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Abstract: A common objective of biomedical cohort studies is assessing the effect

of a time-varying treatment or exposure on a survival time. In the presence of

time-varying confounders, marginal structural models fit using inverse probabil-

ity weighting can be employed to obtain a consistent and asymptotically normal

estimator of the causal effect of a time-varying treatment. This article consid-

ers estimation of parameters in the semiparametric marginal structural Cox model

(MSCM) from a case-cohort study. Case-cohort sampling entails assembling covari-

ate histories only for cases and a random subcohort, which can be cost effective,

particularly in large cohort studies with low outcome rates. Following Cole et al.

(2012), we consider estimating the causal hazard ratio from a MSCM by maximiz-

ing a weighted-pseudo-partial-likelihood. The estimator is shown to be consistent

and asymptotically normal under certain regularity conditions. Finite sample per-

formance of the proposed estimator is evaluated in a simulation study. In the cor-

responding supplementary document, computation of the estimator using standard

survival analysis software is presented.

Key words and phrases: Case-cohort study, causal inference, Cox model, marginal
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1. Introduction

Biomedical cohort studies are often conducted with the goal of assessing the

effect of a time-varying treatment (or exposure) on a survival time. In such

studies there may exist time-dependent covariates which are simultaneously (i)

confounders and (ii) affected by prior treatment. In the presence of time-varying

confounders affected by prior treatment, standard methods such as Cox regression

modeling with time-varying covariates do not in general yield consistent estima-

tors of the causal effect of treatment (Robins (1986, 1998); Robins and Rotnitzky

(1992); Hernán, Brumback, and Robins (2001)). On the other hand, marginal

structural models (MSM) fit using inverse probability weighting can be employed

to obtain consistent estimators of the causal effect of a time-varying treatment

on an outcome of interest, even if there are time-varying confounders affected by

prior treatment (Robins (1999); Hernán, Brumback, and Robins (2001)).
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Recently, Cole et al. (2012) considered fitting MSCMs via inverse probabil-

ity weighting in the presence of case-cohort sampling. The case-cohort study

design is a cost-efficient approach to estimate treatment effects in large cohorts

with low event rates when treatment or covariate information is expensive. The

design entails randomly selecting a subcohort from the entire cohort. Covariate

information is then collected only from the random subcohort and from individ-

uals that are observed to experience an event (i.e., cases), saving cost and effort

relative to obtaining covariate information from the full cohort. In addition to

being cost efficient, the case-cohort design enjoys other benefits. For instance,

the subcohort can serve as a basis for real-time covariate monitoring during the

course of the study. Also, because the subcohort is chosen randomly, survival

times to different diseases can be analyzed using the same subcohort (Self and

Prentice (1988)).

In the presence of case-cohort sampling, Cole et al. (2012) considered es-

timating the causal hazard ratio of a MSCM via inverse probability weighting.

Simulation studies indicated that their estimator could perform well empirically,

but no formal justification for their estimator has been developed to date. Follow-

ing Cole et al. (2012), we consider estimating the causal hazard ratio of a MSCM

via inverse probability weighting in case-cohort studies and establish consistency

and asymptotic normality for the estimator that maximizes a weighted-pseudo-

partial-likelihood (WPPL) under certain regularity conditions.

The approach utilized in this paper entails standard counting process and

martingale theory. This formulation readily enables practical implementation of

the methods using existing survival analysis software. Framing the problem using

counting processes may also be helpful in future work, e.g., in fitting MSCMs to

data from nested case-control studies or in the presence of competing risks. In

the special situation that the subcohort is the full cohort, the proposed inverse

probability weighted estimator is asymptotically equivalent to the estimator in

Robins (1999). In this case our proof gives an alternative consistency and nor-

mality proof to the one in Robins (1999) that does not utilize the usual counting

process framework. We also derive a new variance estimator that arises from the

counting process formulation under both full and case-cohort settings. Empirical

results presented here indicate that, in certain scenarios, the proposed variance

estimator may be preferred to the so-called “robust” variance estimator (Lin and

Ying (1993)) employed in Cole et al. (2012).

The outline of the remainder of this paper is as follows. In Section 2, estima-

tors of the hazard ratio of a MSCM in the presence of case-cohort sampling are

introduced, including the estimator proposed by Cole et al. (2012). Consistency

and asymptotic normality results are presented in Section 3 and a simulation

study is in Section 4. Some additional considerations are in Section 5. Regu-

larity conditions and discussion of the conditions are deferred to the Appendix.
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The supplementary document accompanying this paper includes detailed proofs

for Theorems 3.1−3.6, a description of how a MCSM can easily be fit via inverse

probability weighting for either the full cohort or case-cohort setting using stan-

dard survival analysis software, such as R or SAS, additional simulation study

results including performance of the baseline cumulative hazard estimator, and

a summary of notation.

