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Abstract: For models used to describe spatial-temporal marked point processes

with covariates, the high number of parameters typically involved can make model

evaluation, construction, and estimation using maximum likelihood quite difficult.

A further complication is that some relevant covariates may be missing from the

fitted model, and the impact of these missing variables is typically unclear. Con-

ditions are explored here under which parameters governing a space-time marked

point process may be estimated simply and consistently by maximizing a partial

likelihood, essentially ignoring other terms in the model and any missing covari-

ates. Under the given conditions, the resulting estimates may have the desirable

properties of maximum likelihood estimates for the full model. An application to

southern California earthquake forecasting using weather data is provided.

Key words and phrases: Conditional intensity, consistency, maximum likelihood

estimation, Poisson process, spatial-temporal point process, weighted least squares

estimation.

1. Introduction

Recent increases in spatial-temporal marked point process data with multi-

ple covariates have led to the development of point process models with relatively

large numbers of parameters. The high dimensionality of the models can pose

problems when it comes to the improvement, evaluation, and estimation of these

models. In such situations, one may initially choose to focus on an individual

portion of the process, e.g. by modeling first the purely temporal aspects of the

process, and then adding spatial, mark, and covariate components. In seismol-

ogy, for instance, a decade elapsed between the introduction of temporal marked

Epidemic-Type Aftershock Sequence (ETAS) models (Ogata (1988)) and the

development of spatial-temporal marked versions (Ogata (1988)) that are now

commonly used. When examining just a portion of the process, however, one

may inquire whether the modeled process may be accurately estimated in the

absence of the components being ignored. In modeling the times and marks of a

spatial-temporal marked point process, for instance, it is important to determine

under what conditions the spatial components of the process may be ancillary to
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the parameters governing the temporal and mark components, or when ignoring

the spatial coordinates of the observations would substantially bias estimates of

temporal and mark parameters.

In addition, there is a sense among point process practitioners that, when

certain possibly confounding variables have been omitted from the analysis, the

resulting estimates of parameters should not be too substantially biased provided

the omitted variables have a small influence on the conditional rate. Theoretical

justification for this idea is hard to find, however. This paper attempts to pro-

vide some mathematical support for the notion that omitted variables with small

effects on the conditional rate should have small effects on parameter estimates,

and conditions are described under which conventional maximum likelihood es-

timates are consistent despite the omission of certain variables.

The current paper explores conditions under which such partial models may

be consistently estimated despite missing information. Certain special cases are

well known. In point process models for earthquake occurrences, for instance,

the distribution of earthquake magnitudes is typically modeled as constant over

time. Thus, while earthquake magnitudes can affect the times and locations of

future earthquakes, the magnitude distribution of an event at a particular loca-

tion and time, given that an event occurs, is typically thought to be constant.

Under this assumption, the estimation of the earthquake size distribution is es-

pecially straightforward. When one or more dimensions of a point process have

coordinates whose entries are i.i.d. draws from a fixed distribution, the process

is called separable; see e.g. Rathbun (1996) or Schoenberg (2004) for examples.

This paper investigates more general conditions under which components of a

point process, when estimated separably using maximum likelihood methods,

yield consistent parameter estimates.

The separability of a component in a point process model is very important in

that if a parameter or collection of parameters may be estimated individually, this

greatly facilitates model building, fitting, and assessment. For multi-dimensional

models, the rate at which points occur versus each separable coordinate may be

plotted individually to suggest functional forms for the model, and also the fit of

the model is much more readily inspected from such a plot due to the reduction

in the number of dimensions. Further, while maximum likelihood estimates have

such well-understood properties as consistency and asymptotic efficiency under

rather general conditions, in practice maximum likelihood typically requires an

iterative optimization procedure which, when many parameters are being esti-

mated, can fail to converge to a global maximum and which often relies heavily

on starting values, the choice of which can be very problematic. Estimation is

greatly facilitated when only a few parameters are estimated at a time. Hence it

is worth exploring situations in which point process models can be decomposed
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so that certain parameters can be consistently estimated separably, without op-

timizing over all values of the other parameters.

Tests for separability of point process models have been proposed by Schoen-

berg (2004) and Chang and Schoenberg (2010). Here, we focus on the estima-

tion of separable point process models, including processes with covariates, and

address the question of what types of models have components that may be es-

timated consistently. Rathbun (1996) noted that models that are multiplicative

in all dimensions may be estimated separably, and methods for estimating such

models are detailed by Baddeley and Turner (2000). The present paper treats

a much wider class of models. Our main results may roughly be summarized as

follows: for models that are multiplicative in the dimensions of the point process,

and either multiplicative or additive in the covariates, the individual components

of the model may, under general conditions, be consistently estimated separately.

The resulting estimates will be equivalent, or, in the case of Theorem 2 below,

will converge in probability to the ordinary maximum likelihood estimates. An

application is given involving earthquake weather and point process modeling of

southern California seismicity.

