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Abstract: For survival data with high-dimensional covariates, results generated in

the analysis of a single dataset are often unsatisfactory because of the small sample

size. Integrative analysis pools raw data from multiple independent studies with

comparable designs, effectively increases sample size, and has better performance

than meta-analysis and single-dataset analysis. In this study, we conduct integra-

tive analysis of survival data under the accelerated failure time (AFT) model. The

sparsity structures of multiple datasets are described using homogeneity and het-

erogeneity models. For variable selection under the homogeneity model, we adopt

group penalization approaches; for variable selection under the heterogeneity model,

we use composite penalization and sparse group penalization approaches. As a ma-

jor advancement from existing studies, the asymptotic selection and estimation

properties are rigorously established. Simulation study is conducted to compare

different penalization methods and against alternatives. We also analyze four lung

cancer prognosis datasets with gene expression measurements.

Key words and phrases: Consistency properties, homogeneity and heterogeneity

models, integrative analysis, penalized selection.

1. Introduction

In survival studies, data with high-dimensional covariates are commonly en-

countered. A lung cancer prognosis study with gene expression measurements

is presented in this article, and more are available in the literature. With such

“large p, small n” data, results generated in the analysis of a single dataset

are often unsatisfactory because of the small sample size (Guerra and Goldstein

(2009); Liu et al. (2013); Ma et al. (2011b)). For outcomes of common inter-

est, there are often multiple independent studies with comparable designs. This

makes it possible to pool multiple datasets, increase sample size, and improve

over single-dataset analysis. As a family of multi-dataset analysis methods, inte-

grative analysis methods pool and analyze raw data from multiple studies, and

they outperform classic meta-analysis methods that analyze multiple datasets

separately before combining summary statistics.

http://dx.doi.org/10.5705/ss.2014.194
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In this article, we conduct an integrative analysis of multiple independent

survival datasets under the accelerated failure time (AFT) model. The analy-

sis goal is to identify, given a large number of measured covariates, important

markers associated with survival. In this we adopt penalization, the choice of

many high-dimensional studies. A large number of penalization methods have

been developed for single-dataset analysis. However because of the multi-dataset

settings and heterogeneity across datasets, they are not applicable to integrative

analysis. The sparsity structures of multiple datasets can be described using ho-

mogeneity and heterogeneity models. Different models demand marker selection

with different properties and hence different methods. This makes integrative

analysis even more complicated. Penalization methods for integrative analysis

have been developed (Liu et al. (2013); Ma et al. (2011b)), but not in a systematic

manner.

This study makes advances from single-dataset analysis and meta-analysis by

conducting integrative analysis of multiple heterogeneous datasets. It conducts

more systematic investigation than existing integrative analysis studies such as

Liu et al. (2013); Ma et al. (2011b). And more importantly, it rigorously es-

tablishes the selection and estimation properties not previously examined. The

theoretical development is nontrivial because of data complexity, model settings,

and penalties. Properties of composite penalization and sparse group penal-

ization have not been studied for single-dataset analysis under the AFT model.

Thus our study can provide insights for single-dataset penalization methods. Our

study also advances from existing studies by conducting systematic simulations

and direct comparisons of multiple methods.

Data and model settings are described in Section 2. Penalized integrative

analyses under homogeneity and heterogeneity models are investigated in Sec-

tions 3 and 4, respectively. Our numerical study is reported on in Section 5. The

article concludes with discussion in Section 6. Technical details and additional

analysis results are in the Appendix.

2. Integrative Analysis under AFT Model

Consider the integrative analysis of survival data from M independent stud-

ies. In study m(= 1, . . . ,M) with nm iid subjects, let Tm = (Tm
1 , . . . , T

m
nm

)⊤

be the logarithm of failure times and Xm ∈ Rnm×pm be the predictor matrix.

Assume the AFT model

Tm = Xmβm + ϵm, (2.1)

where βm is the vector of regression coefficients, and ϵm is the vector of random

errors. With proper normalization, the intercept term has been omitted. Assume

that all datasets measure the same set of covariates. Then p1 = · · · = pM = p.

When different datasets have mismatched covariate sets, a rescaling approach
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(Ma, Huang and Song (2011a); Liu et al. (2013)) can be adopted. The proposed
approaches are then applicable with minor modifications.

Let β = (β1, . . . ,βM ) = (β1, . . . ,βp)
⊤, where βj = (β1j , . . . , β

M
j )⊤ consists

of the coefficients of variable j in all M datasets. Write β = (βij)p×M with
its true value β∗, where βij = βji . With heterogeneity across datasets, βmj is

not necessarily equal to βkj for m ̸= k. Under right censoring, one observes
(Y m, δm,Xm) with Y m = Tm ∧ Cm, where Cm is the vector of log censoring
times, and δm = 1{Tm ≤ Cm}.