2. Marginal Structural Cox Model Estimators

2.1. Notation, assumptions, and model

Consider an observational cohort study where the outcome of interest is

a survival time T , based on the time from study entry until some particular

outcome occurs. We assume T is continuous so that there are no tied failure

times. During the study, individuals may dropout or discontinue participation

so that T is right censored. Individuals may or may not elect to receive treatment

at various points of time during the study; let Ai(t) indicate whether subject i is

on treatment at time t. If more than one treatment is available, Ai(t) is a vector of

treatment indicator variables corresponding to the treatment levels. We assume

Ai(t) is a p×1 vector and treatment variation is irrelevant (VanderWeele (2009)):

for fixed values of Ai(t), additional variation in the treatment (e.g., dose, timing)

does not affect the potential outcome. The subscript i is often suppressed when

there is no ambiguity, as we assume random vectors are drawn independently from

a distribution common to all subjects. Let L(t) denote a vector of covariates at

time t and L(0) represent baseline covariates. Overbars are used to represent

history up to and including time t, with A(t) = {A(u) : 0 ≤ u ≤ t} and L(t)

defined analogously. Assume decisions related to treatment at t are made after

obtaining the covariate information at t, so L(t) is temporally prior to A(t). For

a case-cohort study, the time varying covariates L(t) and treatment A(t) are by

design observed only for the cases and individuals in the random subcohort (while

under study); L(t) and A(t) are missing for all other individuals. Corresponding

to the subcohort, let C̃ denote the set of indices of size ñ ≤ n that are randomly

selected without replacement from the set {1, . . . , n} corresponding to the entire

cohort.

Let a denote a possible (static) treatment plan, a = {a(t) : 0 ≤ t ≤ τ},
where τ is the study duration. Assume τ = 1 without loss of generality. Each

possible value of a can be interpreted as a prespecified treatment plan. Given a

single treatment, examples of a are never treat (a(t) = 0 for all t ∈ [0, 1]), treat

starting at a prespecified time t1 < 1 (a(t) = I{t ≥ t1} where I{·} is the usual

indicator function), treat from baseline (a(t) = 1 for all t ∈ [0, 1]). Let Ta be

a subject’s potential failure time had (possibly contrary to what was observed
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in the actual study) the subject been treated according to a. Let ⊥⊥ denote

statistical independence. Assume

T = Ta ∀a such that a(t) = A(t) ∀t ≤ T, (2.1)

Ta ⊥⊥ A(t)|A(t−), L(t) ∀a, (2.2)

pr[A(t)|A(t−), L(t)] > 0 ∀t ∈ [0, 1] such that pr[A(t−), L(t)] > 0. (2.3)

These are referred to as the causal consistency, conditional exchangeability, and

positivity assumptions, respectively. Assumption (2.1) states that, in the absence

of censoring, the observed failure time T equals the potential failure time Ta for

all treatment plans a compatible with the observed treatment up to time T .

Assumption (2.2) ensures no unmeasured confounding. Assumption (2.3) states

that the conditional probability of receiving any particular treatment is greater

than zero. Of the three, only (2.3) can be tested empirically. Sensitivity analysis

may be useful in assessing the robustness of inference drawn to violations of (2.2)

(Robins, Rotnitzky, and Scharfstein (1999)).

Consider the MSCM

λTa(t) = λ0(t) exp{β′
0f(a(t))},

where λTa(t) is the hazard of failure at time t if all individuals in the population

had followed treatment plan a through time t, λ0(t) is an unspecified baseline

hazard function corresponding to the hazard if all individuals had been untreated

through time t, f(a(t)) is a specified function of treatment history up to time t,

and β0 is an unknown parameter vector. Hereafter, we consider the MSCM

λTa(t) = λ0(t)r{β′
0a(t)} (2.4)

where, for notational convenience, we let r{·} = exp{·}. For example, if we

are interested in the causal effect of current AZT treatment on mortality of

HIV-positive homosexual men, then r(β0) is the ratio of the hazard of death

at time t had all subjects in the population alive at time t been exposed to

AZT compared to being unexposed at time t. Here (2.4) focuses on the effect of

current treatment status only; however, the results presented below are valid for

any specified f(a(t)).

We employ the counting process framework to study the large sample be-

havior of estimators of β0. All processes discussed hereafter refer to observed

processes. Let (Ω,F ,P) be a complete probability space and let {Ft : t ∈ [0, 1]}
be an increasing right-continuous family of sub σ-algebras of F consisting of fail-

ure times, covariates, and treatment histories up to time t, and censoring histories

up to time t+ for all subjects in a cohort of size n. Thus the filtration with respect

to the probability space is the same as usual, except that treatment histories are
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now listed separately from covariate histories. Let Ni(·) be a counting process

adapted to Ft representing the number of failures of subject i by time t so that

dNi(t) indicates the number of events of subject i that occurred in [t, t+ dt) for

sufficiently small dt. Because failures are assumed to occur in continuous time,

we only allow jumps of size 1 and no simultaneous jumps can occur in [t, t+ dt).

Let Ci(t) = 0 indicate that subject i remained uncensored prior to time t and

Ci(t) = 1 otherwise. The treatment process Ai(·) and the censoring process

Ci(·) are assumed to be piece-wise constant point processes with cadlag (right-

continuous with left-hand limits) step-function sample paths. The processes A(·)
and C(·) are assumed to have jumps that can occur at no more than a finite num-

ber of time points. Informally, all participants follow (approximately) the same

visit schedule. This assumption should be reasonable in studies with regularly

scheduled follow-up visits (e.g., every six months) and good study compliance.

