalent to saying that one can write f(x) = f1(x1) + · · ·+
fp(xp) and fj is in the RKHS generated by Kj .

Although it is trivial to incorporate additive structure into KSIR, it is nev-
ertheless difficult to see how this additively structured kernel induces faster con-
vergence rates. Wu, Liang, and Mukherjee (2013) have shown the consistency
of KSIR but a meaningful convergence rate remains elusive. The main result in
this paper clarifies the role of the kernel’s eigenvalues λ1, λ2, . . . , in determining
the convergence rate. We first present the theorem for general kernels and then
discuss its implication for the faster convergence rate for additive kernels. The
following assumptions are used.
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(A) ∃C > 0 such that K(x, x) < C for all x in the range of the predictor.

(B) λj ≍ j−d for some d > 1.

(C) The operator Σ−1Γ has an eigenfunction f associated with its largest eigen-

value µ that has multiplicity one. We let f̂ be the eigenfunction of (Σn +

sI)−1Γn associated with its largest eigenvalue.

(D) The response is discrete and can take values only in {y1, . . . , yH}.
(E) If the SDR space is generated by {h1, . . . , hr} ⊂ HK , the linear E(g(x)|h1(x),

. . . , hr(x)) is linear in h1(x), . . . , hr(x) for g ∈ HK .

The assumption of uniform boundedness of K in (A) is required in our proof

to show K(·, x)⊗K(·, x) is a bounded operator for all x. When we consider the

range of x in a compact set as when we use the Sobolev kernel defined on [0, 1]

later, assumption (A) is a very mild regularity assumption, which does imply∑
j λj < ∞. Assumption (B) was used in Blanchard, Bousquet, and Massart

(2008) and Caponnetto and De Vito (2007) to establish oracle inequalities for

support vector machines classification and regression, respectively. That eigen-

values play a critical role in convergence rates is expected in regression since the

Rademacher complexity of the RKHS can be exactly characterized by these eigen-

values (Bartlett and Mendelson (2003); Koltchinskii and Yuan (2010); Raskutti,

Wainwright, and Yu (2012)). The polynomial decay assumption holds in some

special cases, see Koltchinskii and Yuan (2010). If it does not hold, we can pos-

sibly derive some rate in terms of the specific values of λ1, λ2, . . .. However, the

expression would be messy and it would be hard to see the effect of eigenvalues

on the convergence rate. Assumption (C) simply re-states the estimator and

the population counterpart for clearness. It can be shown that, under our as-

sumptions, the eigenspace of (Σn+sI)
−1Γn associated with its largest eigenvalue

also has multiplicity one with probability approaching one. For simplicity, we

only consider the first dimension reduction direction, the eigenfunction associ-

ated with the largest eigenvalue. Rates for subsequent directions can be shown

with some additional arguments. Assumption (D) is typically assumed in the SIR

literature, for example in Cook and Ni (2005) to simplify analysis, which directly

applies to classification problems and is also reasonable for regression since the

slicing estimator will in effect quantize the responses. Assumption (E) is used in

Wu (2008); Yeh, Huang, and Lee (2009); Wu, Liang, and Mukherjee (2013). (E)

implies that E[K(·, X)|Y = yh] ∈ span{Σh1, . . . ,Σhr} and, in particular, that

Σ−1Γ is a bounded operator.

Theorem 1. If (A)−(E) hold, and s = cnn
−d/(d+1) → 0 with cn → ∞, then

minc∈{−1,1}EX∗ [(cf̂(X∗)− f(X∗))2] = Op(cnn
−d/(d+1)),

where X∗ is an independent copy of X.
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The constant c is necessary here since the eigenfunction can only be identified

up to sign change. This rate is optimal in regression up to an extra arbitrarily

slowly diverging sequence cn. This may be due to our method of proof but it is

not clear to us how to improve this.