When the distribution of random errors is unknown, there are multiple es-
timation approaches (Ying (1993)). We adopt the weighted least squares (LS)
approach (Stute (1993)) that has the lowest computational cost and is desirable
with high-dimensional data. Let F̂m be the Kaplan-Meier estimator of the distri-
bution function Fm of Tm. Let Y m

(1) ≤ · · · ≤ Y m
(nm) be the order statistics of Y

m
i ’s.

F̂m can be written as F̂m(y) =
∑nm

i=1 ω
m
i 1{Y m

i ≤ y}, where ωm
i ’s are expressed

as

ωm
1 =

δm(1)

nm
and ωm

i =
δm(i)

nm − i+ 1

i−1∏
j=1

(
nm − j

nm − j + 1

)δm
(j)

, i = 2, . . . , nm.

Here δm(1), . . . , δ
m
(nm) are the associated censoring indicators of the ordered Y m

i ’s.
Write Wm = diag{nmωm

1 , . . . , nmω
m
nm

}. Then for the M datasets combined, the
weighted LS approach is to minimize

L̃(β) =
1

2n

M∑
m=1

(Y m −Xmβm)⊤Wm(Y m −Xmβm), (2.2)

in which the components of Y m and Xm need to be sorted. We need an assump-
tion.

Condition 1. For all vector ν with ∥ν∥2 = 1 and any t ≥ 0, P (|ν⊤ϵm| ≥ t) ≤
2 exp

(
−t2/2σ2m

)
, and ϵm is independent of Wm.

The total sample size is n =
∑M

m=1 nm. The important predictor index sets of
M datasets are labeled as S1, . . . , SM , respectively. Then S =

∪M
m=1 Sm denotes

the important set. Let Sc and |S| denote the complement and cardinality of set
S, respectively. Let A = {(i, j) : β∗ij ̸= 0} and B = {(i, j) : i ∈ S, j = 1, . . . ,M}.
Let βA and βB denote the components of β indexed by A and B, respectively.
For a p× 1 vector v and index set I ⊂ {1, . . . , p}, let vI denote the components
of v indexed by I, and let Xm,i denotes the transposition of the ith row of Xm.

Then for any index set I ⊂ {1, . . . , p}, Xm
I =

(
Xm,1

I , . . . ,Xm,nm

I

)⊤
.

2.1. Homogeneity and heterogeneity models

The sparsity structure of β can be described using homogeneity and het-
erogeneity models. Under the homogeneity model, βm’s have the same sparsity
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structure, so I(βmj = 0) = I(βkj = 0) for all (m, k, j)’s. The intuition is that if the

M datasets are “close enough”, then the same set of markers should be identified

in all datasets. Under this model, we only need to determine whether a covariate

is important or not. With the (sometimes great) differences across datasets,

the homogeneity model may be too restrictive. The heterogeneity model allows

different datasets to have different sparsity structures. Under this model, we need

to determine whether a covariate is associated with any response at all and, for

an important covariate, we need to determine in which datasets it is important.

That is, a two-level selection is needed.

3. Integrative Analysis under the Homogeneity Model

Under this model, the required one-level selection can be achieved using

group penalization. In terms of formulation and computation, the development

of group penalization methods in integrative analysis share some similarity with

that in single-dataset analysis (Bühlmann and van de Geer (2011)), but with

the significantly different data settings and adoption of the AFT model, the

theoretical development has significant differences.

3.1. Group LASSO

Consider the group LASSO penalized objective function

L(β) =
1

2n

M∑
m=1

(Y m −Xmβm)⊤Wm(Y m −Xmβm) + λ

p∑
j=1

∥βj∥2, (3.1)

where λ is the tuning parameter and ∥βj∥2 =
[
(β1j )

2 + · · ·+ (βMj )2
]1/2

.

For set S, define the estimate β̂B = (β̂1
S , . . . , β̂

M
S ) as

β̂B = argmin
βB

{
1

2n

M∑
m=1

(Y m−Xm
S βm

S )⊤Wm(Y m−Xm
S βm

S )+λ
∑
j∈S

∥βj∥2
}
. (3.2)

For the group LASSO to be able to consistently identify the true sparsity struc-

ture, one needs a local solution β̂glasso = {β̂glasso
B , β̂glasso

Bc } for (3.1), where

β̂glasso
B = β̂B and β̂glasso

Bc = 0. Take

ρ̄m2 = λmax{n−1
m Xm⊤

S Wm
2Xm

S }, ρm
1

= λmin{n−1
m Xm⊤

S WmXm
S },

Λm =max
j

{n−1
m Xm⊤

j Wm
2Xm

j }, ψm = ∥Xm⊤
Sc WmXm

S (Xm⊤
S WmXm

S )−1∥∞.

Theorem 1. Let Condition 1 hold.

