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Supplementary Material

S1 Proof of Lemma 3.1.

When λ is separable in mark mi, (3) becomes

L(θi, θk+1) = N(D) log(θk+1) + [

∫
D

log λi(t,mi; θi) + log λ−i(t,m−i; θ−i)]dN

− θk+1

∫
D0

∫
Di

λi(t,mi; θi)dµi

∫
D−i

λ(t,m−i; θ−i)dµ−idt.

Hence

0 =
∂L(θ)

∂θi

=
∂

∂θi

∫
D

log λi(t,mi; θi)dN − θk+1
∂

∂θi

∫
D0

∫
Di

λi(t,mi; θi)

[∫
D−i

λ−i(t,m−i; θ−i)dµ−i

]
dµidt.

By assumption, (θ̃k+1, θ̃i) is the unique solution to the pair of equations ∂L̃i
∂θi

= 0 and
∂L̃i
∂θk+1

= 0, and thus satisfies

0 =
∂L̃i
∂θi

=
∂

∂θi

∫
D

log λi(t,mi; θi)dN − θk+1

∫
D0

∫
Di

∂λi(t,mi; θi)

∂θi
dµidt,

which, under condition (5), has the unique solution
(
θ̂k+1γ, θ̂i

)
. If (6) or (7) holds, then neither∫

D0

∫
Di
λi(t,mi; θi)dµidt nor

∫
D0

∫
Di
λi(t,mi; θi)

[∫
D−i

λ−i(t,m−i; θ−i)dµ−i
]
dµidt depends on

θi, so both θ̃i and the MLE θ̂i must uniquely satisfy ∂
∂θi

∫
D

log λi(t,mi; θi)dN = 0.
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S2 Proof of Theorem 3.2.

Reparameterizing the second term in L̃i and dropping the subscripts t and mi for simplicity,

one may write

θk+1

∫
D0

∫
Di

λi(t,mi; θi)dµidt = θk+1

∫
x

∫
y

f1(x;β1)f2(y;β2)dH(x, y)

= θk+1

∫
x

f1(x;β1)dH1(x)

∫
y

f2(y;β2)dH2(y).

Hence β̃1 satisfies

0 =
∂

∂β1
L(θ̃i)

=
∂

∂β1

∫
D0

∫
Di

log f1(X(t,mi); β̃1)dN(t,mi)− θk+1

∫
y

f2(y;β2)dH2(y)
∂

∂β1

∫
x

f1(x;β1)dH1(x).

One may similarly reparameterize Ľ(β1) to obtain

∂

∂β1
Ľ(β1) =

∂

∂β1

∫
D0

∫
Di

log f1(X(t,mi);β1)dN(t,mi)− θk+1
∂

∂β1

∫
x

f1(x;β1)dH1(x).

Thus (θk+1

∫
y

f2(y;β2)dH2(y), β̃1) is the unique solution to the equation ∂
∂β1

Ľ(β) = 0. There-

fore, using Lemma 3.1, β̂1 = β̃1 = β̌1.

S3 Counterexample to Theorem 3.2.

Ogata (1988) fit a purely temporal-magnitude version of ETAS, which was extended to space-

time-magnitude in Ogata (1998). Specifically, Ogata (1988) considered models such as

λ(t, x, y) = µ+

n∑
i=1

exp{β(Mi −M0)}K(t− ti + c)−p,

and Ogata (1998) considered spatial-temporal extensions including

λ(t, x, y) = µ+

n∑
i=1

exp{β(Mi −M0)}K(t− ti + c)−p{(x− xi)2 + (y − yi)2 + d)−q,

where Miand ti are the magnitude and time, respectively, of earthquake i, and M0 is the lower

magnitude cutoff for the catalog. The functional form of the portions of these models governing

the temporal clustering and dependence on magnitude are identical, and both were fit by Ogata

to a catalog of shallow M ≥ 6.0 earthquakes off Tohuku, Japan, with only slight differences

in the catalog yet substantially differing estimates of these parameters. For example, Ogata
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(1988) estimates ĉ as 0.01959 days, while Ogata (1998) estimates the same parameter, using

the spatial-temporal-magnitude model, as 0.00977 days. Although the only modification in the

model is the inclusion of a multiplicative spatial distribution of aftershocks in the triggering

function, the spatial term is not separable since the entire function λ is not multiplicative in

x and y, and since the spatial information is extremely relevant to the earthquake generation

process, it is not surprising that the inclusion of this information results in substantial changes

to the parameters governing the temporal and magnitude behavior of the process.

S4 Conditions for Theorem 4.1.

Ogata (1978) gives general conditions under which the MLE of the parameter vector θ governing

a stationary point process N is proven to be consistent. The conditions are as follows.