We can obtain an improved convergence rate if the kernel’s eigenvalue has a

fast decay to zero. For kernel methods, a commonly used kernel is the Gaussian

K(x, y) = exp{−a∥x − y∥2}, or the more flexible form K(x, y) = exp{−
∑p

j=1

aj(xj − yj)
2}. Another common example from smoothing splines is the Sobolov

space of order m with kernel K(s, t) =
∑m

ν=1(s − 1)ν−1(t − 1)ν−1/((ν − 1)!)2 +∫ 1
0 (s − u)m−1

+ (t − u)m−1
+ /((m − 1)!)2du; the multivariate version is constructed

by taking the product of one-dimensional kernels. For mth order Sobolev space

of periodic functions, it is known that the eigenvalues decay at the rate j−2m.

Let Hj be the RKHS induced by the one-dimensional kernel Kj . Sup-

pose ϕj1, ϕj2, . . ., are the eigenfunctions of Kj with eigenvalues λjk ≍ k−d. Let

K(p)(x, y) =
∏

j Kj(xj , yj) and K
(s)(x, y) =

∑
j Kj(xj , yj). The following simple

proposition shows that the eigenvalues of K(s) decay at the same rate as each Kj

when the coordinates are independent.

Proposition 1. Under this setup, and assuming that the p predictors are inde-

pendent, the eigenvalues of K(s)(x, y) are of order j−d.

Proof. The RKHS associated with K(s) is the space of functions of the form∑p
j=1 fj(xj) (Aronszajn (1950)) with fj ∈ Hj . Using EXfj(X) = 0, it is easy

to see that Kf = (
∑

j Kj)(
∑

j fj) =
∑

j Kjfj . Thus if f =
∑

j fj satisfies the

eigenvalue equation Kf = λf , we have Kjfj = λfj , which implies that for each

j, either fj is an eigenvector of Kj with (common) eigenvalue λ, or fj = 0.

This in turn means that the set of eigenvalues of K is a subset of {λjk} and

the multiplicity of each eigenspace is at most p. Thus the decay rate of the

eigenvalues of K is the same as that of its additive component.

In a p-dimensional space, when the function K(·, y) is in the Hölder class of

smoothness 2m−p for all y, the eigenvalues of a positive definite kernel are upper

bounded by j−2m/p under mild assumptions, and a kernel can be constructed that

achieves this rate of decay (Kühn (1987)). An illustration here is the mth order

Sobolev space of period functions on [0, 1] whose kernel has smoothness 2m− 1,

with eigenvalues known to decay exactly as j−2m. In general, although it is

unclear whether the rate of decay j−2m/p is achieved by a specific kernel, it is

generally believed that j−2m/p is the typical rate, which leads to the convergence

rate of KSIR of n−2m/(2m+p), the same as the minimax rate for nonparametric

regression in a p-dimensional space.

It seems hard to infer the eigenvalues of the product kernel K(p) based on the

eigenvalues of the Kj , although it is natural to conjecture that the eigenvalues
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Figure 1. Logarithms of eigenvalues for the product (black and solid curve)
and additive kernel (red and dashed curve). Left: p = 5; Right: p = 10.

of K(p) decay at a slower rate than those of Kj . To illustrate this numerically,

we generated 100 sets of predictors with sample size n = 300 and p = 5 inde-

pendently and uniformly distributed on [0, 1]p. We then constructed the n × n

kernel matrices of both the product type and the additive type using the kernel

for the 2nd order Sobolev space. The averaged (over 100 data sets) logarithm of

the largest 200 eigenvalues for the two kernel matrices are shown in the left panel

of Figure 1. To facilitate comparison the eigenvalues are scaled such that the

largest eigenvalue is always one. It is seen that the eigenvalues of the additive

kernel (red and dashed curve) decay faster than those of the product kernel. The

right panel of the same figure shows the results with p = 10. With larger p, the

gap between the two curves is visually larger. Based on our results, the faster

decay of the eigenvalues of the additive kernel leads to a faster convergence rate,

if the additive assumption is valid.

