# Bi-directional Sliced Latin Hypercube Designs 

Qiang Zhou ${ }^{1}$, Tian Jin ${ }^{2}$, Peter Z.G. Qian ${ }^{3}$, Shiyu Zhou ${ }^{3}$<br>${ }^{1}$ City University of Hong Kong, ${ }^{2}$ Shanghai University of Finance and Economics, ${ }^{3}$ University of Wisconsin - Madison

## Supplementary Material

This supplementary material includes the detailed proofs of Lemma 1~4 and Theorem 1~2.

## Proof of Lemma 1

To prove (1), first note the exchangeability in the construction of BSPV. By symmetry, given any $l=1, \ldots, n, \operatorname{Pr}\{\pi(l)=u\}$ takes the same value for all $u=1,2, \ldots, n$. Hence $\operatorname{Pr}\{\pi(l)=u\}=1 / n$ and (1) holds.

To prove (2), we calculate the joint probability mass function based on the conditional distribution of $\pi\left(l_{2}\right)=v$ given $\pi\left(l_{1}\right)=u$. Here, $u \neq v$ and $l_{1} \neq l_{2}$. The joint probability mass function depends on the relationships between $u$ and $v$, and also those between $\pi\left(l_{1}\right)$ and $\pi\left(l_{2}\right)$. For convenience, the following proof is carried out based on the relationship between $u$ and $v$, instead of $\pi\left(l_{1}\right)$ and $\pi\left(l_{2}\right)$ given in the Lemma 1.

Given $\pi\left(l_{1}\right)=u$, assume $\pi\left(l_{1}\right) \in \mathbf{S}_{i_{1} j_{1}}$ and $\pi\left(l_{2}\right) \in \mathbf{S}_{i_{2} j_{2}}, i_{1}, i_{2}=1, \ldots, t$ and $j_{1}, j_{2}=1, \ldots, s$. The following cases are discussed for the conditional probability of $\pi\left(l_{2}\right)=v$.
(a) If $\gamma_{s}(u, v)=1$, then $i_{1} \neq i_{2}$ and $j_{1} \neq j_{2}$ must hold (otherwise $\operatorname{Pr}\left\{\pi\left(l_{2}\right)=v \mid \pi\left(l_{1}\right)=u\right\}=0$ ). By exchangeability, $\operatorname{Pr}\left\{\pi\left(l_{2}\right)=v \mid \pi\left(l_{1}\right)=u\right\}$ takes the same value for any position $\pi\left(l_{2}\right)$ satisfying $i_{1}$ $\neq i_{2}$ and $j_{1} \neq j_{2}$. As there are $m(s-1)(t-1)$ such locations,

$$
\begin{equation*}
\operatorname{Pr}\left\{\pi\left(l_{2}\right)=v \mid \pi\left(l_{1}\right)=u\right\}=\frac{1}{m(s-1)(t-1)} . \tag{A.1}
\end{equation*}
$$

(b) If $\gamma_{s}(u, v)=0$ and $\gamma_{t}(u, v)=1$, then $i_{1} \neq i_{2}$ must hold (otherwise $\operatorname{Pr}\left\{\pi\left(l_{2}\right)=v \mid \pi\left(l_{1}\right)=u\right\}=$ 0 ). By exchangeability, $\operatorname{Pr}\left\{\pi\left(l_{2}\right)=v \mid \pi\left(l_{1}\right)=u\right\}$ takes the same value for any position $\pi\left(l_{2}\right)$ satisfying $i_{1} \neq i_{2}$. As there are $m s(t-1)$ such locations,

$$
\begin{equation*}
\operatorname{Pr}\left\{\pi\left(l_{2}\right)=v \mid \pi\left(l_{1}\right)=u\right\}=\frac{1}{m s(t-1)} \tag{A.2}
\end{equation*}
$$