2. Preliminaries

Suppose N is a point process whose domainD is a measurable product space,

D = D0 × D1 × · · · × Dk, equipped with measure µ. For instance, in the case

of earthquake occurrences, D might be the product of a portion of space-time

and a mark space. Suppose that each of the domains Di is measurable and is

equipped with measure µi, and that in particular D0 = [0, T ] is a portion of the

real (time) line.

For any point x = (t,m1,m2, . . . ,mk) in D, let λ(x) denote the conditional

intensity of the point process. λ(x) reflects the infinitesimal expected rate of

accumulation of points around location x, given the entire history of the process

over all previous times. More precisely, following the notation in Brown, Ivanoff,

and Weber (1986) or Merzbach and Nualart (1986), beginning with a partial

ordering on D where (t1,m1, . . . ,mk) ≤ (t2,m
′
1, . . . ,m

′
k) iff. t1 ≤ t2, let Fx be a

filtration on D, and define F1
x as the filtration generated by the Fx-adapted, left-

continuous processes. We say a process is predictable if it is F1
x-adapted. Then

the conditional intensity (or 1-intensity) λ is any non-negative, Fx-predictable

process such that for any measurable subset S of D1 ×D2 × . . .×Dk, N([0, t]×
S) −

∫ t
0

∫
S λ(u,m1,m2, . . . ,mk)dµ1 . . . dµkdt is an Fx-martingale. Intuitively, a

conditional intensity at a particular location of space-time is the rate at which

one expects points to occur, given everything that has happened previously, i.e.,

to the left on the time line of the location in question. It thus makes sense
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to require the process λ to have left-continuous sample paths, which is what is

meant by the imposition of predictability.

Suppose that λ is governed by a parameter vector θ from some compact

parameter space Θ, and that Θ is a product of compact parameter spaces Θ0,

Θ1,. . . , Θk, Θk+1. We assume in what follows that Θk+1 is a compact subset of

R+, but each of the other spaces Θi may be multi-dimensional.

To ease notation, it will be useful to introduce the following conventions. For

any integer i in {0, 1, . . . , k}, let D−i represent the product space D0 ×D1 . . .×
Di−1 ×Di+1 ×Di+2 × . . .×Dk, and let µ−i be a measure on D−i. Similarly, let

m−i = (m1,m2, . . . ,mi−1,mi+1,mi+2, . . . ,mk), and let θ−i denote the parameter

vector {θ0, θ1, . . . , θi−1, θi+1, θi+2, . . . , θk}.
We say λ is completely separable if

λ(t,m1, . . . ,mk; θ) = θk+1λ0(t; θ0)λ1(t,m1; θ1) . . . λk(t,mk; θk), (2.1)

where θi ∈ Θi, and each λi is F1-predictable. θk+1 represents a multiplicative

constant; if this is not desired, Θk+1 may simply be taken to be the constant

1. In some applications, it may be unreasonable to suppose that the process is

completely separable. However, more generally one might suppose that a given

component is separable, as in the following definition.

We say λ (or equivalently, the point process N) is separable in mark mi if

the 1-intensity may be written as

λ(t,m1, . . . ,mk; θ) = θk+1λi(t,mi; θi)λ−i(t,m−i; θ−i). (2.2)

Mark mi may be multiplicative and yet may influence the conditional rates λi

and λ−i at future times and the distribution of mark mi may vary with t and

may depend on any facets of the history of the process. The key feature in (2.2)

is that the parameter θi only influences the process λi. The idea is that the rate

λ may vary in time and might depend on mark mi in potentially complicated

ways, but the component related to mark mi and the components related to

other marks m−i influence the rate in multiplicative fashion.

For point processes in general, the loglikelihood for the full parameter vector

θ may be written (eq. 7.1.2 of Daley and Vere-Jones (2003)) as

L(θ) =

∫
D
log λ(x; θ)dN −

∫
D
λ(x; θ)dµ. (2.3)

The parameter vector θ̂ = (θ̂1, . . . , θ̂k, θ̂k+1) is called the maximum likelihood

estimate (MLE) of θ.

For a point process thought to be separable in mark mi, one might choose

to estimate only the parameters θi and θk+1, ignoring the other parameters and
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other components of the process N . That is, one may consider maximizing the

partial loglikelihood

L̃i(θi, θk+1) =

∫
D
log[θk+1λi(t,mi; θi)]dN − θk+1

∫
D0

∫
Di

λi(t,mi; θi)dµidt. (2.4)

The parameters θ̃i, θ̃k+1 maximizing L̃ may be called partial maximum likelihood

estimates (PMLEs).

Under quite general conditions, maximum likelihood estimates of point pro-

cess parameters can be shown to be asymptotically normal, with standard errors

obtainable via the Fisher information, i.e., the diagonal of the inverse of the

Hessian of the log-likelihood, or its estimate when this Hessian is unknown (see

e.g., Ogata (1978) for the purely temporal case, or Rathbun (1996) for spatial-

temporal point processes). Of course, since the PMLE is essentially a maximum

likelihood estimate of a reduced model, such results generally apply to the PMLE

as well.