1. There exists a local minimizer β̂B of (3.2) such that
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Pr
{
∥β̂m

S − βm
S

∗∥2 ≤ λ
√

|S| 4

ρm
1

n

nm
,m = 1, . . . ,M

}
≥ 1−

M∑
m=1

exp
(
− λ2|S|n2

2σ2mρ̄
m
2 nm

)
.

2. If the ir-representable conditions ψm ≤ Dm < 1 hold. Then β̂glasso = {β̂glasso
B ,

β̂glasso
Bc } with β̂glasso

B = β̂B, β̂
glasso
Bc = 0 is a local minimizer of (3.1) with

probability at least

1−
M∑

m=1

exp

(
− λ2|S|n2

2σ2mρ̄
m
2 nm

)
− 2p

M∑
m=1

exp

{
− n2λ2(1−Dm)2

2nmΛmσ2m(1 +Dm)2

}
.

In single-dataset analysis, Zhao and Yu (2006) and followup studies establish
selection consistency under the ir-representable condition. Under a similar con-
dition for individual datasets, integrative analysis also has selection consistency.

With the probability bounds in Theorem 1, we can obtain a more straight-
forward understanding of the penalized estimators.

Corollary 1. Suppose that for m = 1, . . . ,M , ρm
1
, ρ̄m2 , and Λm are bounded away

from zero and infinity. Assume that n/nm = O(1), |S| ≪ n, and log p = O(nα)
with α < 1. Under Condition 1 and the ir-representable conditions in Theorem
1, if |S|−1/2min

j∈S
∥β∗

j ∥2 ≫ λ ≫ n(α−1)/2, then the group LASSO can identify the

true sparsity structure and ∥β̂m
S − βm

S
∗∥2 = Op(λ

√
|S|), m = 1, . . . ,M .

Remark 1. It is known that in single-dataset analysis the group LASSO is group
selection consistent under some variants of the ir-representable condition, see
Huang, Breheny, and Ma (2012) and others for reference. Similar conditions are
needed in the integrative analysis with group LASSO. The conditions in Corollary
1 on ρm

1
, ρ̄m2 , and Λm are on the design matrixes and censoring probabilities.

Corollary 1 shows that even when the group LASSO can identify the true sparsity
structure, λ should be much large than n−1/2, leading to ∥β̂m

S −βm
S

∗∥2 ≫
√

|S|/n.

3.2. Concave 2-norm group selection

Consider penalization built on concave penalties. Notable examples of con-
cave penalty include SCAD (Fan and Li (2001)) and MCP (Zhang (2010)).
For t ≥ 0, the SCAD penalty has first order derivative p′λ(t) = λ{I(t ≤ λ)
+[(aλ− t)+/((a− 1)λ)]I(t > λ)}, for some a > 2. The MCP has derivative
p′λ(t) = λ (1− t/(aλ))+, for some a > 1. Consider the objective function

L(β) =
1

2n

M∑
m=1

(Y m −Xmβm)⊤Wm(Y m −Xmβm) +

p∑
j=1

pλ(∥βj∥2), (3.3)
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where the penalty pλ(·) satisfies the following.

Condition 2. λ−1pλ(t) is concave in t ∈ [0,∞) with a continuous derivative

λ−1p′λ(t) satisfying λ−1p′λ(0+) ∈ (0,∞). In addition, λ−1p′λ(t) is increasing in

λ ∈ (0,+∞), and λ−1p′λ(0+) is independent of λ.

Condition 3. θ = inf
{
t/λ : λ−1p′λ(t) = 0, t ≥ 0

}
is bounded.

Remark 2. Condition 2 was also considered by Fan and Lv (2011). LASSO,

SCAD, and MCP all satisfy this condition. Condition 3 is added to guarantee

unbiasedness. LASSO does not satisfy Condition 3 since λ−1p′λ(t) = 1 leads to

θ = ∞, while SCAD and MCP satisfy with θ = a. Another approach is the

2-norm group bridge (Ma et al. (2012)). Under certain conditions, its selection

consistency was established in Ma, Huang and Song (2011a). The bridge penalty

does not satisfy Condition 3 and needs to be separately investigated.

Consider the properties of concave 2-norm group penalization. Define the

oracle estimator as β̂oracle = {β̂oracle
B , β̂oracle

Bc } with β̂oracle
B = β̃B and β̂oracle

Bc = 0,

where

β̃B = argmin
βS

{
1

2n

M∑
m=1

(Y m −Xm
S βm

S )⊤Wm(Y m −Xm
S βm

S )

}
. (3.4)

Theorem 2. Let Conditions 1−3 hold.

1. For any Rm <
√
nm/|S|, we have

Pr

(
∥β̃m

S −βm
S

∗∥ ≤

√
|S|
nm

Rm, m = 1, . . . ,M

)
≥ 1−

M∑
m=1

exp

{
−R2

m

|S|(ρm
1
)2

8ρ̄m2 σ
2
m

}
.