(c) If $\gamma_{p}(u, v)=0$, then $u$ and $v$ are generated from different $\overline{\mathbf{Q}}_{l}$ matrices during the Step 2 construction of BSPV. Since $\overline{\mathbf{Q}}_{l}$ matrices are independently generated, the probability that $u$ and $v$ are at the same location of two $\overline{\mathbf{Q}}_{l}$ matrices is $1 / p$. Thus,
(i) if $i_{1}=i_{2}$ and $j_{1}=j_{2}$,

$$
\begin{equation*}
\operatorname{Pr}\left\{\pi\left(l_{2}\right)=v \mid \pi\left(l_{1}\right)=u\right\}=\frac{1 / p}{m-1}=\frac{1}{n-p}, \tag{A.3}
\end{equation*}
$$

(ii) otherwise,

$$
\begin{equation*}
\operatorname{Pr}\left\{\pi\left(l_{2}\right)=v \mid \pi\left(l_{1}\right)=u\right\}=\frac{1 / p}{m}=\frac{1}{n} . \tag{A.4}
\end{equation*}
$$

(d) If $\gamma_{t}(u, v)=0$ and $\gamma_{p}(u, v)=1$, there are $p-t$ possible choices of $v$, and the conditional probability of $\pi\left(l_{2}\right)=v$ can be derived by the exchangeability and the regularity of probability. Specifically, we have,
(i) if $i_{1}=i_{2}$ and $j_{1} \neq j_{2}$,

$$
\begin{equation*}
\operatorname{Pr}\left\{\pi\left(l_{2}\right)=v \mid \pi\left(l_{1}\right)=u\right\}=\frac{1-\frac{n-p}{n}}{p-t}=\frac{s}{n(s-1)} ; \tag{A.5}
\end{equation*}
$$

(ii) if $i_{1} \neq i_{2}$ and $j_{1}=j_{2}$,

$$
\begin{equation*}
\operatorname{Pr}\left\{\pi\left(l_{2}\right)=v \mid \pi\left(l_{1}\right)=u\right\}=\frac{1-\frac{n-p}{n}-\frac{t-s}{m s(t-1)}}{p-t}=\frac{t}{n(t-1)} ; \tag{A.6}
\end{equation*}
$$

(iii) if $i_{1} \neq i_{2}$ and $j_{1} \neq j_{2}$,

$$
\begin{equation*}
\operatorname{Pr}\left\{\pi\left(l_{2}\right)=v \mid \pi\left(l_{1}\right)=u\right\}=\frac{1-\frac{n-p}{n}-\frac{t-s}{m s(t-1)}-\frac{s-1}{m(s-1)(t-1)}}{p-t}=\frac{s t-t-s}{n(t-1)(s-1)} . \tag{A.7}
\end{equation*}
$$

Using the $\gamma$ function defined in (3.3), the proof can be completed by re-classification of the above cases based on the relationships between $\pi\left(l_{1}\right)$ and $\pi\left(l_{2}\right)$, and then multiplying the conditional probability by $\operatorname{Pr}\left\{\pi\left(l_{1}\right)=u\right\}=1 / n$.

## Proof of Lemma 2

(i) Without loss of generality, we focus on $\mathbf{D}_{11}$. By the construction of $\mathbf{D}$, write the entries in $\mathbf{D}_{11}$ as $\pi_{k}(l)=\left(\alpha_{l}^{k}-1\right) p+\beta_{l}^{k}, l=1, \ldots, m, k=1, \ldots, q$, where $\left\{\alpha_{1}^{k}, \cdots, \alpha_{m}^{k}\right\}$ is a uniform permutation
on $\mathbf{Z}_{m}$, $\beta_{l}^{k}$,s are i.i.d and follow a discrete uniform distribution on $\mathbf{Z}_{p}$, and $\alpha_{l}^{k}$ 's are independent with $\beta_{l}^{k}$ 's. Then for $l=1, \ldots, m$, we can rewrite (2.1) as

$$
\begin{equation*}
d_{l k}=\frac{\left(\alpha_{l}^{k}-1\right) p+\beta_{l}^{k}-u_{l k}}{p m}=\frac{\alpha_{l}^{k}-\tilde{u}_{l k}}{m} \tag{A.8}
\end{equation*}
$$