We refer to censoring as ignorable (or noninformative) if the cause-specific haz-

ard of being censored at t among subjects alive and uncensored does not depend

on the failure times Ta given prior treatment/covariate history A(t−) and L(t−)

(Hernán, Brumback, and Robins (2001)). Let Yi(t) = I{Ni(t) = Ci(t) = 0}
denote whether an individual is at-risk of being observed to fail at time t, having

left-continuous sample paths, and assume pr[Y (1) > 0] > 0.

2.2. Inverse probability weights

If we can correctly model the probability of receiving treatment at time t

given the past treatment history and covariate history, then we can consistently

estimate the weights

W T (t) =
∏
k≤t

pr[A(k)|A(k−)]
pr[A(k)|A(k−), L(k)]

. (2.5)

These are referred to as stabilized inverse-probability-of-treatment-weights

(IPTWs). If the numerator probabilities in (2.5) were replaced with 1, then

the weights are referred to as unstabilized IPTWs. We can consistently estimate

the numerator probabilities in (2.5) based on sample proportions because A(·) is
assumed to have at most a finite number of jumps over the study period. Under

(2.2) to (2.3), in the absence of censoring, Robins (1999) showed that a consistent

estimator of the unknown parameter β0 in (2.4) can be obtained by fitting an

ordinary time-dependent Cox model with the contribution of subject i to the

risk set at time t weighted by estimates of (2.5). Informally we can think of the

analysis via IPTWs as reweighting the observed data set such that it has the

same properties as a random sample, with respect to the measured confounders

L, from a population where L(t) ⊥⊥ A(t)|A(t−) holds at time t. The weighted

study population is sometimes called a pseudo-population.
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Dropout may introduce selection bias if it is associated with exposure and

the outcome. In the presence of such censoring, we can still obtain a consistent

estimator of β0 by fitting the ordinary Cox model, but weighting a subject alive

and uncensored at time t by estimates of W T (t)×WC(t), where

WC(t) =
∏
k≤t

pr[C(k) = 0|C(k−) = 0, A(k−)]

pr[C(k) = 0|C(k−) = 0, A(k−), L(k)]
. (2.6)

This is under the assumption of no unmeasured confounders for censoring, an

analogous assumption to (2.3) for censoring, and assuming that we can correctly

model the denominator probabilities in (2.6) (Robins (1999)). Here the weighted

study population can be thought of as a pseudo-population in which there is no

confounding due to measured covariates or selection bias due to censoring. In Sec-

tion 2.3, we make use of the stabilized weights defined by W (t) ≡ W T (t)×WC(t)

after modifying (2.5) by adding C(k) = 0 to the conditioning events in both the

numerator and the denominator (Hernán, Brumback, and Robins (2000)). Here-

after W (t) is referred to as inverse-probability-weights (IPWs). Here (2.5) and

(2.6) are finite products and (2.3) ensures non-zero probabilities in their denom-

inators; hence the IPWs are bounded at all t. Our results are not limited to a

specific form of the weights W (t). The proposed methods are applicable to differ-

ent inverse probability weighting analysis provided that the IPWs (or IPTWs in

the absence of censoring) are bounded, such as when truncated (Cole and Hernán

(2008)) and normalized (Xiao, Abrahamowicz, and Moodie (2010)) weights are

employed. Under the assumption of finite support of the treatment and censor-

ing processes, unstabilized weights (where the numerators probabilities of both

(2.5) and (2.6) are replaced with 1) are also bounded, but are highly variable and

monotone increasing functions of t. Other weights such as stabilized, truncated,

and normalized weights are generally recommended in practice as they lead to

more efficient estimators of the causal treatment effect.

We now briefly describe estimation of the random weights W (t), denoted by

Ŵ (t). One can specify a pooled logistic model (treating each person-visit as an

observation) to estimate the probability in the denominators of (2.5) and (2.6)

at each time (for example, at each visit), then plug in the estimated probabilities

(Hernán, Brumback, and Robins (2000, 2001)). In the presence of case-cohort

sampling, the same model can be used to obtain Ŵ (t) after weighting subcohort

controls by the inverse probability of subcohort selection. Example SAS code to

obtain Ŵ (t) using case-cohort data is provided in Section 2 of the supplement.

We assume throughout that the models to estimate denominator probabilities in

the IPWs are correctly specified. In practice, investigators may wish to explore



MARGINAL STRUCTURAL COX MODELS WITH CASE-COHORT SAMPLING 515

the sensitivity of treatment effect estimates to different model specifications for

estimating the weights.

2.3. Weighted-pseudo-partial-likelihood

We consider two weighted-pseudo-partial-likelihoods (WPPL) that form the

basis for obtaining consistent estimators of β0 in the presence of case-cohort

sampling. They are formed by weighting individual contributions to the usual

partial likelihoods by Wi(t) assuming that Wi(t) is known.

The log-WPPL created by individual-time-specific weights at time t under

the full cohort setting is given by

l(β, t;W ) =

n∑
i=1

∫ t

0
Wi(u)

[
β′Ai(u)− log

n∑
l=1

Wl(u)Yl(u)r{β′Al(u)}
]
dNi(u);

(2.7)

it is motivated by the weighted estimating equations proposed by Robins (1993).