• N is stationary, ergodic, and absolutely continuous with respect to the standard Poisson

process on any finite interval.

• The parameter space Θ is a compact metric space and is a subset of Rd.

• λ(0, ω; θ1) = λ(0, ω; θ2) a.s. if and only if θ1 = θ2.

• ∂ log λ/∂θi, ∂
2 log λ/∂θi∂θj and ∂3 log λ/∂θi∂θj∂θk exist and are continuous in θ for all

i, j, k = 1, 2, ..., d, for all t ∈ R+ almost surely, and ∂λ/∂θi and ∂2λ/∂θi∂θj have finite second

moments for any θ ∈ Θ.

• For any θ ∈ Θ, there is a neighborhood U of θ such that for all θ′ ∈ U , |λ(o, ω; θ′)| ≤ Λ0(ω)

and | log λ(0, ω; θ′)| ≤ Λ1(ω), where Λ0 and Λ1 are random variables with finite second moments.

• For any θ ∈ Θ, there is a neighborhood U of θ such that sup
θ′∈U

| log λθ′(t, ω)| has finite

(2 + α)th moment uniformly bounded with respect to t for some α > 0.

Note that the last condition is somewhat different in Ogata (1978), which also assumes the

conditional intensity, conditioning on the history since time −∞, converges to the conditional

intensity since time 0. Here, we assume in Section 2 the point process is only defined since time

0 so this last condition is simplified considerably.

S5 Proof of Theorem 4.1.

To prove Theorem 4.1 formally, first note that by martingale convergence (see e.g. Theorem

A3.4.iii of Daley and Vere-Jones 1988 or 3.3 of Lipster and Shiryaev 1977), for any θi = (β1, β2),

1

T

 T∫
0

∫
Di

log λ(t,mi; θi)dN(t,mi)−
T∫

0

∫
Di

log λ(t,mi; θi)λ(t,mi; θ
∗
i )dµidt

−→ 0 a.s.
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and

1

T

 T∫
0

∫
Di

log [f1(X(t,mi);β1)] dN(t,mi)−
T∫

0

∫
Di

log [f1(X(t,mi;β1)]λ(t,mi; θ
∗
i )dµidt

−→ 0 a.s.

Thus we can write

L̃
(T )
i (θi)

T
=

1

T

T∫
0

∫
Di

log [f1(X(t,mi);β1) + f2(Y (t,mi);β2)] dN(mi, t)

− 1

T

T∫
0

∫
Di

[f1(X(t,mi);β1) + f2(Y (t,mi);β2)] dµidt

∼ 1

T

T∫
0

∫
Di

log [f1(X(t,mi);β1) + f2(Y (t,mi);β2)]λ(t,mi; θ
∗
i )dµidt

− 1

T

T∫
0

∫
Di

[f1(X(t,mi);β1) + f2(Y (t,mi);β2)] dµidt,

where by a ∼ b we mean that a− b converges to zero a.s. as T →∞.

Similarly,

Ĺ(T )(β1)

T
=

1

T

T∫
0

∫
Di

log[f1(X(t,mi);β1)]dN(t,mi)−
1

T

T∫
0

∫
Di

f1(X(t,mi);β1)dµidt

∼ 1

T

T∫
0

∫
Di

log[f1(X(t,mi);β1)]λ(t,mi; θ
∗
i )dµidt−

1

T

T∫
0

∫
Di

f1(X(t,mi);β1)dµidt.

Hence, for θ ∈ U, L̃
(T )
i (θi)

T
− Ĺ(T )(β1)

T
=

1
T

T∫
0

∫
Di

λ(t,mi; θ
∗
i ) [log (f1(X(t,mi);β1) + f2(Y (t,mi);β2))− log (f1(X(t,mi);β1))] dµidt

− 1
T

T∫
0

∫
Di

f2(Y (t,mi);β2)dµidt+ o(T ).

But by assumption, 1
T

T∫
0

∫
Di

f2(Y (t,mi);β2)dµidt −→ 0 in probability. Furthermore, abbre-

viating f1(X(t,mi);β1) and f2(Y (t,mi);β2) to f1 and f2, respectively, for the moment,

log(f1 + f2)− log(f1) = log(
f1 + f2

f1
) ≤ f1 + f2

f1
− 1 =

f2

f1
,

using the well-known relation log(x) ≤ x− 1, for positive x (see e.g. Abramowitz, 1964). Thus,

since by assumption 1
T

T∫
0

∫
Di

λ(t,mi; θ
∗
i )f2/f1dµidt converges to zero in probability, the same is

true of L̃
(T )
i (θi)/T − Ĺ(T )(β1)/T and this convergence is uniform in θi due to the continuity of
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f1 and f2 and the compactness of Θi. Thus for any ε > 0, | sup
θ∈U

L̃
(T )
i (θi)/T − sup

θ∈U
Ĺ(T )(β1)/T |

and | sup
θ/∈U

L̃
(T )
i (θi)/T − sup

θ/∈U
Ĺ(T )(β1)/T | are each less than ε/2 with probability going to one, as

T →∞.