3. Sparse Kernel Additive SIR

The additive kernel used in the previous section is K(x, y) = K1(x1, y1) +

· · ·+Kp(xp, yp), equally weighted. To take into account the differing importance

of the predictors, we can add a nonnegative weight to each component such that

K(x, y) = d1K1(x1, y1) + · · · + dpKp(xp, yp), where a larger weight dj roughly

implies the more important role of the jth predictor, and dj = 0 removes the

jth predictor from the model. We use a data-driven procedure to determine the

weights along with the sufficient dimension reduction space.

The variable selection problem for KASIR is fundamentally different from

various sparse sliced inverse regression methods proposed previously for linear

SDR (Li and Nachtsheim (2006); Li (2007); Bondell and Li (2009); Chen, Zou,

and Cook (2010)). In linear SDR, sparse method naturally imposes sparsity
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on the eigenvector of an appropriately defined eigenvalue problem. In KASIR,

although the SDR space is also estimated from the eigenvalue problem (2.4),

sparsity of the eigenvector c does not perform variable selection.

The form of the additive kernel with weights d1K1(x1, y1)+· · ·+dpKp(xp, yp)

is similar to that used in multiple kernel learning, with the slight difference

being that multiple kernel learning usually focuses on obtaining a good kernel

for prediction rather than for variable selection and thus the kernels are not

necessarily defined on different predictors. Our additive kernel with weights

is also related to COSSO (Lin and Zhang (2006); Zhang (2006); Storlie et al.

(2011)) which is an approach for component selection in additive splines, or more

generally splines analysis of variance. Although many kernel algorithms have

been able to incorporate kernel learning, for KASIR this poses much difficulty in

computation.

It is well-known that the quotient trace problem

max
C∈Rp×r,{dj}

tr((CTK(K+ sI)C)−1CTKJKC),

is solved by the eigenvalue problem KJKci = µiK(K+sI)ci associated with the

largest r eigenvalues, where ci, i = 1, . . . , r are the columns of C. Thus when

weights are incorporated in the kernel, we can solve the following

max
C∈Rp×r,{dj}

tr((CTK(K+ sI)C)−1CTKJKC)

s.t.
∑
j

dj = τ, dj ≥ 0,

where the kernel matrix K =
∑

j djKj implicitly depends on dj . Unlike lasso

problem where τ is treated as a tuning parameter (Tibshirani (1996)), here we

can set the bound to be 1. It is straightforward to see that the constrained

maximization problem with constraint
∑

j dj = τ and smoothing parameter s is

the same as the problem with constraint
∑

j dj = 1 and smoothing parameter

s/τ , in the sense that the maximizer C and the maximum value are the same.

Since we choose the smoothing parameter s in the data-driven way, there is no

loss of generality in setting τ = 1. While it is more flexible to use two tuning

parameters for controlling smoothness and variable selection separately, using one

is not rare in additive regression, as in COSSO (Lin and Zhang (2006); Storlie et

al. (2011)).

Given {dj}, C can be obtained from the eigenvalue problem. However, given

C, the optimization problem is neither convex nor concave and finding {dj} is

hard. For given {dj}, we can solve the eigenvalue problem to get C, written
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as C({dj}) to emphasize the dependence on {dj}. We can then use a general

nonlinear solver for the problem

max
dj ,j=1...,p

tr((C({dj})TK(K+ sI)C({dj}))−1C({dj})TKJKC({dj}))

s.t.
∑
j

dj = 1, dj ≥ 0.

An alternative is to solve C for given {dj} and solve {dj} for given C (again using

a general nonlinear solver). This alternating algorithm has trouble in achieving

convergence, in our experience.