2. Suppose λ < minj∈S ∥β∗
j ∥2/2θ and R†

m ≤ [minj∈S ∥β∗
j ∥2/2

√
M ]

√
nm/|S|.

Then with probability at least

1−
M∑

m=1

exp

{
−

|S|(ρm
1
)2

8ρ̄m2 σ
2
m

R†2
m

}
− 2p

M∑
m=1

exp

{
−

n2p′2λ (0+)

2nmΛmσ2m(1 + ψm)2

}
,

β̂oracle is a local minimizer of (3.3).

Corollary 2. Suppose that for m = 1, . . . ,M , ρm
1
, ρ̄m2 and Λm are bounded away

from zero and infinity, n/nm = O(1), |S| ≪ n, log p = O(nα) with α < 1, and

ψm = O(nα1) with α1 ∈ [0, 1/2). Under Conditions 1−3, if λ < minj∈S ∥β∗
j ∥/2θ

and λ ≫ n(α−1)/2+α1, then the concave 2-norm group selection can identify the

true sparsity structure and ∥β̂m
S − βm

S
∗∥2 = Op(

√
|S|/nm).
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Remark 3. When the concave penalty is used, the upper bound of ψm can grow

to ∞ at rate O(nα1). In contrast, the group LASSO needs the ir-representable

conditions. Moreover, the group LASSO yields a larger bias than the concave

2-norm group selection.

4. Integrative Analysis under the Heterogeneity Model

Under this model, two-level selection is needed and can be achieved using

composite penalization and sparse group penalization. Properties of composite

penalization have been studied in single-dataset analysis, however, under much

simpler data and model settings. For sparse group penalization built on concave

penalties, properties have not been established for single-dataset analysis.

Define the oracle estimator β̌ = {β̌A, 0} where

β̌A = argmin
βA

{
1

2n

M∑
m=1

(Y m −Xm
Sm

βm
Sm

)⊤Wm(Y m −Xm
Sm

βm
Sm

)

}
. (4.1)

Let ρ̄∗m2 = λmax{n−1
m Xm⊤

Sm
Wm

2Xm
Sm

}, ρ∗m
1

= λmin{n−1
m Xm⊤

Sm
WmXm

Sm
}, and

ψ∗
m = ∥Xm⊤

Sc
m
WmXm

Sm
(Xm⊤

Sm
WmXm

Sm
)−1∥∞.

Theorem 3. Under Conditions 1−3, we have

Pr

{
∥β̌m

Sm
− βm

Sm

∗∥2 ≤

√
|Sm|
nm

Cm,m = 1, . . . ,M

}

≥ 1−
M∑

m=1

exp
{
− C2

m

|Sm|(ρ∗m
1

)2

8ρ̄∗m2 σ2m

}
with Cm <

√
nm/|Sm|.

Corollary 3. Suppose that for m = 1, . . . ,M , ρ∗m
1

and ρ̄∗m2 are bounded away

from zero and infinity, n/nm = O(1), and |S| ≪ n. Under Conditions 1−3,

∥β̌m
Sm

− βm
Sm

∗∥2 = Op(
√

|Sm|/nm) for m = 1, . . . ,M .

4.1. Composite penalization

Consider the objective function

L(β) =
1

2n

M∑
m=1

(Y m−Xmβm)⊤Wm(Y m−Xmβm)+

p∑
j=1

pO,λO

( M∑
m=1

pI,λI
(|βmj |)

)
,

(4.2)

where the outer penalty pO,λO
(·) determines the overall importance of a variable,

and the inner penalty pI,λI
(·) determines its individual importance. λO and λI
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are tuning parameters. A specific example is the composite MCP (cMCP) where
both pO,λO

and pI,λI
are MCP.

Condition 4. θO = inf

{
|t|
λO

:
p′O,λO

(|t|)
λO

= 0

}
and θI = inf

{
|t|
λI

:
p′I,λI

(|t|)
λI

= 0

}
are bounded.

Take J−m = max
{∑M

i̸=m I(β
i
j ̸= 0), j ∈ S − Sm

}
and fmax

I = maxt pI,λI
(t).

Theorem 4. Assume Conditions 1−2 and 4. If

C†
m ≤

min
(j,m)∈A

|βmj
∗|

2

√
nm
|Sm|

, λI <

min
(j,m)∈A

|βmj
∗|

2θI
, λOθO > fmax

I max
m

(J−m),

then β̌ is a local minimizer of (4.2) with probability at least 1− τ2, where

τ2=
M∑

m=1

exp
{
− C†2

m

|Sm|(ρ∗m
1

)2

8ρ̄∗m2 σ2m

}
+2|S|

M∑
m=1

exp
{
−
n2p′2I,λI

(0+)p′2O,λO
(J−mfmax

I )

2nmρ̄∗m2 σ2m(1 + ψ∗
m)2

}
+2(p− |S|)

M∑
m=1

exp
{
−
n2p′2I,λI

(0+)p′2O,λO
(0+)

2nmΛmσ2m(1 + ψ∗
m)2

}
.

