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Abstract: Composite likelihoods are a class of alternatives to the full likelihood

which may be used for inference in many situations where the likelihood itself is

intractable. A composite likelihood estimator will be robust to certain types of

model misspecification, since it may be computed without the need to specify the

full distribution of the response. This potential for increased robustness has been

widely discussed in recent years, and is considered a secondary motivation for the

use of composite likelihood. The purpose of this paper is to show that there are some

situations in which a composite likelihood estimator may actually suffer a loss of

robustness compared to the maximum likelihood estimator. We demonstrate this in

the case of a generalized linear mixed model under misspecification of the random-

effect distribution. As the amount of information available on each random effect

increases, we show that the maximum likelihood estimator remains consistent under

such misspecification, but various marginal composite likelihood estimators are

inconsistent. We conclude that composite likelihood estimators cannot in general

be claimed to be more robust than the maximum likelihood estimator.

Key words and phrases: Consistency, generalized linear mixed model, laplace ap-

proximation, pairwise interactions.

1. Introduction

Suppose we observe independent samples y(1), . . . , y(r), where each y(i) =

(y
(i)
1 , . . . , y

(i)
m ) is assumed to be an independent sample from a model depending

on an unknown parameter θ. The likelihood

L(θ) =
r∏

i=1

L(θ; y(i))

is sometimes difficult to compute, and composite likelihoods (Lindsay (1988))

provide a class of alternatives for conducting inference about θ in such circum-

stances. A marginal composite likelihood

LC(θ) =

r∏
i=1

∏
s∈S

L(θ; y(i)s )ws
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is formed by taking a product of component likelihoods, each of which is the

likelihood given some subset of the data ys, where ws is a weight assigned to

component s. A review of composite likelihoods and their many uses is given by

Varin, Reid, and Firth (2011).

If the model is correctly specified, the composite likelihood estimator is con-

sistent as r → ∞, provided that the parameter of interest remains identifiable,

although the estimator typically has a higher asymptotic variance than the max-

imum likelihood estimator. There is a hope that some compensation for this loss

of efficiency can be provided by an increased robustness of the composite likeli-

hood estimator to misspecification of the model. Lindsay , Yi, and Sun (2011)

motivate the use of composite likelihoods in this way, stating that ‘Compared to

the traditional likelihood method, the composite likelihood method may be less

efficient, but it could be a lot computationally faster to implement and be more

robust to model misspecification.’

This notion is motivated by the fact that it is not necessary to specify the

full distribution of the response in order to be able to compute a composite

likelihood. If the marginal distributions of Ys for each subset s ∈ S are correctly

specified, then the corresponding estimator of θ is consistent as r → ∞, even if

the full model is misspecified. The maximum likelihood estimator need not be

consistent in such a setting, since the likelihood relies on the full, misspecified,

distribution of Y . Xu and Reid (2011) discuss this type of robustness in some

detail, and provide a formal proof of the consistency of the composite likelihood

estimator in this setting.

In some situations the relevant marginal distributions themselves may be

misspecified, in which case the marginal composite likelihood estimator no longer

retains this robustness property. However, in that case the full distribution of

Y must also be incorrect, so the maximum likelihood estimator need not be

robust to this misspecification either. From this, it is tempting to conclude that

a marginal composite likelihood estimator must always be at least as robust to

model misspecification as the full likelihood estimator. We show that this is not

the case.

To see this, we consider the impact of incorrectly specifying the random-

effects distribution in a generalized linear mixed model. Generalized linear mixed

models are a widely-used class of models, but one in which the likelihood is often

difficult to compute. Because of this intractability, composite likelihood methods

have been proposed as alternatives to full-likelihood inference.

In Section 3, we consider a class of generalized linear mixed models with

simple nested structure, in which the likelihood is tractable. In this setting,

we obtain some asymptotic results to show that under misspecification of the

random-effect distribution the maximum likelihood estimator is consistent, while

various composite likelihood estimators are inconsistent.
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In Section 4, we consider a class of generalized linear mixed models with
intractable likelihoods, in which each observation involves a pair of random ef-
fects. We compare the pairwise likelihood estimator proposed by Bellio and Varin
(2005) with an estimator found by maximizing the Laplace approximation to the
likelihood, in terms of the limiting value of each estimator under misspecification
of the random-effect distribution. When only a small amount of information is
available on each random effect, we find that the asymptotic bias in the pairwise
likelihood estimator is smaller than that of Laplace estimator. However, as the
amount of information available on each random effect increases, the magnitude
of the asymptotic bias in the Laplace estimator decreases towards zero, but the
asymptotic bias in the pairwise likelihood estimator remains fixed away from
zero, in agreement with the asymptotic results of Section 3.