The log-WPPL in the case-cohort setting is

l̃(β, t;W ) =

n∑
i=1

∫ t

0
Wi(u)

[
β′Ai(u)− log

∑
l∈C̃

Wl(u)Yl(u)r{β′Al(u)}
]
dNi(u).

(2.8)

This is slightly different from the log-WPPL proposed by Cole et al. (2012),

l∗(β, t;W ) =
n∑

i=1

∫ t

0
Wi(u)

[
β′Ai(u)− log

∑
l∈C̃∪{i}

Wl(u)Yl(u)r{β′Al(u)}
]
dNi(u).

(2.9)

Here (2.8) and (2.9) differ only in whether a case outside the subcohort C̃ con-

tributes to the risk set. If Wi(u) = 1 for all i and u, (2.8) reduces to the

log-likelihood considered by Self and Prentice (1988) and (2.9) reduces to the

log-likelihood considered by Prentice (1986).

Let β̂, β̃, and β∗ be solutions to ∂l(β, 1; Ŵ )/∂β = 0, ∂l̃(β, 1; Ŵ )/∂β = 0,

and ∂l∗(β, 1; Ŵ )/∂β = 0, respectively. Based on arguments as in Andersen and

Gill (1982), in Theorems 3.1−3.2 we show β̂ and β̃ are consistent estimators of

β0. That β
∗ →p β0 can be shown analogously. Asymptotic normality of β̂ and β̃

will be shown via asymptotic normality of score statistics corresponding to (2.7)

and (2.8).

To make use of counting process and martingale theory, under (2.1) each

(observed) counting process Ni(·)(i = 1, . . . , n) can be uniquely decomposed into

the sum of its intensity process λi and a local square integrable martingale Mi,

Ni(t) =

∫ t

0
λi(u)du+Mi(t), t ∈ [0, 1], (2.10)



516 HANA LEE, MICHAEL G. HUDGENS, JIANWEN CAI AND STEPHEN R. COLE

where the intensity process is given by

λi(t) = Yi(t)r{β′
0Ai(t)}λ0(t), (2.11)

which embodies the same parameters as in (2.4).

3. Asymptotic Properties

In this section, we present the main results: consistency and asymptotic

normality of the estimators β̂, β̃, and β∗. Sufficient conditions for these results

are stated in the Appendix, followed by discussion of the conditions. Proofs of

the theorems are given in S1 of the supplementary document.

Theorem 1. (Consistency of β̂ under full cohort) Under conditions A−F, β̂ →p

β0.

Theorem 2. (Consistency of β̃ under the case-cohort) Under conditions A−G,

β̃ →p β0.

It is straightforward to show that the estimator based on (2.9) converges in

probability to the same limit as β̃. An individual case’s contribution to C̃ at its

failure time (which is weighted by its IPWs) is asymptotically negligible in the

sense that IPWs are bounded at all times and weighted subcohort averages are

asymptotically stable (see conditions B and G-3 in the Appendix).

Theorem 3. Under conditions A−G, β̃ − β∗ →p 0.

We need some additional notation. Let c⊗0 = 1, c⊗1 = c, c⊗2 = cc′, and

ci denote the i-th element of c for a p × 1 column vector c. Let r(j){β′A(t)} =

A(t)⊗jr{β′A(t)}, j = 0, 1, 2. Full cohort averages are defined by S(j)(β, t) =

n−1
∑n

i=1 Yi(t)r
(j){β′Ai(t)} for j = 0, 1, 2, as given in Andersen and Gill (1982)

with covariates Zi(t) being replaced by the treatment process Ai(t). Simi-

larly, subcohort averages are defined by S̃(j)(β, t) = n−1
∑

i∈C̃ Yi(t)r
(j){β′Ai(t)}.

Limits of S(j)(β, t) and S̃(j)(β, t) are given by s(j)(β, t), formally defined in

the Appendix. Analogously, let weighted full cohort averages be S
(j)
W(k)

(β, t) =

n−1
∑n

i=1Wi(t)
kYi(t)r

(j){β′Ai(t)} and weighted subcohort averages be S̃
(j)
W(k)

(β, t)

= ñ−1
∑

i∈C̃ Wi(t)
kYi(t)r

(j){β′Ai(t)} for j = 0, 1, 2 and k = 1, 2, with limits

s
(j)
W(k)

(β, t). Let E = S(1)/S(0) and Ẽ = S̃(1)/S̃(0) with limit e = s(1)/s(0), and let

EW(k)
= S

(1)
W(k)

/S
(0)
W(k)

and ẼW(k)
= S̃

(1)
W(k)

/S̃
(0)
W(k)

with limits eW(k)
. Lastly, let v =

s(2)/s(0) − e⊗2 and vW(k)
= s

(2)
W(k)

/s
(0)
W(k)

− e⊗2
W(k)

, and let Σ =
∫ 1
0 v(β0, t)s

(0)(β0, t)

λ0(t)dt and ΣW(k)
=

∫ 1
0 vW(k)

(β0, t) s
(0)
W(k)

(β0, t)λ0(t)dt.
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Theorem 4 (Asymptotic normality of the full cohort MSCM score statistic).