3. PMLEs for Multiplicative Models

For processes that are separable in a certain mark, partial maximum likeli-

hood estimates of the parameters governing the component of the rate related

to this mark are often quite similar to maximum likelihood estimates. Some

conditions under which the two estimates are exactly the same are given in the

following elementary result.

Lemma 1. Let N be a point process whose 1-intensity λ is separable in mark

mi as in (2.2). Suppose that both L and L̃i are differentiable with respect to θi,

and that θ̃i is the unique value of θi satisfying ∂L̃i/∂θi = 0 and ∂L̃i/∂θk+1 = 0.

Suppose also that (at least) one of the following three conditions holds, for some

scalar γ, for all t ∈ D0:∫
D−i

λ−i(t,m−i; θ−i)dµ−i = γ, ∀θ−i, (3.1)∫
Di

λi(t,mi; θi)dµi = γ, ∀θi, (3.2)∫
D
λ(t,m1, . . . ,mk; θ)dµ = θk+1

∫
D0

∫
Di

λi(t,mi; θi)dµidt = γ, ∀θ, (3.3)

then

θ̃i = θ̂i. (3.4)

The proof of Lemma 1 is given in the online supplement. Equations (3.1)−
(3.3) are not impossibly restrictive. The following examples illustrate conditions

under which these assumptions are met.
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Example 1. The Epidemic-Type Aftershock Sequence (ETAS) model of Ogata

(1988, 1998) is a type of branching model that is widely used in seismology.

According to the ETAS model, the conditional rate λ is separable with respect

to magnitude, and can be written λ(t,m,x) = λ1(t,x; θ−i)λ2(t,m; θi), where

λ2(t,m) = f(m) is the magnitude density, which is posited not to change over

time. Thus the LHS of (3.2) becomes
∫
f(m; θi)dm = 1, since f is a density.

As a result, the parameters governing the magnitude density can be estimated

separately, using only the observed magnitudes and not the times and spatial

locations of the events. As noted in Schoenberg (2004), the magnitudes of prior

events can influence the conditional intensity subsequently, but the process can

nevertheless be separable in magnitude provided (2.2) holds, i.e., the parame-

ters governing the magnitude distribution do not influence the other marginal

distributions of the process.

Example 2. In the analysis of wildfires, one important mark is the amount of

area burned, and it has often been noted that the density of area burned can

change from year to year. This density (assuming it exists) may depend on the

fuel age distribution and other dynamic conditions. It nevertheless must always

integrate to unity, and models have been proposed that posit that the parameters

governing this density do not interact with the other parameters governing the

other distributions of the process. For instance, Schoenberg, Pompa, and Chang

(2009) consider the model λ(t, x, y,m) = f(m)µ(x, y)β1 exp{β2W (t) + β3R(t) +

β4P (t)+β5L(t)+β6Temp(t)−β7(β8−D(t))2}, where f(m) is the tapered Pareto

burn area density, µ(x, y) is the spatial background fire rate at location (x, y)

obtained by kernel smoothing the estimated origin locations of wildfires recorded

prior to the beginning of the catalog used in the remainder of the model fit-

ting, and W (t), R(t), P (t), L(t), Temp(t), and D(t) represent the wind speed,

maximum relative humidity over the previous 24 hours, precipitation, lagged pre-

cipitation over the previous 60 days, temperature for day t, and the index of the

day of the year corresponding to time t, respectively. For such models, (3.2) is

satisfied with mi the burn area of a fire (or equivalently (3.1) is satisfied where

m−i is the burn area, and mi contains information on all other marks).

Example 3. When implementing maximum likelihood estimation algorithms in

practice, one must verify that the optimization routine converges to the global

maximum rather than some other local maximum. A common way of check-

ing whether the routine’s output is reasonable is by ensuring that the integral

term in (2.3) is approximately equal to the number N(D) of observed points,

since E
∫
D λ(x; θ)dµ = E

∫
D dN = EN(D). Similarly, in maximizing the par-

tial likelihood, one would typically ensure that θk+1

∫
D0

∫
Di

λi(t,mi; θi)dµidt is

approximately equal to N(D). If one imposes the constraint that each of these

integrals must equal N(D), then (3.3) is satisfied with γ = N(D).
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Example 4. In some models, spatial background rates are fitted by kernel

smoothing of a certain fixed subset of n points (e.g., Ogata (1988), Schoenberg

(2003)), and the bandwidth of the kernel density may be estimated by max-

imizing the partial likelihood governing only the spatial coordinates. In such

situations, if the spatial domain has no boundary, or if boundary effects are

negligible, or if a correction is used in the fitting so that each of the n points

identically contributes a value of one to the total background rate, then as in the

previous example, (3.3) holds with γ = n.

Recall that in the parameterization of each component λi(t,mi; θi), the pa-

rameter θi need not be a scalar, but may rather be a vector in Rd. (Similarly, mi

may also be vector-valued.) Although λi(t,mi) must be F-predictable, it may

depend on covariates, including external observations and/or functionals of the

history of the point process. We turn now to the estimation of the parameters

governing the effect of these covariates on λ.