Corollary 4. Suppose that for m = 1, . . . ,M , ρ∗m
1
, ρ̄∗m2 , and Λm are bounded

away from zero and infinity, n/nm = O(1), |S| ≪ n, log p = O(nα) with
α < 1, and ψ∗

m = O(nα1) with α1 ∈ [0, 1/2). Under Conditions 1, 2 and 4,
if λI < min(j,m)∈A |βmj

∗|/2θI , λOθO = Mfmax
I , and λIλO ≫ n(α−1)/2+α1, com-

posite penalization can achieve two-level selection consistency.

Remark 4. Liu, Huang and Ma (2014) also suggests the composition of MCP
and LASSO. We conjuncture that it is estimation consistent, and can consistently
identify the overall importance of variables, but is not consistent at the individual
level in general.

4.2. Sparse group penalization

Consider the objective function

L(β) =
1

2n

M∑
m=1

(Y m −Xmβm)⊤Wm(Y m −Xmβm) +

p∑
j=1

p1,λ1(∥βj∥2)

+

p∑
j=1

M∑
m=1

p2,λ2(|βmj |). (4.3)

λ1 and λ2 are tuning parameters. Here the penalty is the sum of group and
individual penalties. The first penalty determines the overall importance of a
variable, and the second penalty determines its individual importance.
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Consider penalties p1,λ1 and p2,λ2 that satisfy Conditions 2 and 4 with

bounded constants θ1 and θ2.

Theorem 5. Suppose that Conditions 1−2 and 4 hold. If

C†
m ≤

min
(j,m)∈A

|βmj
∗|

2

√
nm
|Sm|

, λ1 <

min
j∈S

∥βj
∗∥2

2θ1
, λ2 <

min
(j,m)∈A

|βmj
∗|

2θ2
,

then β̌ is a local minimizer of (4.3) with probability at least 1− τ3, where

τ3 =

M∑
m=1

exp

{
− C†2

m

|Sm|(ρ∗m
1

)2

8ρ̄∗m2 σ2m

}
+ 2|S|

M∑
m=1

exp

{
−

n2p′22,λ2
(0+)

2nmρ̄∗m2 σ2m(1 + ψ∗
m)2

}

+2(p− |S|)
M∑

m=1

exp

{
−
n2[p′1,λ1

(0+) + p′2,λ2
(0+)]2

2nmΛmσ2m(1 + ψ∗
m)2

}
.

Thus the sparse group penalization also enjoys the consistency properties.

For theoretical purposes, p1,λ1 and p2,λ2 do not need to take the same form, but

using the same p1,λ1 and p2,λ2 may facilitate computation.

Corollary 5. Suppose that for m = 1, . . . ,M , ρ∗m
1
, ρ̄∗m2 , and Λm are bounded

away from zero and infinity, n/nm = O(1), |S| ≪ n, log p = O(nα) with α < 1,

and ψ∗
m = O(nα1) with α1 ∈ [0, 1/2). Under Conditions 1−2 and 4, if λ1 <

minj∈S ∥βj
∗∥2/2θ1, λ2 < min(j,m)∈A |βmj

∗|/2θ2, λ1 ≫ n−1/2+α1 and λ1 + λ2 ≫
n(α−1)/2+α1, sparse group penalization achieves two-level selection consistency.

5. Numerical Study

5.1. Computation

With the weighted LS approach, the loss function (2.2) has a least squares

form. In single-dataset analysis with a LS loss, several computational algorithms

have been developed for group penalization, composite penalization, and sparse

group penalization (Friedman, Hastie, and Tibshirani (2010); Breheny and Huang

(2009); Liu, Huang and Ma (2014)). Here we adopt the existing gradient descent

algorithms with minor modifications. Convergence properties can be derived

following Breheny and Huang (2011) and references therein. Details are omitted

here. The penalization methods involve the tuning parameter λ(λI , λO, λ1, λ2)

and the theorems provide results on the asymptotic order. MCP also involves

an additional regularization parameter a. We consider a small number of values

for a, in particular including 1.8, 3, 6, and 10. In numerical study, we use 5-fold

cross validation for tuning parameter selection.
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5.2. Simulation