4. Numerical Examples

4.1. Simulations

Three simulation examples were used to compare five methods: KSIR,

KASIR, SKASIR and standard linear SIR, and SSIR, a sparse version of linear

SIR. The data were generated from three models:

1. Yi = 20 sin(Xi1Xi2)/(1 + exp{−3Xi3}) + ϵi, i = 1, . . . , n,

2. Yi = 10(sin(3Xi1) +Xi2) log(| sin(3Xi1) +Xi2|) + ϵi, i = 1, . . . , n,

3. Yi = (1.5Xi1 + 2Xi2 −Xi3) exp{1.5Xi1 + 2Xi2 −Xi3}+ ϵi, i = 1, . . . , n,

where ϵi
i.i.d.∼ N(0, 1). The predictors were generated from a multivariate Gaus-

sian distribution with mean zero and covariance Cov(Xij1 , Xij2) = 0.2|j1−j2|, and

then transformed to [0, 1] by applied the standard normal cdf. The first example

is a general nonlinear model; the second has an additive structure while being

nonlinear and KASIR is expected to perform well; the third is linear.

We took n = 50 or 100, and dimension p = 10. We used the kernel for

the 2nd order Sobolev space. KSIR used the product of these one-dimensional

kernels and KASIR/SKASIR used the sum of these one-dimensional kernels.

Nonlinear optimization in SKASIR was implemented using the nloptr package

in R. Although linear SIR and SSIR could be implemented in more traditional

ways, we treated linear SIR/SSIR as a special case of KSIR using the linear kernel

K(s, t) = 1 + st. The smoothing provided by KSIR could be advantageous even

in linear SIR. For the smoothing parameter s, 15 equally spaced values in [−7, 5]

were used on the logarithmic scale. The number of slices was 10 in all numerical

examples, and generally the results are not sensitive to any reasonable choice of

the number of slices.

To quantify the performance of the methods, we generated independent test

data of size n and computed the (absolute value of ) Spearman correlation be-

tween the estimated index and the response on the test data. This is possible
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since in all simulated examples we only have one index. The whole procedure

was repeated 100 times in each scenario. The results are reported in Figures

2−4. In these figures, dotted curves show the 0.1 and 0.9 quantiles over the 100

repetitions. The x-axis of this plot is the logarithm of the smoothing parameter

log(s). The second and third rows show the values of dj for SKASIR and SSIR,

respectively, using the smoothing parameter that achieves the largest correlation

value.

For Example 1, the model does not have additive structure, thus it is some-

what surprising to see that, when n = 50, both SSIR and SKASIR outperform

KSIR, with SIR and KASIR (without variable selection) performing similarly to

KSIR in terms of Spearman correlation. This suggests that the nonlinearity in

Example 1 is not sufficiently strong and with small sample size, more parsimo-

nious models can still be very competitive even though the model assumption

is wrong. When n = 100, all methods become similar. We further performed

simulations for this example with n = 50 and p = 5 with results shown in Fig-

ure 5. With a smaller dimension, we expect KSIR suffers less from the curse of

dimensionality and, indeed, the results demonstrate that with p = 5, KSIR has

the best performance. Returning to Figure 2, both SKASIR and SSIR put large

weights on the first two predictors, followed by the third predictor. The contri-

bution of the third predictor to the response is relatively small, as expected from

the form of the regression function since the exponential function does not vary

a lot on [0, 1]. Although the weights dj for j > 3 can be shrunk to exactly zero

in some cases, the kernel produced is often not sparse enough, especially when

n = 100. On the other hand, even when the weights are not exactly zero, the

weights for irrelevant predictors are generally much smaller and can still provide

information on variable importance.

Example 2 is an ideal scenario for KASIR/SKASIR, which outperformed

other methods. Sparse methods can also improve on non-sparse counterparts,

for both additive and linear SIR. Additive models correctly identify the first two

predictors as important, while linear methods only identify the second predictor.

This is a natural since the first predictor has a strong nonlinear effect in the

index (and designed such that it has no obviously increasing or decreasing trend

for X1 ∈ [0, 1]). SKASIR can select a much sparser model, while in SSIR none

of the weights are sufficiently close to zero. The linear model is not sufficiently

flexible, so all predictors strive to compensate for this by playing some role in

prediction.