2. Generalized Linear Mixed Models

In a generalized linear mixed model, the distribution of Y (i) takes exponential
family form, with distribution determined by the linear predictor

η(i) = X(i)β + Z(σ)u(i),

where X is the design matrix for the fixed effects, u(i) = (u
(i)
1 , . . . u

(i)
n ) are ran-

dom effects, where each u
(i)
j is assumed to have independent standard normal

distribution, and Z(σ) is a design matrix for the random effects, whose entries
may depend on a parameter σ.

The addition of random effects often makes the model more realistic, but the
likelihood of θ = (β, σ) given each y(i) is

L(θ; y(i)) =

∫
Rn

f(y(i)|η(i) = X(i)β + Z(σ)u(i))
n∏

j=1

ϕ(u
(i)
j )du(i),

where ϕ(.) is the standard normal density, and it might be difficult to approximate
this n-dimensional integral well. Moreover, there is often no good reason to
suppose that the random effects are normally distributed, so inferences made
should be checked for sensitivity to this assumption.

There is a large literature on the impact of random-effects misspecification
on the maximum likelihood estimator. A detailed review is provided by McCul-
loch and Neuhaus (2011), who conclude that the asymptotic bias due to such
misspecification may be expected to be small in many cases, and highlight some
situations where it may be of more concern.

In situations where the likelihood is intractable, it is common to replace
the true likelihood with a Laplace approximation, and to use the approximated
likelihood for inference (Pinheiro and Bates (1995)). A disadvantage of this
approach is that the resulting estimator need not be consistent as the amount of
data increases, even if the model is correctly specified.
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Composite likelihood estimators are consistent under correct model specifi-

cation, albeit with some loss of efficiency compared to the maximum likelihood

estimator. Bellio and Varin (2005) construct a pairwise likelihood for inference in

these models, with a contribution from each pair (y
(i)
j , y

(i)
k ) which are dependent

under the model. Thus, defining tj as the set of non-zero elements in the jth row

of Z(σ), a pairwise likelihood may be defined by

Lpair(θ; y) =

r∏
i=1

∏
(j,k):tj∩tk ̸=∅

L(θ; y
(i)
j , y

(i)
k ).

Bellio and Varin (2005) focus on those cases in which each tj contains two el-

ements, although they note that essentially the same method could be applied

more generally. Each term L(θ; y
(i)
j , y

(i)
k ) can be written as an integral over the

|tj∪tk| random effects involved in the pair of observations. In the case where there

are two random effects involved in each observation, this is a three-dimensional

integral that is relatively easy to approximate well.

3. Robustness in a Two-level Model

3.1. A two-level model

Taking n = 1 in the generalized linear mixed model, and writing x
(i)
j for the

jth column of X(i), we obtain the two-level model η
(i)
j = βTx

(i)
j + σu(i). Here

the u(i) are independent (scalar) random effects, which are assumed to be drawn

from a N(0, 1) distribution. Since n = 1, the likelihood is just a product of one-

dimensional integrals. For ease of notation, we further assume that x
(i)
j = x(i) is

constant across j, so that we can write η
(i)
j = η(i) = βTx(i) + σu(i); our results

also hold for the more general case.

We are interested in the robustness of estimators of β to deviations from

the assumed random-effects distribution. We suppose that each u(i) is drawn

independently from a non-normal distribution with mean zero and variance one

and that, for some parameter values (β, σ) = (β0, σ0), the rest of the model is

correctly specified.

Under this misspecification, we are interested in the limit β∞
m of the maxi-

mum likelihood estimator of β as r → ∞, and how this limit varies with m. In

particular, we show that as m → ∞, β∞
m → β0, so that if r and m simultaneously

tend to infinity, the maximum likelihood estimator is consistent.

3.2. Consistency of the maximum likelihood estimator

The likelihood for θ = (β, σ) is given by L(θ; y) =
∏r

i=1 L(θ; y
(i)), where
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L(θ; y(i)) =

∫ ∞

−∞

{ m∏
j=1

f(y
(i)
j | η(i) = βTx(i) + σu(i))

}
ϕ(u(i))du(i).

