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This supplementary material includes the detailed proofs of Lemma 1~4 and Theorem 1~2.   

 

 

Proof of Lemma 1 

To prove (1), first note the exchangeability in the construction of BSPV. By symmetry, given 
any l = 1, …, n, Pr{π(l) = u} takes the same value for all u = 1, 2,…, n. Hence Pr{π(l) = u} = 1/n 
and (1) holds.  
    To prove (2), we calculate the joint probability mass function based on the conditional 
distribution of π(l2) = v given π(l1) = u. Here, u ≠ v and l1 ≠ l2. The joint probability mass 
function depends on the relationships between u and v, and also those between π(l1) and π(l2). 
For convenience, the following proof is carried out based on the relationship between u and v, 
instead of π(l1) and π(l2) given in the Lemma 1.  
    Given π(l1) = u, assume π(l1) ∈ 

1 1i jS  and π(l2) ∈	
2 2i jS , i1, i2 = 1,…, t and j1, j2 = 1,…, s. The 

following cases are discussed for the conditional probability of π(l2) = v.  

    (a) If ( ) 1s u vγ , = , then i1 ≠ i2 and j1 ≠ j2 must hold (otherwise Pr{π(l2) = v | π(l1) = u} = 0). By 

exchangeability, Pr{π(l2) = v | π(l1) = u} takes the same value for any position π(l2) satisfying i1 
≠ i2 and j1 ≠ j2. As there are m(s–1)(t–1) such locations,  

 { }2 1

1
( ) ( )

( 1)( 1)
Pr l v l u

m s t
π π= | = =

− −
.   (A.1) 

     (b) If ( ) 0s u vγ , =  and ( ) 1t u vγ , = , then i1 ≠ i2 must hold (otherwise Pr{π(l2) = v | π(l1) = u} = 

0). By exchangeability, Pr{π(l2) = v | π(l1) = u} takes the same value for any position π(l2) 
satisfying i1 ≠ i2. As there are ms(t–1) such locations,  
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    (c) If ( ) 0p u vγ , = , then u and v are generated from different lQ  matrices during the Step 2 

construction of BSPV. Since lQ matrices are independently generated, the probability that u and 

v are at the same location of two lQ matrices is 1/p. Thus,  

(i) if i1 = i2 and j1 = j2,  

 { }2 1

1 1
( ) ( )

1

pPr l v l u
m n p

π π /= | = = =
− −

, (A.3) 

(ii) otherwise, 

 { }2 1
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( ) ( )

pPr l v l u
m n

π π /= | = = = . (A.4) 

    (d) If ( ) 0t u vγ , =  and ( ) 1p u vγ , = , there are p – t possible choices of v, and the conditional 

probability of π(l2) = v can be derived by the exchangeability and the regularity of probability. 
Specifically, we have,  

(i) if i1 = i2 and j1 ≠ j2,  
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1
( ) ( )

( 1)

n p
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p t n s
π π

−−= | = = = ;
− −

 (A.5) 

(ii) if i1 ≠ i2 and j1 = j2,  
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(iii) if i1 ≠ i2 and j1 ≠ j2,  
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 (A.7) 

    Using the γ function defined in (3.3), the proof can be completed by re-classification of the 
above cases based on the relationships between π(l1) and π(l2), and then multiplying the 
conditional probability by Pr{π(l1) = u} = 1/n.        
 
 

Proof of Lemma 2 

 (i) Without loss of generality, we focus on D11. By the construction of D, write the entries in D11 

as ( ) ( 1)k k
k l ll pπ α β= − + , l = 1,…, m, k = 1,…, q, where 1{ }k k

mα α, ,  is a uniform permutation 
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on Zm, k
lβ ’s are i.i.d and follow a discrete uniform distribution on Zp, and k

lα ’s are independent 

with k
lβ ’s. Then for l = 1,…, m, we can rewrite (2.1) as  

 
( 1)k k k

lkl l lk l
lk

p u ud
pm m

α β α− + − −= = 
, (A.8) 

where ( )k
lk l lkp u pu β= − + / follows a uniform distribution on (0,1]. 