Suppose that the parameterization of one particular component λi(t,mi; θi)

of the 1-intensity can be decomposed into a product of terms

λi(t,mi; θi) = f1(X(t,mi);β1)f2(Y (t,mi);β2), (3.5)

where θi = (β1, β2), and X and Y are predictable processes. Such a model can

arise for example when f1 represents the effect on the rate caused by one collection

of covariates, and f2 represents the effect of another group of covariates. Here X

and Y need not be scalars, but can be vector-valued or take values in an arbitrary

measurable space.

Let H1(t, x,m1),H2(t, y,m2), and H(t, x, y,m1,m2) denote the cumulative

distribution functions of X(t,m1), Y (t,m2), and of the pair (X,Y ), respectively.

Of particular interest is the special case where X and Y are independent, for

then H has the multiplicative form

H(x, y) = H1(x)H2(y). (3.6)

Let β̌1 denote the maximum likelihood estimate when the parameter (vector)

β1 is estimated separately, i.e., the value of β1 maximizing

Ľ(β1) :=

∫
D0

∫
Di

log[θk+1f1(X(t,mi);β1)]dN(t,mi)

−θk+1

∫
D0

∫
Di

f1(X(t,mi);β1)dµidt. (3.7)

Theorem 1. Suppose that the conditions of Lemma 1 hold and that λi is mul-

tiplicative as in (3.5). Suppose that Ľ is differentiable with respect to β1, and

that there exists a unique solution (θ̌k+1, β̌1) satisfying dĽ
dβ1

= 0. If H has the

multiplicative form (3.6), then β̌1 is the MLE of β1.
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Example 5. Baddeley and Turner (2000, 2005) consider a log-linear or exponen-

tial family of spatial point process models, which readily extend to the spatial-

temporal case with random covariates via λ(t, x) = exp{θTS(t, x)}, where S(t, x)
is a vector of covariates observed at spatial-temporal location (t, x). The condi-

tional rate thus is purely multiplicative with respect to all covariates, satisfying

conditions (2.2) and (3.5). According to Theorem 3.2, if two of the covariates

X and Y satisfy (3.6), then the parameters governing their components in the

conditional rate λ may equivalently be estimated separately.

4. Additive Models

The result in Theorem 1 may seem intuitively obvious given (3.6), but note

that this condition does not necessarily imply that the effects of X and Y may be

estimated separately. For additive models, for instance, the result in Theorem 1

does not generally hold. For a simple example, suppose that N is a 1-dimensional

point process whose conditional intensity has the form λ(t) = αX(t) + βY (t),

and suppose that X(t) = 1 and Y (t) = t, for all t. Then (3.6) holds, but the

estimate β̌ obtained by separately estimating the coordinate f2(Y (t)) = βY (t) is

simply the MLE of β for the model λ(t) = βt, which is obviously different from

the MLE of β for the model λ(t) = α+ βt.

This section explores conditions under which parameters can be estimated

separately for the case of components of λ that are additive rather than multi-

plicative. As an alternative to the product form in (3.5), suppose instead that

λi is parameterized as a sum of functions of the covariates X and Y ,

λi(t,mi; θi) = f1(X(t,mi);β1) + f2(Y (t,mi);β2), (4.1)

where θi = (β1, β2), and X,Y are predictable processes.

Consider the maximum likelihood estimate β́1(T ) when the parameter (vec-

tor) β1 is estimated individually, using observations on [0, T ] × D1 × . . . × Dk.

That is, β́1(T ) is the value of β1 maximizing

Ĺ(T )(β1)

:=

∫ T

0

∫
Di

log[f1(X(t,mi);β1)]dN(t,mi)−
∫ T

0

∫
Di

f1(X(t,mi);β1)dµidt. (4.2)

General conditions for the convergence in probability of the MLE θ̂ to the

true parameter vector θ∗ have been given by a variety of authors; see for instance

Theorem 2 of Ogata (1978) for stationary one-dimensional processes, conditions

for which are in the online supplement, or Theorem 1 of Rathbun (1996) for more

general multi-dimensional point processes.



CONSISTENT ESTIMATION OF POINT PROCESSES 869

Theorem 2. Suppose N satisfies the conditions for Theorem 2 of Ogata (1978).

Suppose also that N satisfies the conditions of Lemma 1, and that λi has the ad-

ditive form (4.1), where f1 and f2 are continuous in β1 and β2, respectively. Sup-

pose also that E
∫ ∫

|λ(t,mi; θ
∗
i ) log λ(t,mi; θi)|dµidt < ∞ and E

∫ ∫
|λ(t,mi; θ

∗
i )

log f1(X(t,mi);β1)|dµidt < ∞, and that there exists an open neighborhood U of

the true parameter vector θ∗, such that for θ in U , (1/T )
∫ T
0

∫
Di

f2(Y (t,mi);β2)

dµidt and (1/T )
∫ T
0

∫
Di
{[λ(t,mi; θ

∗
i )f2(Y (t,mi);β2)] / [f1(X(t,mi);β1)]} dµidt

converge to zero in probability as T → ∞. Then β́1(T ) is a consistent estimate

of β1.