Let U(β0, t) = ∂l(β, t)/∂β|β=β0 be the full cohort MSCM score process at time t.

Under conditions A−F,

n−1/2U(β0, 1) →d N(0,ΣU ),

where ΣU = ΣW(2)
+∆W(1),W(2)

and

∆W(1),W(2)
=

∫ 1

0
{eW(2)

(β0, u)− eW(1)
(β0, u)}⊗2s

(0)
W(2)

(β0, u)λ0(u)du.

Theorem 4 can be used to show asymptotic normality of the MSCM case-

cohort score statistic:

Theorem 5 (Asymptotic normality of the case-cohort MSCM score statistic).

Let Ũ(β0, t) = ∂l̃(β, t)/∂β
∣∣
β=β0

be the case-cohort MSCM Score process at time

t. Under conditions A-G,

n−1/2Ũ(β0, 1) →d N(0,ΣŨ ),

where ΣŨ = ΣU +∆α,

∆α =

∫ 1

0

∫ 1

0
G(β0, x, v)λ0(x)λ0(v)dxdv,

G(β0, x, v) = (1− α)α−1
[
h(1)(β0, x, v)− eW(1)

(β0, x)h
(2)(β0, x, v)

′

−h(2)(β0, v, x)eW(1)
(β0, v)

′+eW(1)
(β0, x)eW(1)

(β0, v)
′h(0)(β0, x, v)

]
,

h(0)(β, x, v) = q(0)(β, x, v)− s
(0)
W(1)

(β, x)s
(0)
W(1)

(β, v),

h(1)(β, x, v) = q(1)(β, x, v)− s
(1)
W(1)

(β, x)s
(1)
W(1)

(β, v)′, and

h(2)(β, x, v) = q(2)(β, x, v)− s
(0)
W(1)

(β, x)s
(1)
W(1)

(β, v),

with q(j)(β, ·, ·) defined in condition G-2 in the Appendix.

Theorem 6 (Asymptotic normality of β̃). Under conditions A−G,

n1/2(β̃ − β0) →d N(0,Σ−1
W(1)

ΣŨΣ
−1
W(1)

)

where ΣŨ is given in Theorem 5.

Based on Theorem 6, we propose a new variance estimator

v̂ar(β̃) = n−1Σ̂−1
W(1)

(Σ̂W(2)
+ ∆̂W(1),W(2)

+ ∆̂α)Σ̂
−1
W(1)

, (3.1)
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where

Ĩ(β̃, 1;W ) = −∂2 l̃(β, 1;W )

∂β2|β=β̃

,

Σ̂W(1)
= n−1Ĩ(β̃, 1;W = Ŵ ), (3.2)

Σ̂W(2)
= n−1Ĩ(β̃, 1;W 2 = Ŵ 2), (3.3)

∆̂W(1),W(2)
= n−1

ñ∑
i=1

∫ 1

0
Ŵi(u)

2
[
Ẽ{W(2)=Ŵ 2}(β̃, u),−Ẽ{W(1)=Ŵ}(β̃, u)

]⊗2
dNi(u),

(3.4)

∆̂α = n−2

∫ 1

0

∫ 1

0
Ĝ(β̃, x, v)S̃

(0)
W (1)(β̃, x)

−1S̃
(0)
W (1)(β̃, v)

−1dNŴ (x)dNŴ (v).

(3.5)

Here Ẽ{W(2)=Ŵ 2} and Ẽ{W(1)=Ŵ} denote that the IPWs in ẼW(2)
and ẼW(1)

are re-

placed by Ŵ 2 or Ŵ , NŴ (t) is defined by
∑

i Ŵi(t)Ni(t), and Ĝ(·, ·, ·) is G(·, ·, ·) in
Theorem 5 with q(j)(β0, ·, ·) and s

(j)
W(1)

(β0, ·) in h(j)(β0, ·, ·) replaced by Q̃(j)(β̃, ·, ·)

(defined in condition G-2 in the Appendix) and S̃
(j)
W(1)

(β̃, ·) along with eW(1)
(β0, ·)

replaced by ẼW(1)
(β̃, ·). Estimators (3.2), (3.3), and (3.4) are consistent esti-

mators of ΣW(1)
, ΣW(2)

, and ∆W(1),W(2)
in view of condition A and the fact

that supβ,t |n−1{I(β, t) − Ĩ(β, t)}| →p 0 where I(β, t) = −∂2l(β, t)/∂β2 (see

S1-2 of the supplementary document). Estimator (3.5) is a consistent estimator

of ∆α in view of conditions A, G-1(ii), that n−1NŴ (t) uniformly converges to∫ t
0 s

(0)
W(1)

(β0, u)λ0(u)du, and that n−1NŴ (1) is bounded in probability.

The proposed variance estimator (3.1) is different from the robust estimator

proposed by Lin and Ying (LY, Lin and Ying (1993)) that is used in most MSM

analyses. Both (3.1) and the LY estimator are sandwich-type estimators where

the “bread” of sandwich (Σ̂−1
W(1)

) is the same. However, the “meat” is different. In

particular, the “meat” of the LY estimator is based on (weighted) score residuals

whereas the “meat” of (3.1) is given by an estimator of ΣŨ + ∆α. Simulation

results reported in §4 (and S2-2 in the supplement document) indicate that (3.1)

can be more accurate when the size of subcohort is small.