where $\tilde{u}_{l k}=\left(p-\beta_{l}^{k}+u_{l k}\right) / p$ follows a uniform distribution on $(0,1]$.
(ii) We prove this by showing the equivalence between our construction and that of Qian (2012) for $\mathbf{D}_{1}$.. In our method, note $\mathbf{D}_{1}$. is constructed based on the first columns of $\overline{\mathbf{Q}}_{1}, \ldots, \overline{\mathbf{Q}}_{m}$, or equivalently $\mathbf{W}(:, 1)$. Divide $\mathbf{Z}_{n}$ into $r$ groups of $t$ consecutive numbers, where the $i$ th group is $\mathbf{g}_{i}=\left\{a \in \mathbf{Z}_{n} \mid\lceil a / t\rceil=i\right\}, i=1, \ldots, r$. For easier interpretation, we replace any number in $\mathbf{g}_{i}$ with the symbol $g_{i}$ in our construction. For example, in our numerical example immediately following the construction steps, we can write

$$
\overline{\mathbf{Q}}_{1}=\mathbf{Q}_{1}{ }^{\prime}=\left[\begin{array}{cccc}
11 & 5 & 8 & 1 \\
4 & 12 & 3 & 7 \\
6 & 2 & 9 & 10
\end{array}\right]=\left[\begin{array}{llll}
g_{3} & g_{2} & g_{2} & g_{1} \\
g_{1} & g_{3} & g_{1} & g_{2} \\
g_{2} & g_{1} & g_{3} & g_{3}
\end{array}\right],
$$

where $g_{i}$ can be viewed as the group index. Based on Step 1 of the construction for a BSPV, it is easy to see that $\overline{\mathbf{Q}}_{l}(:, 1)$ is a uniform permutation on the set $\left\{g_{(l-1) s+1}, \ldots, g_{l s}\right\}$ and the permutations are independent across $l, l=1, \ldots, m$. This step produces equivalent outcome to that of Step 1 in Qian (2012).

For the next step in our construction of $\mathbf{D}_{1}$., first columns of each $\overline{\mathbf{Q}}_{l}$ are put together, then randomly permuted within each group of $m$ numbers $\mathbf{W}(((j-1) m+1): j m, 1)$ to form $\mathbf{W}(:, 1)$, as in Step 3. This procedure is equivalent to carry out independent permutations on each row of the following matrix

$$
\left[\overline{\mathbf{Q}}_{1}(:, 1), \overline{\mathbf{Q}}_{2}(:, 1), \ldots, \overline{\mathbf{Q}}_{m}(:, 1)\right],
$$

whose $l$ th column is the $1^{\text {st }}$ column of $\overline{\mathbf{Q}}_{l}$. This step produces equivalent outcome to that of Step 2 in Qian (2012).

Further, from Step 1 in our construction, it is clear that $g_{i}$ is a uniform random number from $\mathbf{g}_{i}$. Hence the $l$ th entry in $\mathbf{W}(:, 1)$ can be written as $\pi(l)=\left(\alpha_{l}-1\right) t+\beta_{l}, l=1, \ldots, r$, where $\left\{\alpha_{1}, \cdots, \alpha_{r}\right\}$ is a uniform permutation on $\mathbf{Z}_{r}$ and $\beta_{l}$ 's are i.i.d uniformly distributed on $\mathbf{Z}_{t}$. Following the similar idea as that in the proof of part (i) and noting that the $q$ BSPVs are independently generated, it is straightforward that $\mathbf{D}_{1}$. is equivalent to an SLHD with $s$ slices, each of which contains $m$ runs.
(iii) The proof follows the similar idea as that in part (ii).