We simulated three datasets, each with 100 subjects. For each subject,

we simulated 1,000 covariates with a joint normal distribution, having marginal

means equal to zero and variances equal to one. Consider two correlation struc-

tures, the first of which is the auto-regressive (AR) correlation, where covariates

j and k have correlation coefficient ρ|j−k|. ρ = 0.2, 0.5, and 0.8, corresponding to

weak, moderate, and strong correlations, respectively. The second is the banded

correlation. Here three scenarios were considered: in the first scenario, covari-

ates j and k have correlation coefficient 0.3 if |j − k| = 1 and 0 otherwise; in the

second, covariates j and k have correlation coefficient 0.6 if |j − k| = 1, 0.3 if

|j−k| = 2, and 0 otherwise; in the third, covariates j and k have correlation coef-

ficient 0.6 if |j−k| = 1, 0.3 if |j−k| = 2, 0.15 if |j−k| = 3, and 0 otherwise. Both

homogeneity and heterogeneity models were simulated. Under the homogeneity

model, all three datasets had the same twenty important covariates; under the

heterogeneity model, each dataset had twenty important covariates. The three

datasets shared ten important covariates in common, and the rest important co-

variates were dataset-specific. Under both models, there were a total of sixty true

positives. The nonzero coefficients were randomly generated from a normal with

mean zero and variance 0.3125 and 1.25, representing low and high signal levels.

The log event times were generated from the AFT models with intercept 0.5 and

N(0,1) random errors. The log censoring times were independently generated

from uniforms. The overall censoring rate was about 30%.

The simulated data were analyzed using group MCP (GMCP), composite

MCP (cMCP), and sparse group MCP (SGMCP). We also considered two al-

ternatives. The first was a meta-analysis method, where each dataset was ana-

lyzed separately using MCP, and then the analysis results were combined across

datasets. The second was a pooled analysis method, where the three datasets

were combined into a big data matrix, and then variable selection was conducted

using MCP. The differences across simulated datasets were smaller than those

encountered in practice, which favors meta- and pooled analysis. We acknowl-

edge that multiple other methods are applicable to the simulated data. The two

alternatives have the closest framework to the proposed methods.

Summary results based on 200 replicates are shown in Table 1 and 2. Per-

formance of the integrative analysis methods, as well as the alternatives, depend

on the similarity of sparsity structures across datasets, correlation structure, and

signal level. As an example of the homogeneity model, consider the correlation

structure “Banded 2” in Table 1. The homogeneity model favors GMCP, which

identifies 34.7 true positives with an average model size 45.2. The cMCP method

identifies fewer true positives (30.5), which a large number of false positives are
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Table 1. Simulation at the low signal level. In each cell, the first row is the
number of true positives (sd), and the second row is model size (sd).

Correlation Meta Pooled GMCP cMCP SGMCP
Homogeneity model

AR ρ = 0.2
30.3( 5.7) 29.0( 8.4) 48.8(6.2) 42.6( 4.2) 36.5(6.7)
62.4(19.1) 56.5(29.3) 57.4(9.4) 193.2(13.9) 39.1(8.3)

AR ρ = 0.5
20.4( 6.0) 18.3( 6.7) 39.5( 7.9) 33.3( 8.1) 28.6(6.9)
38.7(17.7) 31.2(16.3) 50.8(12.4) 160.6(83.0) 30.9(9.1)

AR ρ = 0.8
10.9( 2.6) 10.3( 3.3) 24.8( 7.7) 18.3( 4.1) 16.8(5.2)
17.9( 6.1) 15.5( 6.4) 34.4(12.8) 75.4(59.2) 18.6(7.2)

Banded 1
26.7( 5.8) 25.1( 7.6) 46.2( 7.6) 40.3( 4.5) 34.7(6.2)
54.3(18.7) 48.7(26.1) 56.5(12.6) 196.6(12.7) 37.8(8.9)

Banded 2
17.6( 4.5) 16.1( 5.0) 34.7( 8.3) 30.5( 6.0) 25.6(5.9)
30.4(11.6) 25.4(12.5) 45.2(13.7) 149.7(95.0) 27.4(7.2)

Banded 3
17.7( 5.3) 16.2( 4.9) 37.3( 7.3) 31.4( 5.8) 26.1(6.3)
32.1(18.6) 26.8(12.9) 51.1(13.7) 166.3(81.7) 28.2(7.6)

Heterogeneity model

AR ρ = 0.2
21.3( 5.1) 20.2( 5.7) 26.0( 9.0) 37.6( 5.2) 22.5( 7.2)
35.5(13.8) 31.4(13.9) 53.0(20.3) 199.2( 40.3) 28.4(11.0)

AR ρ = 0.5
16.8( 5.1) 16.7( 5.3) 22.8( 6.2) 31.7( 6.9) 18.8( 5.7)
28.5(10.8) 27.3(12.0) 45.5(15.2) 154.8( 94.4) 21.9( 7.7)

AR ρ = 0.8
10.6( 3.8) 10.3( 3.5) 15.2( 5.5) 20.0( 4.9) 11.9( 4.2)
17.0( 6.3) 15.3( 6.3) 31.4(12.9) 99.9( 84.4) 15.3( 6.8)

Banded 1
20.4( 4.8) 19.9( 6.0) 25.2( 6.7) 35.3( 6.7) 20.9( 6.0)
35.2(15.2) 31.3(13.9) 48.9(14.5) 172.2( 77.9) 24.9( 7.9)