The basic idea here is the following. By Lemma 1, β̃1 = β̂1, and this MLE

β̂1 is known to be consistent under standard conditions. β́1 is the estimator one

would obtain by fitting the incorrectly specified likelihood in (4.2) by maximum

likelihood, ignoring the effect of the covariate Y . Under the assumptions of

Theorem 2, the effect of Y is so small that the true likelihood is sufficiently

similar to (4.2) that β́1 is consistent in this situation as well. For a formal proof,

see the supplemental materials.

Example 6. The conditions on f1 and f2 in Theorem 2 may be satisfied when f2
is small, both in absolute terms and relative to f1. Let f1 and f2 be shorthand for

f1(X(t,mi);β1) and f2(Y (t,mi);β2), respectively. Suppose that, for θ in a neigh-

borhood U of θ∗, |λ| is bounded in absolute value by some value b with probability

going to one, and
∫
Di

f2dµi and
∫
Di

f2/f1dµi converge to zero in probability as

t → ∞. Then so do (1/T )
∫ T
0

∫
Di

f2dµidt and (1/T )
∫ T
0

∫
Di
[λ(t,mi; θ

∗
i )f2/f1]dµidt,

thus satisfying the last conditions in Theorem 2.

Example 7. If f1 is bounded away from zero and |λ| is bounded above, then the

conditions on f1,f2 in Theorem 2 simply amount to the convergence to zero in

probability of (1/T )
∫ T
0

∫
Di

f2dµidt as T → ∞. In particular, if
∫
Di

f2dµi →p 0

as T → ∞, then these conditions are trivially satisfied.

5. Simulations

The accuracy of PMLEs can be demonstrated under various conditions using

simulations. Specifically, we consider the case where a point process N is repeat-

edly simulated in the presence of some covariate or noise process Z, and then for

each simulation, the model is estimated by maximum likelihood as though the

covariate were completely ignored. The question is whether the parameters in

various point process models can be accurately estimated by maximum likelihood

even though this covariate Z is ignored in the parameter estimation.

For example, consider an inhomogeneous Poisson process N with intensity

λ(t, x, y) = µ+ αx+ βy + Z(t), (5.1)
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whereN is observed in the time span (0, T ) and in the spatial domain [0, 1]×[0, 1],

and where Z is a uniform white noise process contained in F0 such that for any

t,

Z(t) ∼ U(0,
1

t
). (5.2)

Thus, N and the covariate Z are correlated, but letting Y (t) = t and Z(t) = f2(t),

both f2 and f2λ(t) converge to zero as t → ∞ so that the conditions of Theorem

2 are satisfied.

Such a process N can easily be simulated using the simulation technique of

Lewis and Shedler (1979). Specifically, for given T and positive α, β, γ, and

µ, one can set b = µ + α + β + 1.0, generate a homogeneous Poisson process

with rate b on the spatial-temporal domain [0, 1] × [0, 1] × [0, T ] and, for each

point (xi, yi, ti), draw a uniform random variable u on (0, 1/ti), keeping the point

independently of the others with probability (µ+ αxi + βyi + u)/b.

For each of the estimates reported in this Section, the parameters were esti-

mated by minimizing the negative partial log-likelihood, with the minimization

done in R using the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton gradient

method (see e.g., Nocedal and Wright (1999)), and using starting values of double

the actual parameter values.

The means and root-mean-squared errors (RMSE) of the parameters in

model (5.1) are shown in Figure 1. Specifically, for each value of T , 100 sim-

ulations of model (5.1) were constructed, and for each such simulation, the pa-

rameters (µ, α, β) in the model

λ(t, x, y) = µ+ αx+ βy (5.3)

were estimated, where µ = α = β = 1. One sees in Figure 1 the rapid convergence

toward one in the means of all of the parameter estimates, despite the presence

of a confounding factor Z in the simulations that is completely ignored in the

fitting of model (5.3). The decrease to zero of the RMSE of the estimates µ̂, α̂,

and β̂ as T increases is also evident.

In contrast to the purely additive models (5.1) and (5.3), a multiplicative

inhomogeneous Poisson model with intensity

λ(t, x, y) = exp{µ+ αx+ βy + Z(t)} (5.4)

was also simulated 100 times, with Z as in (5.2); the results, when the model

λ(t, x, y) = exp{µ+ αx+ βy} (5.5)

was estimated using data from the simulations of model (5.4), are shown in Figure

1 of the online supplement. As with the linear intensity case, the very rapid
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Figure 1. Means and RMSE in partial maximum likelihood estimates of
parameters (µ, α, β) in model (5.3), using simulations of model (5.1) with
(µ, α, β) = (1, 1, 1). 100 simulations were performed for each T , for 50
equally spaced values of T between 1 and 50,000.

convergence to one of the means of the partial maximum likelihood estimates

and the rapid convergence to zero of the RMSE of these estimates is evident.