## Proof of Lemma 3

For any $x_{l}^{k} \in(0,1], l=1, \ldots, n, k=1, \ldots, q$, by (2.1) and Lemma 1 ,

$$
\begin{align*}
p\left(x_{l}^{k}\right) d x_{l}^{k} & =\operatorname{Pr}\left(x_{l}^{k}<X_{l}^{k}<x_{l}^{k}+d x_{l}^{k}\right) \\
& =\operatorname{Pr}\left\{n x_{l}^{k}<\pi_{k}(l)-u_{l k}<n\left(x_{l}^{k}+d x_{l}^{k}\right)\right\} \\
& =\operatorname{Pr}\left\{\pi_{k}(l)=\left\lceil n x_{l}^{k}\right\rceil\right\} \operatorname{Pr}\left(\left\lceil n x_{l}^{k}\right\rceil-n x_{l}^{k}-n d x_{l}^{k}<u_{l k}<\left\lceil n x_{l}^{k}\right\rceil-n x_{l}^{k}\right)  \tag{A.9}\\
& =\frac{1}{n} n d x_{l}^{k}=d x_{l}^{k} .
\end{align*}
$$

So the density of $x_{l}^{k}$ satisfies $p\left(x_{l}^{k}\right)=1$ for all $x_{l}^{k} \in(0,1]$. As $x_{l}^{k}$,s are independent across $k, p\left(\mathbf{x}_{l}\right)$ $=1$ for all $\mathbf{x}_{l} \in(0,1]^{q}$.

## Proof of Lemma 4

Similar to the proof in Lemma 3, the joint density can be derived in the same way:

$$
\begin{align*}
p\left(x_{l_{1}}^{k}, x_{l_{2}}^{k}\right) d x_{l_{1}}^{k} d x_{l_{2}}^{k} & =\operatorname{Pr}\left(x_{l_{1}}^{k}<X_{l_{1}}^{k}<x_{l_{1}}^{k}+d x_{l_{1}}^{k}, x_{l_{2}}^{k}<X_{l_{2}}^{k}<x_{l_{2}}^{k}+d x_{l_{2}}^{k}\right) \\
& =\operatorname{Pr}\left\{\pi_{k}\left(l_{1}\right)=\left\lceil n x_{l_{1}}^{k}\right\rceil, \pi_{k}\left(l_{2}\right)=\left\lceil n x_{l_{2}}^{k}\right\rceil\right\} n^{2} d x_{l_{1}}^{k} d x_{l_{2}}^{k} \tag{A.10}
\end{align*}
$$

Then $p\left(\mathbf{x}_{l_{1}}, \mathbf{x}_{l_{2}}\right)=\prod_{k=1}^{q}\left\{n^{2} \operatorname{Pr}\left(\pi_{k}\left(l_{1}\right)=\left\lceil n x_{l_{1}}^{k}\right\rceil, \pi_{k}\left(l_{2}\right)=\left\lceil n x_{l_{2}}^{k}\right\rceil\right)\right\}$, and the lemma follows directly from the results in Lemma 1.

## Proof of Theorem 1

(i) follows directly from Lemma 2 (i), Lemma 2 in Xiong, Xie, Qian and Wu (2014), Lemma 2 in Qian (2012), and the theorem in McKay, Beckman, and Conover (1979). (ii) follows directly from case (ii) and case (iii) of Lemma 2, Lemma 2 in Xiong, Xie, Qian and Wu (2014), and Theorem 1 in Qian (2012).

## Proof of Theorem 2

For (i), by Lemma 2, each $\mathbf{D}_{i j}$ is statistically equivalent to an ordinary LHD with $m$ runs. Then, by Theorem 1 in Stein (1987) or Theorem 1 in Loh (1996), the result in (i) holds.

For (ii), by Lemma 2, each $\mathbf{D}_{i}$. is statistically equivalent to an SLHD with $s$ slices each of $m$ runs, and each $\mathbf{D}_{\cdot j}$ is statistically equivalent to a SLHD with $t$ slices each of $m$ runs. Then, the result follows directly from Theorem 2 in Qian (2012).