Banded 2
16.1( 4.0) 15.1( 3.9) 21.4( 6.1) 28.0( 5.4) 17.5( 4.8)
24.9( 8.4) 22.8( 7.7) 44.0(12.2) 129.9(103.4) 21.0( 6.2)

Banded 3
15.9( 3.6) 15.2( 4.4) 20.2( 6.0) 27.1( 6.2) 17.8( 4.9)
26.8(10.8) 24.3(10.2) 43.3(14.2) 102.7(115.7) 22.3( 7.5)

identified, with an average model size 149.7. SGMCP identifies 25.6 true posi-

tives, with a very small number of false positives (average model size 27.4). The

meta-analysis and pooled analysis identify many fewer true positives (17.6 and

16.1, respectively). As an example of the heterogeneity model, consider the cor-

relation structure “AR ρ = 0.5” in Table 2. The cMCP method identifies the

most true positives (42.1 on average), but at the price of a large number of false

positives (average model size 185.1). GMCP identifies 34.6 true positives and, by

forcing the same sparsity structure across datasets, it also identifies a consider-

able number of false positives (average model size 61.0). SGMCP identifies 26.9

true positives with an average model size 30.2. The meta-analysis and pooled

analysis methods identify fewer true positives.
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Table 2. Simulation at the high signal level. In each cell, the first row is the
number of true positives (sd), and the second row is model size (sd).

Correlation Meta Pooled GMCP cMCP SGMCP
Homogeneity model

AR ρ = 0.2
39.4( 4.5) 39.2( 5.4) 58.3( 2.3) 52.3( 2.9) 49.9(3.8)
49.9( 9.3) 48.8(11.4) 60.1( 4.2) 174.6(11.6) 50.1(4.1)

AR ρ = 0.5
30.1( 5.0) 30.0( 6.0) 55.4( 3.6) 46.5( 3.3) 44.2(4.0)
42.0(10.1) 41.8(12.3) 58.3( 4.3) 179.8(15.3) 44.5(4.2)

AR ρ = 0.8
17.4( 3.8) 17.1( 3.9) 46.5( 6.7) 29.5( 6.4) 29.6(5.9)
24.2( 6.5) 23.6( 7.3) 54.1(10.6) 103.8(97.8) 30.7(6.1)

Banded 1
36.9( 4.7) 35.9( 5.1) 57.2( 2.7) 50.3( 2.9) 47.9(4.3)
47.3( 8.4) 43.7( 7.6) 58.7( 4.4) 178.4(12.1) 48.3(4.4)

Banded 2
25.9( 4.3) 25.5( 4.7) 53.3( 4.6) 41.1( 3.4) 38.6(5.5)
36.3( 8.8) 34.4( 9.1) 57.8( 8.3) 186.2(16.7) 39.7(6.1)

Banded 3
27.1( 3.8) 26.5( 4.3) 53.7( 4.5) 42.4( 4.4) 40.8(4.7)
37.3( 8.4) 35.8( 8.3) 57.8( 7.0) 179.8(21.4) 42.0(5.6)

Heterogeneity model

AR ρ = 0.2
34.4(4.1) 34.0(4.1) 40.0( 4.2) 48.91( 3.2) 33.9(4.6)
39.7(6.0) 37.9(4.8) 69.2( 7.9) 180.4(18.9) 36.6(4.7)

AR ρ = 0.5
25.9(4.5) 24.1(5.9) 34.6( 5.7) 42.1( 4.1) 26.9(4.8)
32.7(6.6) 29.5(7.3) 61.0( 9.8) 185.1(18.0) 30.2(6.2)

AR ρ = 0.8
16.4(3.4) 15.6(3.5) 23.7( 5.6) 26.8( 5.3) 17.5(4.4)
22.2(5.1) 21.3(6.5) 44.3(10.3) 157.5(87.3) 20.9(5.6)

Banded 1
30.8(4.1) 30.2(4.6) 36.8( 5.3) 45.8( 3.1) 30.0(5.2)
36.0(5.8) 35.4(6.7) 64.1( 9.3) 177.7(17.3) 32.6(6.7)

Banded 2
22.9(4.6) 22.4(4.1) 32.1( 5.9) 36.6( 4.3) 25.2(4.9)
29.3(7.8) 27.5(5.4) 57.4( 8.4) 169.2(51.2) 28.6(5.3)

Banded 3
23.0(4.6) 22.6(4.2) 31.6( 6.2) 37.4( 5.0) 24.2(6.8)
28.7(5.8) 27.9(5.3) 57.1( 9.9) 169.2(42.1) 26.6(7.5)