Example 3 has a linear index and thus linear standard SIR performs well and

sparsity can improve performance to a small extent. However, KASIR/SKASIR

performs almost the same as linear methods. In particular, the curve for SKASIR

follows closely that for SSIR and the curve for KASIR follows closely that for SIR.



KERNEL ADDITIVE SLICED INVERSE REGRESSION 537

KSIR is the worst performer in this example. SKASIR and SSIR separate the

first three predictors as important, although weights for SKASIR are somewhat

less sparse.

For Example 2, we also carried out simulations with n = 100 and p = 20,

with results shown in Figure 6. The results are qualitatively similar to the case

p = 10. The additive model KASIR/SKASIR has the best performance and the

important predictors are correctly identified.

4.2. NMMAPS data analysis

We used the NMMAPS (National Morbidity Mortality Air Pollution Study)

database which contains daily mortality, weather and pollution data for 1987-

2000, and considered data for the year 1997. We explored the relationship be-

tween daily mean ozone level and some predictors. The explanatory variables

selected were mean temperature, relative humidity, mean CO2 level, mean PM10

level, mean SO2 level, daily humidity range, and daily temperature range. After

excluding one day with missing observations, we had a sample size of n = 364.

Scatterplot of the daily mean ozone level against the mean temperature in Figure

7 clearly shows some nonlinearity in the data, although this observation by itself

does not mean nonlinear dimension reduction is more appropriate than linear

dimension reduction.

With data, it is harder to assess the performance of different methods. We

randomly partitioned the whole data set into a training part and a testing part

of equal sizes. We performed dimension reduction using the five methods on the

training data, with a sequence of smoothing parameters as used in simulations,

and considered the number of indices r (projection directions) from 1 to 4. Gaus-

sian process regression was used to learn a nonparametric function that maps the

values of the index to the response. We used the R package tpg for Gaussian pro-

cess regression with the default parameters choices. We also used the R package

rpart for regression tree to fit a nonparametric regression function with default

parameters choices. However, the predictions with trees were generally worse

than Gaussian process regression, so we choose Gaussian process regression even

though it is much slower. Using the estimated index and regression function,

prediction mean squared errors (PMSE) on the test data is reported on Table 1

based on 100 random partitions of the data. The errors reported are based on

the pair of (r, s) values that produce the smallest error for each method. It is

seen that KSIR and KASIR perform similarly, and better than linear methods.

Kernel weights do not help in prediction in this data set although it may help in

interpreting the importance of different predictors. The average kernel weights

for SKASIR were (0.375, 0.111, 0.171, 0.038, 0.051, 0.132, 0.122), showing that the

most important predictor appears to be the mean temperature. We show the
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n = 50 n = 100

Figure 2. For Example 1, the Spearman correlation on test data for the five
methods (KSIR, KASIR, SKASIR, SIR, SSIR) is shown in the first row. The
second (third) row shows the values of dj for SKASIR (SSIR).
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n = 50 n = 100

Figure 3. For Example 2, the Spearman correlation on test data for the five
methods (KSIR, KASIR, SKASIR, SIR, SSIR) is shown in the first row. The
second (third) row shows the values of dj for SKASIR (SSIR).
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n = 50 n = 100

Figure 4. For Example 3, the Spearman correlation on test data for the five
methods (KSIR, KASIR, SKASIR, SIR, SSIR) is shown in the first row. The
second (third) row shows the values of dj for SKASIR (SSIR).
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Figure 5. For Example 1 with n = 50 and p = 5, the Spearman correlation
on test data for the five methods (KSIR, KASIR, SKASIR, SIR, SSIR) is
shown in the first row. The left (right) panel on the second row shows the
values of dj for SKASIR (SSIR).

Table 1. Prediction MSE for the five SDR methods for the NMMAPS data.

KSIR KASIR SKASIR SIR SSIR
0.591 0.592 0.595 0.608 0.611

estimated component functions from the first dimension reduction direction for

one of the 100 runs in Figure 8.