For (iii), by (3.1),

$$
\begin{align*}
\operatorname{Var}(\hat{\mu}) & =\operatorname{Var}\left(\sum_{i} \sum_{j} \lambda_{i j} \hat{\mu}_{i j}\right) \\
& =\sum_{i_{1}} \sum_{j_{1}} \sum_{i_{2}} \sum_{j_{2}} \operatorname{Cov}\left(\lambda_{i_{i}, j_{1}} \hat{\mu}_{i_{1}, j_{1}}, \lambda_{i_{2} j_{2}} \hat{\mu}_{i_{2} j_{2}}\right)  \tag{A.11}\\
& =\sum_{i} \sum_{j} \lambda_{i j}^{2} \operatorname{Var}\left(\hat{\mu}_{i j}\right)+\sum \sum \sum \sum \sum_{\left(i_{1}, j_{1}\right) \neq\left(i_{2}, j_{2}\right)} \lambda_{i_{i} j_{1}} \lambda_{i_{2} j_{2}} \operatorname{Cov}\left(\hat{\mu}_{i_{j}, j_{1}}, \hat{\mu}_{i_{2} j_{2}}\right)
\end{align*}
$$

Define the first summation term and second summation term in (A.11) as $I_{1}$ and $I_{2}$, respectively. Since $t$ and $s$ are fixed integers, and $m$ has the same order with $n$, we have, by part (i),

$$
\begin{equation*}
I_{1}=\frac{1}{m} \sum_{i} \sum_{j} \lambda_{i j}^{2} \sigma_{i j}^{2}-\frac{1}{m} \sum_{i} \sum_{j} \sum_{k} \lambda_{i j}^{2} \int_{0}^{1}\left\{f_{i j}^{-k}(x)\right\}^{2} d x+o\left(n^{-1}\right) \tag{A.12}
\end{equation*}
$$

Next we will show that $I_{2}=o\left(n^{-1}\right)$. Since $I_{2}$ is the summation of $p^{2}-p$ different terms with $p$ being a fixed number, it suffices to show that when $\left(i_{1}, j_{1}\right) \neq\left(i_{2}, j_{2}\right)$,

$$
\begin{equation*}
\operatorname{Cov}\left(\hat{\mu}_{i_{1} j_{1}}, \hat{\mu}_{i_{2} j_{2}}\right)=o\left(n^{-1}\right) \tag{A.13}
\end{equation*}
$$

As $\hat{\mu}_{i j}$ defined in (3.1), we have

$$
\begin{equation*}
\operatorname{Cov}\left(\hat{\mu}_{i_{1} j_{1}}, \hat{\mu}_{i_{2} j_{2}}\right)=\frac{1}{m^{2}} \sum_{\mathbf{x}_{l_{1}} \in \mathbf{D}_{i_{i j},}, \boldsymbol{x}_{2} \in \mathbf{D}_{i_{2} / 2}} \operatorname{Cov}\left\{f_{i_{i_{1}} j_{1}}\left(\mathbf{x}_{l_{1}}\right), f_{i_{2} j_{2}}\left(\mathbf{x}_{l_{2}}\right)\right\} \tag{A.14}
\end{equation*}
$$

Now we will show that when $\left(i_{1}, j_{1}\right) \neq\left(i_{2}, j_{2}\right)$,

$$
\begin{equation*}
\operatorname{Cov}\left\{f_{i_{1} j_{1}}\left(\mathbf{x}_{l_{1}}\right), f_{i_{2} j_{2}}\left(\mathbf{x}_{l_{2}}\right)\right\}=o\left(n^{-1}\right) \tag{A.15}
\end{equation*}
$$

To prove this, we first introduce the following lemma.
Lemma A1. Let $f(\cdot)$ and $g(\cdot)$ be two integrable functions defined on $(0,1], n$ is a positive integer, and $\delta_{n}(x, y)$ is defined in (3.4). Then we have, when $n \rightarrow \infty$,

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{1} f\left(x_{1}\right) g\left(x_{2}\right) \delta_{n}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=\frac{1}{n} \int_{0}^{1} f(x) g(x) d x+o\left(n^{-1}\right) . \tag{A.16}
\end{equation*}
$$