The confounding factor Z appears to have a rapidly diminishing impact on the

PMLEs.

Simulations were run using alternative error models and alternative parame-

ters and the results were similar. For instance, Figure 2 of the online supplement

shows the means and RMSE of parameter estimates when model (5.3) is fit by

PMLE, but the model being simulated is a Poisson process with intensity

λ(t, x, y) = µ+ αx+ βy + Z(t)W (x), (5.6)

whereN is observed in the time span (0, T ) and in the spatial domain [0, 1]×[0, 1],

Z(t) is again a uniform F0-measurable white noise process on (0, 1/t) as described
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above, and W (x) is a uniform F0-measurable white noise process, independent

of Z, such that W (x) is uniform on (0, x). Thus the error term in model (5.6)

now varies with x and can thus be anticipated to interfere adversely with the

estimation of α when model (5.6) is simulated and model (5.3) is estimated.

However, as shown in Figure 2 of the supplemental materials, the bias in the

parameter estimates appears to converge to zero and the RMSE of the PMLEs,

when model (5.6) is simulated and model (5.3) is estimated, appear to converge

rapidly to zero.

A variety of models, choices of parameters, and time spans T were selected,

and a sampling of the results is summarized in Table 1 in the online supplemental

materials. For simplicity, the focus in Table 1 is on models with similar parameter

values. For instance, the means and RMSEs of the parameter estimates for when

model (5.6) is simulated and model (5.3) is estimated are shown in the Table,

for various time spans T , and similar results for self-exciting and self-correcting

point process models are summarized in Table 1 of the online supplement as well.

Specifically, we consider the case when the model

λ(t, x, y) = µ+ αx+ βy + Z(t) +Kν
∑
i:ti<t

exp(−ν(t− ti)) (5.7)

was simulated, with Z(t) in (5.2), and the results were used to estimate the model

λ(t, x, y) = µ+ αx+ βy +Kν
∑
i:ti<t

exp(−ν(t− ti)) (5.8)

with the covariate Z(t) removed. The parameter ν > 0 governs the temporal

scale of the clustering or inhibiiton. K is the branching ratio of the process,

which is highly clustered, or self-exciting, when K > 0 and is inhibitory, or

self-correcting, when K < 0. Models with different noise processes,

λ(t, x, y) = µ+ αx+ βy +Kν
∑
i:ti<t

exp(−ν(t− ti)) + Z̃(t) (5.9)

and

λ(t, x, y) = µ+ αx+ βy + Z̃(t) (5.10)

were also simulated, where Z̃(t) = (1− (−1)N(0,t))/t.

Table 1 of the online supplement shows the root-mean-square errors (RMSE)

of the parameters (µ, α, β) in some of the models described, but with different

missing covariates. The RMSE of the parameter estimates appears to converge

to zero as T gets large for both the self-exciting and self-correcting model, even

though the potential confounders Z or Z̃ in the simulations are completely ig-

nored in the fitting of the models. For comparison, the case Table. The con-

founding factors Z and Z̃ apparently have minimal effect on the estimates of
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the parameters in model (5.7), for both self-exciting and self-correcting point

processes.

The estimation reported in Table 1 of the online supplement is non-standard,

as in each case other than rows 2 and 5, the model governing the simulations

is different from the model being estimated. For each of the given models, the

model with the covariate Z is simulated, and the model without this covariate

is estimated. In rows 2 and 5, however, the results represent standard max-

imum likelihood estimates and may be useful for comparison. One sees from

the table that the missing covariate seems to have little effect quite generally

on the estimates of the parameters for the inhomogeneous Poisson, self-exciting,

and self-correcting models, and one sees that the RMSEs of these parameter

estimates decrease as the time span T increases.

6. Application to Earthquake Weather

Theorems 3.2 and 4.1 suggest that as long as a given covariate’s effect on

the conditional rate is small, estimates of the parameters governing the rest of

the process will scarcely be influenced by the omission of the given covariate.

The simulations in Section 5 support this. In this Section, we explore how the

parameters governing models for the rate of earthquakes in California are affected

by the inclusion or omission of weather data.

The idea that weather can influence earthquakes has been the subject of

much debate and controversy and has been largely dispelled since the work of

Humphreys, who stated that earthquake weather was merely a misleading, psy-

chological impression (Abbe (1919)). Recently, the topic was raised again by

Enescu, Hainzl, and Ben-Zion (2009) and Hainzl et al. (2013), who claimed that

in zones of near critical stress, small changes in stress due to temperature can

substantially influence seismicity. A question we address here is whether the

addition of weather data into existing models for seismicity would lead to a sub-

stantial change in the parameter estimates governing earthquake triggering and

other aspects of seismicity.