We write ℓi(θ; y
(i)) = logL(θ; y(i)) for the contribution to the log-likelihood from

y(i), and si(θ; y) = ∇θℓi(θ; y) for the corresponding score function. In the case

that m is fixed and r → ∞, the results of White (1982) show that the maxi-

mum likelihood estimator θ̂rm = (β̂r
m, σ̂r

m) of θ converges to the value θ∞m which

solves s̄(θ) = E
{
si(θ, Y

(i))
}
= 0, where the expectation is taken over the true

distribution of Y (i) and the covariates x(i).

Intuitively, for large m, it should be possible to obtain an estimate of the

value of each linear predictor η(i) from the data y(i) that is close to the true value

η
(i)
0 . This means that for sufficiently large m, inference given the data y should

be similar to the inference we would obtain if we were given the true value η
(i)
0

of each linear predictor η(i), and assume a linear model η(i) = βTx(i) + σu(i),

with the ui independent N(0, 1) error terms. Thus, for large m, the problem is

reduced to studying the impact of incorrectly assuming that the errors in a linear

model are normally distributed.

To formalize this argument, write

ℓi(θ; η
(i)
0 ) = −1

2
log(2πσ)− 1

2σ2
(η

(i)
0 − βTx(i))2

for the log-likelihood for θ in the linear model given η
(i)
0 , and si(θ; η

(i)
0 ) =

∇θℓi(θ; η
(i)
0 ) for the corresponding score function. We obtain the following re-

sult, whose proof is given in the appendix.

Lemma 1. As m → ∞, si(θ; y
(i)) = si(θ; η

(i)
0 ) + o(1).

In the linear model setting, the impact of the distribution of the error term

has been well studied. We may use the results from this setting to show that the

asymptotic bias in β̂ diminishes with m.

Lemma 2. As m → ∞, β∞
m → β0.

Proof. If we observe η(i) from the linear model η(i) = βTx(i) + ϵ(i), the ordinary

least squares estimator of β, the maximum likelihood estimator if we assume that

ϵ(i) ∼ N(0, σ2), is consistent irrespective of the true distribution of the error ϵ(i).

Writing s̄(θ; η) = E
{
si(θ, η

(i))
}
, s̄(θ∗; η) = 0 has unique solution θ∗ = (β0, σ

∗),

for some σ∗. But for any θ as m → ∞, s̄(θ; y) = s̄(θ; η) + o(1), so s̄(θ∗; y) → 0

but s̄(θ̃; y) ̸→ 0 for any fixed θ̃ ̸= θ∗. So θ∞m , which satisfies s̄(θ∞m ; y) = 0, must

tend to θ∗ as m → ∞, and β∞
m → β0 as claimed.

Theorem 1. As r,m → ∞, β̂r
m → β0 in probability.
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The maximum likelihood estimator is consistent in this setting because the

increasing number of observations made per random effect allow us to obtain

a good estimate of each η(i). Intuitively, if we define a composite likelihood

which uses small subsets of the data in each component likelihood, then we will

be unable make use of this increasing amount of information available on each

random effect. The resulting composite likelihood estimator cannot be expected

to be consistent under the same misspecification.

3.3. Inconsistency of fixed-order composite likelihood estimators

We now show that a marginal composite likelihood estimator may be incon-

sistent under random-effects misspecification, as r and m tend to infinity. We

define the composite likelihood by specifying a set Sm that contains the set of

subsets of {1, . . . ,m} used to construct the component likelihoods. For ease of

notation, we assume that wt = 1 for each subset t ∈ Sm, and restrict attention to

composite likelihoods where Sm consists of Nm ≥ 1 sets of fixed size k. We define

a k-wise log-likelihood as ℓ
(k)
i (θ, y(i)) =

∑
t∈Sm

logL(θ, y
(i)
t ). For the all-pairwise

likelihood, k = 2 and Nm = m(m − 1)/2. Other pairwise likelihoods could also

be constructed: for instance Sm could contain the Nm = m− 1 pairs of the form

{j, j + 1}, for j = 1, . . . ,m− 1.

We write θ̃m,r
k = (β̃m,r

k , σ̃m,r
k ) for a k-wise composite likelihood estimator.

Suppose that m ≥ k is fixed. We now show that as r → ∞, any k-wise composite

likelihood estimator (with Nm ≥ 1) tends to θ∞k , the limit of the maximum

likelihood estimator in an alternative two-level model in which m is fixed at k, as

r → ∞. The alternative model uses exactly the same modeling assumptions as

the original, but only the observations y
(i)
1:k are used, rather than the full set y

(i)
1:m.

The limit θ∞k is found by taking the root of the expected score E{si(θ, Y (i)
1:k )},

where the expectation is taken under the true distribution of Y
(i)
1:k and x(i).