Proof. Let $J_{i}=\left(\frac{i-1}{n}, \frac{i}{n}\right], i=1, \ldots, n$, we have

$$
\begin{equation*}
\delta_{n}\left(x_{1}, x_{2}\right)=\sum_{i=1}^{n} I\left\{x_{1} \in J_{i}\right\} I\left\{x_{2} \in J_{i}\right\}, \tag{A.17}
\end{equation*}
$$

where $I(\cdot)$ is the indicator function. Therefore, when $n \rightarrow \infty$,

$$
\begin{align*}
& \int_{0}^{1} \int_{0}^{1} f\left(x_{1}\right) g\left(x_{2}\right) \delta_{n}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& =\sum_{i=1}^{n} \int_{0}^{1} \int_{0}^{1} f\left(x_{1}\right) g\left(x_{2}\right) I\left\{x_{1} \in J_{i}\right\} I\left\{x_{2} \in J_{i}\right\} d x_{1} d x_{2} \\
& =\sum_{i=1}^{n} \int_{J_{i}} f(x) d x \int_{J_{i}} g(x) d x  \tag{A.18}\\
& =\frac{1}{n} \int_{0}^{1} f(x) g(x) d x+o\left(n^{-1}\right)
\end{align*}
$$

Now we go back to prove (A.15). The condition $\left(i_{1}, j_{1}\right) \neq\left(i_{2}, j_{2}\right)$ contains the three following cases, each corresponds to one case in Lemma 4.
(i) If $i_{1}=i_{2}=i$ and $j_{1} \neq j_{2}$, it corresponds to the case (ii) in Lemma 4. Thus,

$$
\begin{aligned}
& \operatorname{Cov}\left\{f_{i j_{1}}\left(\mathbf{x}_{l_{1}}\right), f_{i j_{2}}\left(\mathbf{x}_{l_{2}}\right)\right\} \\
&= \int\left\{f_{i j_{1}}\left(\mathbf{x}_{l_{1}}\right)-\mu_{i j_{1}}\right\}\left\{f_{i_{j_{2}}}\left(\mathbf{x}_{l_{2}}\right)-\mu_{i_{2}}\right\} p\left(\mathbf{x}_{l_{1}}, \mathbf{x}_{l_{2}}\right) d \mathbf{x}_{l_{1}} d \mathbf{x}_{l_{2}} \\
&= \int\left\{f_{i j_{1}}\left(\mathbf{x}_{l_{1}}\right)-\mu_{i j_{1}}\right\}\left\{f_{i_{j_{2}}}\left(\mathbf{x}_{l_{2}}\right)-\mu_{i_{2}}\right\}\left\{1+\frac{1}{s-1} \sum_{k=1}^{q}\left[\delta_{m}\left(x_{l_{1}}^{k}, x_{l_{2}}^{k}\right)-s \delta_{r}\left(x_{l_{1}}^{k}, x_{l_{2}}^{k}\right)\right]\right\} d \mathbf{x}_{l_{1}} d \mathbf{x}_{l_{2}}+o\left(m^{-1}\right) \\
&= \frac{1}{s-1} \sum_{k=1}^{q} \int f_{i j_{1}}^{-k}\left(x_{l_{1}}^{k}\right) f_{i j_{2}}^{-k}\left(x_{l_{2}}^{k}\right) \delta_{m}\left(x_{l_{1}}^{k}, x_{l_{2}}^{k}\right) d x_{l_{1}}^{k} d x_{l_{2}}^{k} \\
&-\frac{s}{s-1} \sum_{k=1}^{q} \int f_{i j_{1}}^{-k}\left(x_{l_{1}}^{k}\right) f_{i_{j_{2}}}^{-k}\left(x_{l_{2}}^{k}\right) \delta_{r}\left(x_{l_{1}}^{k}, x_{l_{2}}^{k}\right) d x_{l_{1}}^{k} d x_{l_{2}}^{k}+o\left(m^{-1}\right) \\
&= \frac{1}{s-1}\left(\frac{1}{m}-\frac{s}{r}\right) \sum_{k=1}^{q} \int f_{i j_{1}}^{-k}(x) f_{i_{j_{2}}}^{-k}(x) d x+o\left(m^{-1}\right) \\
&= o\left(n^{-1}\right) .
\end{aligned}
$$