Southern California weather data are publicly available from the National

Weather Service Forecast Office of the National Oceanic and Atmospheric Ad-

ministration (NOAA). We follow Hainzl et al. (2013) by considering the daily

average of the daily high temperature recorded at three local stations, in this

case the National Weather Service’s Ontario Station, Santa Ana Fire Station,

and Anaheim Station. The corresponding geographical coordinates of the three

stations are reported as (Lon: 117.57583oW, Lat. 34.05333oN, Elevation 287.1m),

(Lon: 117.868oW, Lat. 33.743oN, Elevation 33.5m), and (Lon: 117.89374oW, Lat.

33.77635oN, Elevation 35.7m), respectively. Daily weather information has been

compiled for each of the three stations since May 23, 1998, and we consider here
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the daily high temperature records from the start date of May 23, 1998 to March

11, 2014. The records at the stations were averaged each day, and in the event

of missing data, records at all available stations were averaged. Curiously, on

16 days during this period, each of the stations had duplicate records; NOAA

officials were contacted about this and indicated that the cause of this problem is

unclear but in such circumstances the first record should be ignored and only the

second record should be used, so this is what was done here. Data are missing

on only 4.9% of days during this time period, and on no days were all 3 records

missing.

Data on earthquakes in southern California have been compiled and are

publicly available from the Southern California Earthquake Data Center. The

catalog contains estimates of the origin time, hypocenter, moment tensor, and

various measures of magnitude for earthquakes dating back to 1932, and is be-

lieved to be complete in recent years down to magnitude 1.8 (Hutton, Woessner,

and Hauksson (2010)). We restrict our attention here to the subset of shallow

(estimated depth ≤ 75km) recorded earthquakes in southern California with mo-

ment magnitude at least 3.0, as these are of greater practical interest and are

fraught with fewer missing data issues. Epicentral locations of these earthquakes

are shown in Figure 2a, with larger circles corresponding to circles of greater

magnitude. To match the temperature data, we focused on the time span of May

23, 1998 to March 11, 2014, and the spatial region from longitude 117.0 to 118.0

and latitude 33.0 to 35.0.

The mean daily high temperature on days with at least one recordedM ≥ 3.0

earthquake is 24.56oC, compared to a mean daily high temperature of 25.06oC

across all days. Over the observed spatial-temporal region, the correlation be-

tween the daily high temperature and the daily number of recorded M ≥ 3.0

earthquakes is -0.0124. The permutation test standard error is 0.0135 and the

corresponding p-value is 0.360. Because earthquakes are clustered, the daily

seismicity totals are highly correlated as are daily high temperatures, so the

permutation standard error is likely a considerable underestimate, but even ac-

cording to the permutation standard error, the observed sample correlation is

not statistically significant.

The question is whether, despite its minimal correlation with seismicity, the

daily temperature data may nevertheless induce substantial changes in the pa-

rameter estimates for such standard models of seismicity as ETAS. The results of

the preceding sections suggest that the influence on ETAS parameters caused by

the introduction of temperature would be small. On the other hand, practition-

ers of maximum likelihood estimation are familiar with how even slight changes

to a model and the introduction of a single extra parameter can sometimes result

in sharp changes to maximum likelihood estimates.
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The ETAS models of Ogata (1998) referred to in Example 1 are commonly

used to model earthquake occurrences. One version of the model has the form

λ(t, x, y) = µρ(x, y) +

n∑
i=1

g(t− ti, x− xi, y − yi;Mi), (6.1)

where ρ(x, y) is a spatial density, Mi is the magnitude of earthquake i, and g

is a triggering function indicating how the expected rate of seismicity increases

following an earthquake of magnitude Mi. We consider here the normalized

version of the triggering function proposed in Ogata (1998) with normalization

suggested in Schoenberg (2013),

g(t− ti, x− xi, y − yi;Mi)

= {K(p− 1)cp−1(q − 1)dq−1

π
}(ti − t+ c)−p exp{a(Mi −M0)}(r2i + d)−q,

where ri = ||(x, y)−(xi, yi)|| andM0 is the lower magnitude cutoff for the catalog,

which here is 3.0.

Figure 3 of the online supplement shows the fitted parameters of model

(6.1) over time, using the progressive approximate MLE technique of Schoenberg

(2013) and using a constant for ρ. For starting values of the parameters, the

values from the 2nd row of Table 3 of Ogata (1998) were used, as in Schoenberg

(2013). Standard errors for the parameters were estimated using the inverse of

the Hessian of the loglikelihood. One sees that, after about 6-7 years of data, most

of the parameters have nearly converged, though parameter d seems somewhat

unstably estimated using this limited dataset.

Using temperature data, one may modify the ETAS model in (6.1) by re-

placing the term µ in (6.1) with a term exponential or linear in temperature, for

example, resulting in

λ(t, x, y) = µρ(x, y) exp{ν Temp(t)}+
n∑

i=1

g(t− ti, x− xi, y − yi;Mi), (6.2)

or

λ(t, x, y) = {µ+ ν Temp(t)}ρ(x, y) +
n∑

i=1

g(t− ti, x− xi, y − yi;Mi), (6.3)

respectively, where Temp(t) denotes the daily high temperature on day t.