Lemma 3. Suppose m is fixed such that Nm ≥ 1. As r → ∞, θ̃m,r
k → θ∞k in

probability.

Proof. We define s
(k)
i (θ; y(i)) = ∇θℓ

(k)
i (θ; y(i)) to be the composite score func-

tion given y(i). The k-wise likelihood estimator solves the estimating equation
1
r

∑r
i=1 s

(k)
i (θ; y(i)) = 0, so by results of Yi and Reid (2010), it converges to the

root of s̄(k)(θ) = E{s(k)i (θ;Y (i))}, where the expectation is taken over the true

distribution of Y (i) and the covariates x(i).

But

s̄(k)(θ) = E
{ ∑

t∈Sm

si(θ, Y
(i)
t )

}
=

∑
t∈Sm

E{si(θ, Y (i)
t )} = NmE{si(θ, Y (i)

1:k )}
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since Y
(i)
t are identically distributed for each t ∈ Sm. The limit of the k-wise

likelihood estimator is given by the root of s̄(k)(θ), or equivalently the root of

E{si(θ, Y (i)
1:k )}, which is θ∞k .

Since the same limit holds for any fixed m, it also holds in the limit as

m → ∞, which leads directly to our main result.

Theorem 2. As r,m → ∞, β̃m,r
k → β∞

k in probability.

For example, the limit of the pairwise likelihood estimator of β as r and m

tend to infinity is β∞
2 , the limit of the maximum likelihood estimator when m is

fixed at two. In most cases, the pairwise likelihood estimator will be inconsistent

as r and m tend to infinity, unless the random-effect distribution is correctly

specified. The same conclusion holds for any k-wise likelihood estimator, pro-

vided k is fixed and does not grow with m, although we expect the asymptotic

bias to diminish with k, as a result of Lemma 2.

3.4. A numerical example

Suppose that each x(i) ∼ Bernoulli(1/2), and that each observation y
(i)
j is

binary, with pr(Y
(i)
j = 1 | α, β, σ, u(i), x(i)) = logit−1(α + βx(i) + σu(i)). In the

model, we assume that u(i) ∼ N(0, 1) but, in truth, suppose that u(i) has a skew-

normal distribution (Azzalini (1985)); here we change the level of skewness of the

distribution by varying the shape parameter a, altering the other parameters of

the distribution as we do so to ensure that the mean remains fixed at 0 and the

variance at 1. The case a = 0 corresponds to the N(0, 1) distribution, in which

case the model is correctly specified, and moving a further from 0 increases the

degree of misspecification.

Figure 1 shows a contour plot of the limit α∞
m for various values of m and

a, when α0 = −0.5, β0 = 1, and σ0 = 1. As expected, for each fixed a ̸= 0, the

asymptotic bias in α̂ diminishes with m. Figure 2 shows a cut across this contour

plot at m = 2, which gives the limit of the pairwise likelihood estimator of α.

If a ̸= 0, the pairwise likelihood estimator of α is not consistent. The limiting

value of a similarly defined k-wise likelihood estimator may be obtained by a cut

across the contour plot at m = k. In the limit as r and m tend to infinity, the

maximum likelihood estimator is consistent, but the k-wise likelihood estimator

is not, for any fixed k.

The asymptotic bias in β̂ is far smaller than that for α̂, and β∞
m is close to 1

even for smallm. We compute the integrals involved in the likelihood numerically,

leading to small errors in our computation of the limit of the estimators. Since

the asymptotic bias in β̂ is small, it is hard to distinguish the true asymptotic bias

from the error in the computed limit. However, for each a and m we consider,
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Figure 1. The limit of the maximum likelihood estimator of α as r → ∞ in
the two-level model, where α0 = −1, for various skew-normal random-effect
distributions. The model is correctly specified in the case a = 0.

Figure 2. The limit of the pairwise likelihood estimator of α in the two-level
model, for various skew-normal random-effect distributions. The estimator
is only consistent when the model is correctly specified, at a = 0.

we compute β∞
m ∈ (0.99, 1.01), so the asymptotic bias in each estimator of β is

negligible.

This agrees with the conclusions of McCulloch and Neuhaus (2011), who

argue that the extent of asymptotic bias due to random effect misspecification is

often larger when estimating an intercept than for other parameters. In practice,

we are typically more interested in the effect of a covariate than in the intercept.

In that case, the impact of asymptotic bias due to random-effect misspecification

may be relatively small.
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4. Robustness in Pairwise Interaction Models

We now consider models of the type considered by Bellio and Varin (2005).