(ii) We prove this by showing the equivalence between our construction and that of Qian 

(2012) for D1•. In our method, note D1• is constructed based on the first columns of 1Q , …, mQ , 

or equivalently W(:,1). Divide Zn into r groups of t consecutive numbers, where the ith group is 

gi = {a ∈ Zn | ⌈a / t⌉ = i}, i = 1,…, r. For easier interpretation, we replace any number in gi with 
the symbol gi in our construction. For example, in our numerical example immediately following 
the construction steps, we can write 

3 2 2 1

1 1 1 3 1 2

2 1 3 3

11 5 8 1

' 4 12 3 7

6 2 9 10

g g g g
g g g g
g g g g

   
   = = =   
      

Q Q , 

where gi can be viewed as the group index. Based on Step 1 of the construction for a BSPV, it is 

easy to see that (:,1)lQ is a uniform permutation on the set {g(l‒1)s+1,…, gls} and the permutations 

are independent across l, l = 1,…, m. This step produces equivalent outcome to that of Step 1 in 
Qian (2012).  

    For the next step in our construction of D1•, first columns of each lQ are put together, then 

randomly permuted within each group of m numbers W(((j − 1)m + 1) : jm, 1) to form W(:,1), as 
in Step 3. This procedure is equivalent to carry out independent permutations on each row of the 
following matrix 

1 2(:,1), (:,1),..., (:,1)m  Q Q Q , 

whose lth column is the 1st column of lQ . This step produces equivalent outcome to that of Step 

2 in Qian (2012). 
    Further, from Step 1 in our construction, it is clear that gi is a uniform random number from gi. 

Hence the lth entry in W(:,1) can be written as ( ) ( 1)l ll tπ α β= − + , l = 1,…, r, where 1{ }rα α, ,  

is a uniform permutation on Zr and lβ ’s are i.i.d uniformly distributed on Zt. Following the 

similar idea as that in the proof of part (i) and noting that the q BSPVs are independently 
generated, it is straightforward that D1• is equivalent to an SLHD with s slices, each of which 
contains m runs. 
(iii) The proof follows the similar idea as that in part (ii).       
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Proof of Lemma 3 

For any (0 1]k
lx ∈ , , l = 1,…, n, k = 1,…, q, by (2.1) and Lemma 1,  

 

( ) ( )

{ ( ) ( )}

{ ( ) } ( )

1
.

k k k k k k
l l l l l l

k k k
l k lk l l

k k k k k k
k l l l l lk l l

k k
l l

p x dx Pr x X x dx
Pr nx l u n x dx

Pr l nx Pr nx nx ndx u nx nx

ndx dx
n

= < < +

= < π − < +

     = π = − − < < −     

= =

 (A.9) 

So the density of k
lx  satisfies ( ) 1k

lp x =  for all (0 1]k
lx ∈ , . As k

lx ’s are independent across k, p(xl) 

= 1 for all (0 1]q
l ∈ ,x .              

 

Proof of Lemma 4 

Similar to the proof in Lemma 3, the joint density can be derived in the same way:  

 
1 2 1 2 1 1 1 1 2 2 2 2

1 2 1 2

2
1 2

( ) ( )

{ ( ) ( ) }

k k k k k k k k k k k k
l l l l l l l l l l l l

k k k k
k l k l l l

p x x dx dx Pr x X x dx x X x dx

Pr l nx l nx n dx dx

, = < < + , < < +

   = π = , π =   
 (A.10) 

Then
1 2 1 2

2
1 21

( ) { ( ( ) ( ) )}
q k k

l l k l k lk
p n Pr l nx l nx

=
   , = π = , π =   ∏x x , and the lemma follows directly 

from the results in Lemma 1.          

 

Proof of Theorem 1 

(i) follows directly from Lemma 2 (i), Lemma 2 in Xiong, Xie, Qian and Wu  (2014), Lemma 2 
in Qian (2012), and the theorem in McKay, Beckman, and Conover (1979). (ii) follows directly 
from case (ii) and case (iii) of Lemma 2, Lemma 2 in Xiong, Xie, Qian and Wu  (2014), and 
Theorem 1 in Qian (2012).                              