By Lemma 3.1, β̃1 = β̂1. By relation 3.6 of Ogata (1978), for any ε > 0, there exists T1

such that for T > T1,

sup
θ∈U

L̃
(T )
i (θi) ≥ sup

θ/∈U
L̃Ti (θi) + εT.

Let B1 be any neighborhood of the true parameter β∗1 . We may find U1 ⊆ U , where U1 is

an open subset of U containing θ∗ such that B1 is the restriction of U1 to the parameter space

containing β1. Then with probability going to one as T →∞,

sup
β1∈B1

Ĺ(T )(β1)
T

− sup
β1 /∈B1

Ĺ(T )(β1)
T

> sup
θ∈U1

L̃
(T )
i (θi)

T
− ε/2− sup

θ/∈U1

L̃
(T )
i (θi)

T
− ε/2 ≥ 0.

Thus, with probability going to 1 as T →∞, β́ ∈ B1.

S6 Means and RMSE of PMLEs.

Figure 1 shows the means and RMSE in PMLEs of parameters (µ, α, β) in model (18), using

simulations of model (17). Figure 2 shows the means and RMSE in PMLEs of parameters

(µ, α, β) in model (16), using simulations of model (19). Table 1 reports the RMSE of parameter

estimates for various models simulated in Section 5. Figure 3 shows how ETAS parameters in

(24) vary with catalog length, when fit to the data described in Section 6. Figure 4 shows how

estimated ETAS parameters in models (24) and (25) vary with catalog length, when fit to the

data in Section 6 and when scaled versus their final estimated values using the entire catalog.
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Figure 1: Means and RMSE in PMLEs of parameters (µ, α, β) in model (18), using

simulations of model (17) with (µ, α, β) = (1, 1, 1). 100 simulations were performed for

each T , for 50 equally spaced values of T between 1 and 50, 000.
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Figure 2: Means and RMSE in partial maximum likelihood estimates of parameters

(µ, α, β) in model (16), using simulations of model (19) with (µ, α, β) = (1, 1, 1). 100

simulations were performed for each T , for 50 equally spaced values of T between 1 and

50, 000.
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model simulated model estimated T RMSE(µ̂) RMSE(α̂) RMSE(β̂)

10 0.667 0.997 0.978

(23) (16) 100 0.357 0.432 0.488

1000 0.102 0.148 0.146

10 0.642 1.07 1.00

(21) (21) 100 0.332 0.489 0.535

1000 0.152 0.169 0.150

10 0.764 1.03 1.14

(20) (21) 100 0.361 0.459 0.479

1000 0.165 0.156 0.152

10 0.882 1.04 1.21

(22) (21) 100 0.387 0.471 0.463

1000 0.173 0.160 0.151

10 0.650 1.00 1.16

(21b) (21b) 100 0.330 0.467 0.456

1000 0.113 0.155 0.161

10 0.731 1.16 1.01

(20b) (21b) 100 0.335 0.498 0.460

1000 0.104 0.179 0.170

10 0.614 1.11 1.12

(22b) (21b) 100 0.345 0.461 0.470

1000 0.0925 0.141 0.149

Table 1: RMSE and mean of parameter estimates for various models. In each case, the

model was simulated 100 times, either with or without the covariates Z and W , and

for each simulation the parameters for the model without this covariate were estimated

by MLE using a Newton-Raphson gradient descent method in R. In each case the true

parameters being estimated are (µ, α, β) = (1, 1, 1). For models (20b - 21b), the pa-

rameter K was set to 0.01 so the process is clustered, with approximately 1% of the

events attributable to this clustering. Model (22b) refer to model (22) with parameter

K = −0.01 so that the process is inhibitory.
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Figure 3: Estimated ETAS parameters, as a function of catalog length, using the pro-

gressive approximate MLE technique of Schoenberg (2013). Dashed curves represent

estimates ± one standard error (SE), with the SE estimated using the inverse of the

Hessian of the loglikelihood.
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Figure 4: Estimated parameters in models (24) and (25) as functions of catalog length,

again using the progressive approximate MLE technique of Schoenberg (2013). Here the

parameter estimates are scaled by dividing by the final parameter estimates from model

(24). The dashed curves represent estimates of parameters in model (25), and the solid

curves correspond to parameter estimates for model (24).