5.3. Analysis of lung cancer prognosis data

In the U.S., lung cancer is the most common cause of cancer death for both

men and women. To identify genetic markers associated with the prognosis of

lung cancer, gene profiling studies have been extensively conducted. We follow

Xie et al. (2011) and collect data from four independent studies with gene expres-

sion measurements. The UM (University of Michigan Cancer Center) dataset has

a total of 92 patients, with 48 deaths during follow-up. The median follow-up is

55 months. The HLM (Moffitt Cancer Center) dataset has a total of 79 patients,

with 60 deaths during follow-up. The median follow-up is 39 months. The DFCI

(Dana-Farber Cancer Institute) dataset has a total of 78 patients, with 35 deaths

during follow-up. The median follow-up is 51 months. The MSKCC dataset has

a total of 102 patients, with 38 deaths during follow-up. The median follow-up

is 43.5 months.
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Table 3. Analysis of lung cancer data using cMCP: identified genes and their
estimates.

Probe Gene UM HLM DFCI MSKCC
201462 at SCRN1 0.0045
202637 s at ICAM1 0.0037
203240 at FCGBP 0.0024
203876 s at MMP11 -0.0013
203917 at CXADR 0.0040
203921 at CHST2 0.0024
204855 at SERPINB5 -0.0008
205234 at SLC16A4 -0.0016
205399 at DCLK1 -0.0031
206461 x at MT1H -0.0008
206754 s at CYP2B6 0.0048
206994 at CST4 -0.0017
207850 at CXCL3 -0.0155
208025 s at HMGA2 -0.0016
208451 s at C4A 0.0038
208607 s at SAA2 0.0044
209343 at EFHD1 0.0028
212328 at LIMCH1 0.0028
212338 at MYO1D 0.0019
213338 at TMEM158 -0.0003
214452 at BCAT1 0.0004
215867 x at CA12 -0.0054
218677 at S100A14 -0.0081
219654 at PTPLA -0.0109
219747 at NDNF 0.0001
220952 s at PLEKHA5 -0.0018
221841 s at KLF4 -0.0024
222043 at CLU 0.0008

Gene expressions were measured using Affymetrix U122 plus 2.0 arrays. A

total of 22,283 probe sets were profiled in the four datasets. We first conducted

gene expression normalization for each dataset separately, and normalization

across datasets was also conducted to enhance comparability. To further remove

noise and improve stability, we conducted a marginal screening and kept the top

2,000 genes for downstream analysis. The expression of each gene in each dataset

was normalized to have zero mean and unit variance.

We analyzed data using cMCP (Table 3), SGMCP (Table S2.1), meta-

analysis (Table S2.2), pooled analysis (Table S2.3), and GMCP (Table S2.4).

Although there is overlap, different methods identified significantly different sets

of genes. The cMCP method identifies more genes, particularly many more than

SGMCP. Such a result fits the pattern observed in simulation, but here we are
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not able to objectively evaluate the marker selection results. To provide further
insights, we evaluated prediction performance using a cross-validation based ap-

proach. We split the samples into a training and a testing set with size 3:1.
Estimates were generated using the training set samples and used to make pre-
diction for the testing set samples. We separated the testing set samples into two

sets with equal sizes based on the Xmβm’s. The logrank statistic was computed,
evaluating survival difference of the two sets. To reduce the risk of an extreme
split, we repeated this process 100 times and computed the average logrank statis-
tics as 7.65 (cMCP), 4.95 (SGMCP), 5.35 (meta-analysis), 5.2 (pooled analysis),

and 6.45 (GMCP). All methods were able to separate samples into sets with
different survival risk. The cMCP method had the best prediction performance
(p-value 0.0057).

6. Discussion

We have studied the integrative analysis of survival data under the AFT
model. Existing research on this topic has been scattered, and this is the first
systematic study of this complicated problem. Both homogeneity and hetero-

geneity models have been considered, along with multiple penalization methods.
As against existing studies, the present study rigorously establishes the selection
and estimation consistency properties. Although some theoretical development
was motivated by existing studies, the heterogeneity across multiple datasets and

specific data and model settings were new. Especially, the properties of sparse
group penalization have not been studied in single-dataset analysis. The com-
putational aspect here is similar to that in the literature and is largely omitted.

Tuning parameter selection using cross validation shows reasonable performance
in simulation and data analysis. Theoretical investigation of the consistency
of cross validation is challenging, and postponed. Our study directly compares

different methods. The advantage of GMCP under the homogeneity model is
expected. Under the heterogeneity model, cMCP may identify a few more true
positives, but at the price of a large number of false positives. More studies on

finite sample properties are needed. In simulation, a total of 24 settings were
considered and they showed similar patterns. In data analysis, different methods
identify different sets of genes. The observed patterns are similar to those in

simulation. The cMCP identifies the most genes and also has the best prediction
performance. More extensive, especially biological studies may be needed to fully
comprehend the data analysis results. We have focused on survival data and the
AFT model. Extensions to other data and models are of interest in future study.

Supplementary Materials

The online supplementary material contains proofs and additional numerical
results.
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