(ii) If $i_{1} \neq i_{2}$ and $j_{1}=j_{2}=j$, it corresponds to the case (iii) in Lemma 4. By the same argument in part (ii), we have

$$
\begin{equation*}
\operatorname{Cov}\left\{f_{i_{i}, j}\left(\mathbf{x}_{l_{1}}\right), f_{i_{2} j}\left(\mathbf{x}_{l_{2}}\right)\right\}=o\left(n^{-1}\right) \tag{A.20}
\end{equation*}
$$

(iii) If $i_{1} \neq i_{2}$ and $j_{1} \neq j_{2}$, it corresponds to the case (iv) in Lemma 4. Thus,

$$
\begin{align*}
& \operatorname{Cov}\left\{f_{i_{1} j_{1}}\left(\mathbf{x}_{l_{1}}\right), f_{i_{2} j_{2}}\left(\mathbf{x}_{l_{2}}\right)\right\} \\
= & \int\left\{f_{i_{1} j_{1}}\left(\mathbf{x}_{l_{1}}\right)-\mu_{i_{1} j_{1}}\right\}\left\{f_{i_{2} j_{2}}\left(\mathbf{x}_{l_{2}}\right)-\mu_{i_{2} j_{2}}\right\} p\left(\mathbf{x}_{l_{1}}, \mathbf{x}_{l_{2}}\right) d \mathbf{x}_{l_{1}} d \mathbf{x}_{l_{2}} \\
= & \int\left\{f_{i_{1} j_{1}}\left(\mathbf{x}_{l_{1}}\right)-\mu_{i_{1} j_{1}}\right\}\left\{f_{i_{2} j_{2}}\left(\mathbf{x}_{l_{2}}\right)-\mu_{i_{2} j_{2}}\right\} \\
& \left\{1+(s-1)^{-1}(t-1)^{-1} \sum_{k=1}^{q}\left[-\delta_{m}\left(x_{l_{1}}^{k}, x_{l_{2}}^{k}\right)+s \delta_{r}\left(x_{l_{1}}^{k}, x_{l_{2}}^{k}\right)+t \delta_{h}\left(x_{l_{1}}^{k}, x_{l_{2}}^{k}\right)-p \delta_{n}\left(x_{l_{1}}^{k}, x_{l_{2}}^{k}\right)\right]\right\} d \mathbf{x}_{l_{1}} d \mathbf{x}_{l_{2}}+o\left(n^{-1}\right) \\
= & (s-1)^{-1}(t-1)^{-1} \sum_{k=1}^{q} \int f_{i_{1} j_{1}}^{-k}\left(x_{l_{1}}^{k}\right) f_{i_{2} j_{2}}^{-k}\left(x_{l_{2}}^{k}\right) \\
& {\left[-\delta_{m}\left(x_{l_{1}}^{k}, x_{l_{2}}^{k}\right)+s \delta_{r}\left(x_{l_{1}}^{k}, x_{l_{2}}^{k}\right)+t \delta_{h}\left(x_{l_{1}}^{k}, x_{l_{2}}^{k}\right)-p \delta_{n}\left(x_{l_{1}}^{k}, x_{l_{2}}^{k}\right)\right] d x_{l_{1}}^{k} d x_{l_{2}}^{k}+o\left(n^{-1}\right) } \\
= & (s-1)^{-1}(t-1)^{-1}\left(-\frac{1}{m}+\frac{s}{r}+\frac{t}{h}-\frac{p}{n}\right) \sum_{k=1}^{q} \int f_{i_{1} j_{1}}^{-k}(x) f_{i_{2} j_{2}}^{-k}(x) d x+o\left(n^{-1}\right) \\
= & o\left(n^{-1}\right) . \tag{A.21}
\end{align*}
$$

This proves (A.15) and completes the proof of Theorem 2.