Figure 4 of the online supplement shows the fitted ETAS parameters using

model (6.2) compared to those of model (6.1). The differences in parameter

estimates induced by the addition of temperature in the model are modest, as

expected. The introduction of temperature does noticeably change the estimates

of parameter d, however. This is not surprising, given the high volatility in the

estimate of d. Results for model (6.3) were similar.
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Figure 2. (a) Estimated epicenters of shallow southern California earth-
quakes of magnitude M ≥ 3.0 with longitude -117.0 to -118.0 and latitude
33.0 to 35.0, from May 23, 1998 to March 11, 2014. Circle radii are pro-
portional to recorded earthquake magnitude. (b) Comparison of estimated
ETAS parameters for model (6.1) on the x-axis vs. model (6.2) on the y-
axis. (c) Comparison of estimated ETAS parameters for model (6.1) on the
x-axis vs. model (6.3) on the y-axis. For parameter a, the estimate of a/2
is shown instead of a so that the point would not overlap on the plot with
the estimate of p.

One can inspect how the estimated effect of daily high temperature affects

the background seismicity rate, according to the fitted versions of models (6.2)

and (6.3). The estimate of the parameter ν governing the effect of temperature

on seismicity is 0.00421 (0.000286) for model (6.2) and 0.00393 (0.0000512) for

model (6.3). These coefficients are positive, in agreement with the conclusions

of Hainzl et al. (2013) that warmer weather may lead to increased seismicity.

Although there is a negative correlation between overall seismicity and temper-

ature in our dataset, according to the fitted model, when triggered earthquakes

are accounted for, higher temperatures have a slight positive association with

background seismicity, or mainshocks.

Figures 2b and 2c compare final maximum likelihood ETAS parameters es-

timates from model (6.1) with those from models (6.2) and (6.3). One sees very

close general agreement among most of the parameters. Parameters c and d for

model (6.3) are an exception, and these parameters are substantially changed by

the introduction of temperature into the model. Note that the changes in the

parameter estimates in absolute terms are actually quite small, however.
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7. Discussion

Theorems 1 and 2 imply that parameters governing individual covariates

in multi-dimensional point process models may often be estimated separately.

Indeed, as supported by the simulations in Section 5 and the application in

Section 6, estimates of the parameters governing a given covariate’s effect on the

conditional intensity will hardly be influenced by the omission of other covariates,

even if these missing covariates can influence the conditional intensity overall and

may even be confounded with the given covariate in an additive or multiplicative

way. Both results require the point process to be stationary in time; maximum

likelihood estimates for non-stationary point processes are frequently inconsistent

even for very simple models. The conditions in Theorems 1 and 2 essentially

mandate that the impacts of the missing covariates on the conditional intensity

are not too large. Thus these results are not surprising, and the general conclusion

that parameters may be well estimated in the absence of data on covariates that

do not greatly affect the conditional intensity of the process seems to be widely

acknowledged among practitioners, though this is perhaps the first attempt at

mathematical support for this notion.

These results may have implications for point process estimation. It is typi-

cally far easier (and faster) to obtain a PMLE β̌ or β́ than to search over values

of all parameters in order to find the value β̂ maximizing the full likelihood. It

is important to note, however, that ignoring relevant covariates is not advocated

here. In the application to weather and earthquake modeling, the point here is

not that weather or climate should be ignored in modeling or forecasting earth-

quakes. Indeed, if such information can lead to more accurate forecasts then of

course it should be included. The argument here is that a model’s omission of

weather and other variables with little influence on the conditional rate of seis-

micity need not cause one to doubt the accuracy of all parameter estimates and

inferences based on the model.

The results in Sections 3 and 4 may have implications for model building

as well. It is typically extremely difficult to construct realistic models for multi-

dimensional point processes with many covariates. Ideally such models should

be based on well-understood physical principles and subject-matter expertise.

However, in some situations empirically-based models may be sought, and one

method for constructing such a model would be to individually investigate the

distribution of the coordinates, and the individual contribution to the conditional

intensity of each (or perhaps small collections of) covariates. These marginal dis-

tributions of the process could then be estimated separately, and the parametric

forms for each could readily be inspected for goodness-of-fit. The results above

suggest circumstances under which a model may be thus constructed and esti-

mated.
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Supplementary Materials

The supplementary materials contain a proof of Lemma 1, a proof of Theorem

1, a counterexample to Theorem 1, the conditions for Theorem 2, a detailed proof

of Theorem 2, figures showing the means and RMSE in PMLEs of parameters

(µ, α, β) in models (5.5) and (5.3), using simulations of models (5.4) and (5.6),

respectively, a table indicating the RMSE for parameter estimates for various

models simulated in Section 5, and figures showing how ETAS parameters in

(6.1) and (6.2) vary with catalog length, when fit to the data described in Section

6, both in absolute terms and relative to their estimated values using the entire

earthquake catalog.
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