4. Simulation

A simulation study was conducted to examine the finite sample bias of β̃

and β∗, and the performance of the proposed variance estimator (3.1) as well as

the LY variance estimator. Simulations were conducted as in Cole et al. (2012).

Briefly, potential survival times were generated according to the MSCM given in
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(2.4), and observed survival times were generated by stochastically generating
time varying exposures and confounders for cohorts of size n = 1, 000 (see Cole
et al. (2012) for details). While they considered only one scenario in which 25%
of individuals were cases and a 20% subcohort fraction, ñn−1 × 100 = 20, we
considered 36 scenarios by varying both the subcohort fraction and the event
rate from 5 to 30%. Censoring times were generated from uniform distributions
with support chosen to achieve the desired event rate. We did not incorporate
(2.6) when calculating IPWs because the censoring times were generated inde-
pendently of the exposure and potential survival times. Following Cole et al.
(2012), stabilized weights were used to calculate IPWs. For each scenario 5,000
data sets were generated under the null β0 = 0 and the alternative β0 = log(1/2).

Results from the simulation study are summarized in Table 1. Only results
obtained from six scenarios under the null are presented; results from other sce-
narios and under the alternative were similar (see S2 of the supplementary docu-
ment for results under the alternative). For all scenarios, under both the null and
alternative, β̃ and β∗ were nearly unbiased; that the two estimators performed
similarly is not surprising in light of Theorem 3. Under the null, the proposed
variance estimator was always less biased than the LY variance estimator when
the subcohort fraction was only 5%, regardless of the event rate. Similarly, (3.1)
was less biased regardless of the subcohort fraction when the event rate was 5%.
Both the proposed and the LY variance estimators were approximately unbiased
when the subcohort fraction and event rate were both at least 20%. Wald confi-
dence intervals (CIs) using the LY variance estimator tended to undercover when
the subcohort fraction was 5%, whereas Wald CIs using (3.1) exhibited cover-
age close to the nominal level for all scenarios considered. In summary, both
β̃ and β∗, along with the proposed variance estimator and CIs, exhibited good
finite sample properties for the scenarios considered, while performance of the
LY variance estimator depended on subcohort size and event rate.

5. Additional Considerations

5.1. Baseline cumulative hazard estimation

In addition to the treatment effect β, it may be of interest to estimate the
cumulative baseline hazard function. Similar to the cumulative baseline hazard
estimator proposed in Self and Prentice (1988), a consistent estimator of Λ0(t) =∫ t
0 λ0(u)du with case-cohort sampling is

Λ̃Ŵ (β̃, t) = ñn−1

∫ t

0

[∑
i∈C̃

Ŵi(u)Yi(u)r{β̃′Ai(u)}
]−1

n∑
i=1

Ŵi(u)dNi(u). (5.1)

This estimator is equivalent to Self and Prentice’s estimator when Ŵi(t) = 1 for
all i and t. A consistent estimator of the cumulative baseline hazard can also



520 HANA LEE, MICHAEL G. HUDGENS, JIANWEN CAI AND STEPHEN R. COLE

Table 1. Summary of simulation study. Bias denotes the empirical bias of the dif-
ferent estimators of β0. ESE denotes the empirical standard errors. ASE denotes
the average estimated standard errors and Coverage denotes the empirical cover-
age of 95% Wald-type confidence intervals using either (3.1) or the LY variance
estimator. † Of the 5,000 estimates of β∗ and β̃, one pair was excluded because
some of the stabilized IPWs were greater than 106.

Sub- Event Esti- Bias ESE ASE Coverage
cohort(%) rate(%) mator proposed LY proposed LY

5 5 † β∗ -0.12 0.49 0.55 0.42 0.97 0.91

β̃ -0.20 0.68 0.66 0.47 0.96 0.90
25 β∗ -0.03 0.37 0.36 0.31 0.94 0.91

β̃ -0.04 0.44 0.37 0.35 0.92 0.91
10 5 β∗ -0.05 0.40 0.42 0.37 0.97 0.94

β̃ -0.06 0.44 0.43 0.39 0.96 0.94
25 β∗ -0.02 0.27 0.26 0.26 0.93 0.93

β̃ -0.02 0.29 0.26 0.26 0.93 0.93
20 5 β∗ -0.02 0.35 0.36 0.34 0.96 0.95

β̃ -0.02 0.36 0.36 0.35 0.96 0.95
25 β∗ -0.01 0.21 0.20 0.20 0.94 0.94

β̃ -0.01 0.21 0.20 0.20 0.94 0.94

obtained by using β∗ instead of β̃ in (5.1). In the supplement (5.1) is shown to be

consistent under conditions A-G and its performance is examined in a simulation

study; see S1 and S2 of the supplement.