5. Conclusion and Discussion

In this paper we considered kernel additive sliced inverse regression and

its sparse version that can perform variable selection. The advantages of the

additive structure come from the fast eigenvalue decay rate for the additive kernel



542 HENG LIAN AND QIN WANG

Figure 6. For Example 2 with n = 100 and p = 20, the Spearman correlation
on test data for the five methods (KSIR, KASIR, SKASIR, SIR, SSIR) is
shown in the first row. The left (right) panel on the second row shows the
values of dj for SKASIR (SSIR).

compared to general kernels in multi-dimensional case. We showed via numerical

studies that KASIR is flexible, parsimonious and reliable and SKASIR can further

identify important predictors, a goal that fully nonparametric KSIR method

cannot achieve. Although we do not consider a partially linear structure, this

is straightforward by just using a linear kernel in the additive combination of

kernels whenever the predictor is in the linear part. In particular, in this way we

can deal with both continuous and discrete predictors simultaneously.

Due to the necessity of using general-purpose nonlinear optimization soft-

ware, the computation of SKASIR may be too slow and unstable for high di-

mensional problems, and in particular we cannot carry out simulations with p

much larger than 20 in R, due to computational speed constraints. New formu-
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Figure 7. Scatterplot for the NMMAPS data with the predictor being mean
temperature.

Figure 8. Estimated component functions from the first dimension reduction
direction for one of the 100 runs.

lations or algorithms need to be proposed for it to work in problems in higher

dimensions. In our formulation, given C, the optimization problem for dj can ac-

tually be posed as a quadratically constrained quadratic programming (QCQP),

which is well-known to be NP-hard in general. Although previously some QCQP

problems can be solved by semidefinite programming after relaxation, the non-
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convexity of our formulation prevents any easy route for doing so and we have

not been successful in this direction so far. Asymptotic properties of the sparse

estimator are not established here due to the technical challenges, and are worth

further investigation.

In the simulations, it is seen that the estimated weights are typically not

sparse enough and although some weights are small, they are not always suffi-

ciently small to be treated as zero. One could replace the constraint
∑

j dj = 1

by
∑

j d
q
j = 1 with 0 < q < 1, potentially leading to a sparser solution, as has

been demonstrated in regression (Huang, Horowitz, and Ma (2008)).

We here only used the one-dimensional Sobolev kernel as the building block

of product and additive kernels. Kernel choice is a challenging topic in itself,

and it is hard to tune the kernel for different data sets. For kernel methods,

the Gaussian kernel is popular and gives satisfactory performance in various

problems. However, we have not used the Gaussian kernel: the choice of the

bandwidth parameter in the Gaussian kernel is critical for its performance and

it is not clear how to choose these parameters in an efficient way. Even though

some bandwidth selection methods could be used, this extra complication dis-

turbs the comparison between different methods. With the Sobolev kernel, there

are no hyperparameters to choose. Careful treatment for kernels with hyper-

parameters needs further investigation. A related problem is automatic kernel

choice. Selection/combination of different kernels is an interesting direction for

future research.

A general and elegant theory of nonlinear SDR is reported in Lee, Li, and

Chiaromonte (2013). By using the definition of a SDR σ-field to replace the

concept of SDR space, the linear design condition is not necessary for nonlinear

SDR, and they proposed generalized SIR. As they show, even without the linear

design condition, KSIR can still be used to estimate the SDR σ-field. However,

it seems challenging to establish asymptotic theory with this formulation.

The problem of determining the number of indices in the SDR space is also

important. In data, the smallest PMSE is usually obtained when r = 2 suggesting

that r = 2 may be appropriate. However, this is certainly problematic unless the

goal is mean prediction. It is worthwhile to investigate the extension of other

SDR method, such as SAVE (Cook and Weisberg (1991); Cook (2000); Zhu and

Zhu (2007); Zhu, Zhu, and Feng (2010); Dong and Li (2010)), using product or

additive kernels.

Supplementary Materials

The supplementary material online for this paper contains the proof of The-

orem 1.
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