  

Proof of Theorem 2 

For (i), by Lemma 2, each Dij is statistically equivalent to an ordinary LHD with m runs. Then, 
by Theorem 1 in Stein (1987) or Theorem 1 in Loh (1996), the result in (i) holds.  
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    For (ii), by Lemma 2, each Di• is statistically equivalent to an SLHD with s slices each of m 
runs, and each D•j is statistically equivalent to a SLHD with t slices each of m runs. Then, the 
result follows directly from Theorem 2 in Qian (2012). 
    For (iii), by (3.1),  

 
1 1 2 21 1 2 2

1 1 2 2

1 1 2 2 1 1 2 21 1 2 2

2

( ) ( )

ˆ ˆVar( ) Var( )

ˆ ˆCov( )

ˆ ˆ ˆVar( ) Cov( )

ij ij
i j

i j i ji j i j
i j i j

ij i j i jij i j i ji j i j
i j

μ λ μ

λ λμ μ

λ λ λμ μ μ
, ≠ ,

=

= ,

= + ,





 

          (A.11) 

Define the first summation term and second summation term in (A.11) as I1 and I2, respectively. 
Since t and s are fixed integers, and m has the same order with n, we have, by part (i),  

 
12 2 2 2 1

1 0

1 1
{ ( )} ( )k

ij ij ij ij
i j i j k

I f x dx o n
m m

λ σ λ − −= − + .    (A.12) 

    Next we will show that 1
2 ( )I o n−= . Since I2 is the summation of p2 ‒ p different terms with p 

being a fixed number, it suffices to show that when 1 1 2 2( ) ( )i j i j, ≠ , ,  

 
1 1 2 2

1ˆ ˆCov( ) ( )i j i j o nμ μ −, = .  (A.13) 

    As ˆ ijμ  defined in (3.1), we have  

 
1 1 1 2 2 21 1 2 2

1 1 1 2 2 2

2

1
ˆ ˆCov( ) Cov{ ( ) ( )}

l i j l i j

i j l i j li j i j f f
m

μ μ
∈ , ∈

, = ,
x D x D

x x . (A.14) 

Now we will show that when 1 1 2 2( ) ( )i j i j, ≠ , ,  

 
1 1 1 2 2 2

1Cov{ ( ) ( )} ( )i j l i j lf f o n−, =x x . (A.15) 

To prove this, we first introduce the following lemma.  
Lemma A1.  Let ( )f ⋅  and ( )g ⋅  be two integrable functions defined on (0, 1], n is a positive 

integer, and δn (x, y) is defined in (3.4). Then we have, when n → ∞,  

 
1 1 1 1

1 2 1 2 1 20 0 0

1
( ) ( ) ( ) ( ) ( ) ( )nf x g x x x dx dx f x g x dx o n

n
δ −, = +   . (A.16) 

Proof.  Let 1( ]i i
i n nJ −= , , i = 1, …, n, we have  

 1 2 1 2
1

( ) { } { }
n

n i i
i

x x I x J I x Jδ
=

, = ∈ ∈ , (A.17) 

where I(·) is the indicator function. Therefore, when n → ∞,  
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1 1
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 (A.18) 

 
Now we go back to prove (A.15). The condition (i1, j1) ≠ (i2, j2) contains the three following 
cases, each corresponds to one case in Lemma 4.  

(i) If i1 = i2 = i and j1 ≠ j2, it corresponds to the case (ii) in Lemma 4. Thus,  
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(A.19) 

(ii)  If i1 ≠ i2 and j1 = j2 = j, it corresponds to the case (iii) in Lemma 4. By the same 
argument in part (ii), we have  

1 1 2 2

1Cov{ ( ) ( )} ( )i j l i j lf f o n−, = .x x                               (A.20) 

(iii)  If i1 ≠ i2 and j1 ≠ j2, it corresponds to the case (iv) in Lemma 4. Thus,   
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(A.21) 

This proves (A.15) and completes the proof of Theorem 2.     
 