5.2. Limitations and future directions

While Cole et al. (2012) extensively discussed limitations of the MSCM with

case-cohort sampling, we reiterate some of the issues that are important from

a theoretical point of view. First, the asymptotic results presented here cor-

rect model specification for both the treatment assignment model (2.5) and the

censoring model (2.6). If (2.2) holds, flexible parametric regression models fit

adjusting for all measured confounders and their histories should provide a good

approximation to denominator probabilities in (2.5) and (2.6). However, (2.2)

is an untestable assumption and thus in practice analysts may want to explore

sensitivity of treatment effect estimates to departures from this assumption.

Second, the proposed MSCM estimators for the case-cohort study, which

are based on Prentice (1986) and Self and Prentice (1988) type estimators, are

not expected to be fully efficient. After Prentice (1986) and Self and Prentice

(1988), various methods have been proposed as means of improving the effi-

ciency of the hazard ratio estimator in the standard case-cohort Cox regression

analysis. Those methods seek to improve efficiency mostly by using weighted

partial-likelihood estimation. For example, Barlow (1994), Barlow et al. (1999),
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Kong, Cai, and Sen (2006), and Kong and Cai (2009) utilize fixed and time-

varying inverse-probability-sampling weights to account for subcohort sampling

to improve efficiency. Borgan et al. (2000), Kulich and Lin (2004), and Breslow

et al. (2009a,b) consider leveraging phase 1 covariates (available from the entire

cohort) to improve efficiency. These methods could potentially be extended to

develop more efficient MSCM estimators in the presence of case-cohort sampling.

Supplementary Materials

The online supplementary material contains proofs corresponding to con-

sistency and asymptotic normality of MSCM parameter estimators along with

consistency of the cumulative baseline hazard estimator proposed in Section 5.1,

implementation of the method using standard survival analysis software such as

R or SAS, and additional simulation study results including performance of the

proposed baseline cumulative hazard estimator. A summary of notation intro-

duced in the main text and the supplement is presented.
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Appendix: Regularity Conditions

In what follows, norms are defined by ||c⊗2|| = supi,j |cicj |, ||c|| = supi |ci|,
and |c| = (

∑
c2i )

1/2 = (c′c)1/2.

A (Uniform consistency of estimated weights)

sup
i∈{1,...,n}
t∈[0,1]

|Ŵi(t)−Wi(t)| ≡ MŴ →p 0.

B (Stability of weights) Individual time-specific weights Wi(t) and the corre-

sponding estimators Ŵi(t) are strictly positive and bounded, with positive

real numbers M1 and M2 such that

sup
i∈{1,...,n}
t∈[0,1]

Wi(t) ≤ M1, and sup
i∈{1,...,n}
t∈[0,1]

Ŵi(t) ≤ M2.
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C (Finite interval)
∫ 1
0 λ0(t)dt < ∞.

D (Asymptotic stability)

(i) There exists a neighborhood B0 of β0 and functions s(0), s(1), and s(2)

defined on B0 × [0, 1] such that
sup
β∈B0

t∈[0,1]

||S(j)(β, t)− s(j)(β, t)|| →p 0, j = 0, 1, 2.

(ii) There exists a neighborhood B of β0, B ⊆ B0, and functions s
(j)
W(k)

defined

on B × [0, 1] such that

sup
β∈B
t∈[0,1]

||S(j)
W(k)

(β, t)− s
(j)
W(k)

(β, t)|| →p 0, j = 0, 1, 2; k = 1, 2.

(iii)n1/2{S(0)
W(1)

(β0, t)− s
(0)
W(1)

(β0, t)} →d N(0, σ2(t)) uniformly in t ∈ [0, 1], for

some σ2(t).

E (Lindeberg condition) For any ϵ > 0, j = 1, . . . , p

n−1

∫ 1

0

n∑
i=1

Wi(u)
2[Aij(u)− EW(1)

(β0, u)j ]
2Yi(u)r{β′

0Ai(u)}

× I{n−1/2Wi(u)|Aij(u)− EW(1)
(β0, u)j | > ϵ}λ0(u)du →p 0.

F (Asymptotic regularity conditions) s(j)(β, t) and s
(j)
W(k)

(β, t) are continuous

functions of β ∈ B uniformly in t ∈ [0, 1] that are bounded on B × [0, 1] for
j = 0, 1, 2 and k = 1, 2. For all (β, t) ∈ B × [0, 1] and m = 0, 1,

s(m+1)(β, t) =
∂s(m)(β, t)

∂β
, s

(m+1)
W(k)

(β, t) =
∂s

(m)
W(k)

(β, t)

∂β
.

Here s(0) and s
(0)
W(k)

are bounded away from zero and the matrices Σ and ΣW(k)

are positive definite.

G-1 (Stability of subcohort average)

(i) (Nontrivial subcohort) ñn−1 →p α for some α ∈ (0, 1].

(ii) (Asymptotic normality of subcohort averages at β0) For any ϵ > 0

sup
t∈[0,1]

n−1
n∑

i=1

Wi(t)
2Yi(t)r{β′

0Ai(t)}2I{n−1/2Wi(t)Yi(t)r{β′
0Ai(t)}>ϵ} →p 0,

sup
t∈[0,1]

n−1
n∑

i=1

Wi(t)
2Yi(t)||r(1){β′

0Ai(t)}||2I{n−1/2Wi(t)Yi(t)||r(1){β′
0Ai(t)}||

>ϵ} →p 0,



MARGINAL STRUCTURAL COX MODELS WITH CASE-COHORT SAMPLING 523

and the sequences of distributions of n1/2{Ẽ(β0, t)−E(β0, t)} are tight

on the product space of cadlag functions equipped with the product

Skorohod topology, and so are n1/2{ẼW(1)
(β0, t)−EW(1)

(β0, t)}.

G-2 (Asymptotic stability and regularity of covariance function) There exists a

neighborhood B of β0 and functions q(j)(β, t, u) for j = 0, 1, 2, defined on

B× [0, 1]2 such that q(j)(β, t, u) are continuous functions of β ∈ B uniformly

in (t, u) ∈ [0, 1]2, the q(j) are bounded on B × [0, 1]2 and

sup
β∈B

(t,u)∈[0,1]2

||Q(j)(β, t, u)− q(j)(β, t, u)|| →p 0, j = 0, 1, 2, where

Q(0)(β, t, u) = n−1
n∑

i=1

Wi(t)Yi(t)r{β′
0Ai(t)}Wi(u)Yi(u)r{β′

0Ai(u)},

Q(1)(β, t, u) = n−1
n∑

i=1

Wi(t)Yi(t)r
(1){β′

0Ai(t)}Wi(u)Yi(u)r
(1){β′

0Ai(u)}′,

Q(2)(β, t, u) = n−1
n∑

i=1

Wi(t)Yi(t)r{β′
0Ai(t)}Wi(u)Yi(u)r

(1){β′
0Ai(u)}.

Moreover, supn≥1 E [Q(j)(β, t, u)] for j = 0, 1, 2 are bounded sequences where

E denote expectation.

G-3 (Asymptotic stability of subcohort averages) If Q̃(j)(β, t, u) are covariance

functions based on subcohort members i = 1, . . . , ñ, then

sup
β∈B
t∈[0,1]

||S̃(0)
W(k)

(β, t)− s
(0)
W(k)

(β, t)|| →p 0 k = 1, 2,

the subcohort average converges to the limit of the full cohort in probability

uniformly in β ∈ B and t ∈ [0, 1], and

sup
β∈B

(t,u)∈[0,1]2

||Q̃(j)(β, t, u)− q(j)(β, t, u)|| →p 0, j = 0, 1, 2,

the subcohort covariance functions converge in probability uniformly in β ∈
B and t ∈ [0, 1] to the full cohort covariance functions. In addition,

n1/2{S̃(0)
W(1)

(β0, t)− s
(0)
W(1)

(β0, t)} →d N(0, σ̃2(t)), uniformly in t ∈ [0, 1]

for some σ̃2(t).

All conditions except A and B are extensions of the regularity conditions

from Self and Prentice (1988) by incorporating IPWs. Conditions A and B are

required for IPWs to ensure asymptotic properties of the proposed estimators.
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Condition A: Ŵ (·) and W (·) are assumed to be predictable with respect to the

filtration Ft because weights are determined by predictable processes: A(·), L(·),
and their histories. Then along with the assumption of no misspecification of

the model used to estimate denominator probabilities in W (·), the finite number

of jumps assumption on the treatment and censoring processes are sufficient for

this condition to hold. From a practical point of view, having a finite number

of time points when treatment status can change or when censoring might occur

may be reasonable to assume. For instance, studies often have planned visits at

finite discrete intervals when a patient can have treatment altered. Similarly, the

censoring time for a subject is often assumed to be the last observed visit time

before the subject became lost-to-follow-up.

Condition B: All weights discussed in Section 2.2 satisfy conditions A and B in

general, except the unstabilized weights. Unstabilized weights satisfy conditions

A and B only when the assumption of finite support of A(·) and C(·) is met. The

IPWs are strictly positive by (2.3).

Conditions C and D: Condition C is the same as in Self and Prentice (1988).

When the IPWs are equal to 1, S
(j)
W(k)

in D is S(j) in Self and Prentice (1988)

for all j = 0, 1, 2 and k = 1, 2. Then ΣW(k)
defined in Section 3 and ∆α defined

in Theorem 3.5 are Σ and ∆ defined in Self and Prentice (1988), respectively.

Hence, ΣŨ in Theorem 3.5 is Σ + ∆, the asymptotic covariance matrix of the

case-cohort score statistic in Self and Prentice (1988), in the absence of IPWs.

Condition E: If the treatment process A(·) is bounded (as assumed here) and B

and F are satisfied, then E holds trivially.

Condition F: eW(k)
can be interpreted as the weighted average of a treatment func-

tion with the weights taking an inverse-probability weighted exponential form.

The positive definite condition on Σ in Andersen and Gill (1982) can easily be

extended to the ΣW(k)
assuming W (t) are bounded away from zero on t ∈ [0, 1].

Condition G: This is the same as condition G in Self and Prentice (1988), incor-

porating individual-specific time-varying weights Wi(t)(i = 1, . . . , n). Conditions

A-F are sufficient to prove consistency and asymptotic normality of β̂. To show

asymptotic properties of β̃ and β∗, this additional condition is required to ensure

asymptotic stability of certain quantities estimated using subcohort data.
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