Here, each observation involves two items, one from each of two groups. We call

these models pairwise interaction models. The linear predictor can be written as

η
(i)
j = βTx

(i)
j + σ1u

(i)
p1(j) + σ2v

(i)
p2(j),

where p1(j) and p2(j) indicate the type-1 and type-2 items involved in obser-

vation j. We suppose that there are q type-1 and q type-2 items, and consider

the complete matching, where there is one observation involving each possible

combination of type-1 and type-2 items. There are n = 2q random effects and

m = q2 observations in each replication. We consider the limiting value of various

estimators, under misspecification of the random-effect distribution, as the num-

ber of independent replications r → ∞, for different values of q. As q increases,

both the number of random effects (rn = 2rq) and the number of observations

per random effect (m/n = q/2) increase. Because the data provide an increasing

amount of information on each random effect, we expect the asymptotic bias in

the maximum likelihood estimator to decrease toward zero as q increases. The

limit of each estimator as q tends to infinity, for any fixed r, is equal to the limit

as r and q tend simultaneously to infinity, since in both cases the limit is a root

of the expected score function for a single replication Y (i). Our findings therefore

also apply in the more realistic situation where r is small.

For simplicity, we consider the case where there is no covariate, and we fit

only an intercept term. We also suppose that the two types of random effect

have a common variance, so that σ1 = σ2 = σ, and we may write

η
(i)
j = α+ σu

(i)
p1(j) + σv

(i)
p2(j).

Suppose that we have binary responses, and we model pr(Y
(i)
j = 1|η(i)j ) =

logit−1(η
(i)
j ). As before, suppose that in fact ui and vi are independent samples

from a skew-normal distribution with shape parameter a and other parameters

chosen so that the random effects have mean 0 and variance 1.

Since the true maximum likelihood estimator is unavailable, we instead com-

pare the limit of the pairwise likelihood estimator with that of the estimator

maximizing the Laplace approximation to the likelihood. Figure 3 shows the

limit of the Laplace estimator of α in the case α0 = −1, for various values of q

and a. For each fixed q and a, these limiting values were found by taking 5,000

samples from the true distribution of Y (i), computing the Laplace approximation

to the log-likelihood surface for each, and averaging to give an approximation to

the expected Laplace log-likelihood surface. The limiting value of the Laplace es-

timator of θ was found by maximizing this surface over θ. Notice that even when
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Figure 3. The limit as r → ∞ of the Laplace estimator of α in the pairwise
interaction model, where α0 = −1, for different values of q and various skew-
normal random-effect distributions. The model is correctly specified in the
case a = 0.

Figure 4. The limit of various estimators of α in the pairwise interaction
model, where α0 = −1. The model is correctly specified in the case a = 0.

there is no misspecification (at a = 0), the Laplace estimator is not consistent

and, for small q, the asymptotic bias is quite large.

The limit of the Laplace estimator changes with q, while the limit of the

pairwise likelihood estimator remains fixed. The solid line in Figure 4 shows the

limit of the pairwise likelihood estimator (for any q), with the Laplace estimator

for q = 2 (dashed line) and q = 50 (dot-dash) overlaid. In the case q = 2, the

pairwise likelihood performs better than the Laplace approximation, since the
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asymptotic bias induced by model misspecification is much smaller than that

from error in the Laplace approximation. However, once q is as large as 50,

the asymptotic bias of the Laplace estimator in the correctly specified case is

negligible, and the Laplace estimator has much lower asymptotic bias than the

pairwise likelihood estimator when the model is misspecified.

5. Discussion

We have provided some counterexamples to the the notion that a marginal

composite likelihood estimator is at least as robust to model misspecification

as the maximum likelihood estimator. Researchers using composite likelihood

methods should be aware of these findings, and take care to ensure that claims

of robustness made in any particular case are fully justified.

A composite likelihood estimator cannot be claimed, in general, to be either

more or less robust to model misspecification than the maximum likelihood es-

timator. It is natural to ask what characterizes the situations in which either

one of these claims do hold. Much more work is required to fully answer this

question, and here we provide only some limited intuition. A composite likeli-

hood is constructed from a set of components of the data, and only uses those

parts of the model that affect the distributions of these components. The max-

imum likelihood estimator also uses extra between-component information. If

the full distribution is incorrectly specified, but the component distributions are

correct, then the composite likelihood estimator achieves increased robustness by

discarding the unreliable between-component information.

However, the maximum likelihood estimator is robust to some other types of

model misspecification precisely because it makes use of all of the available infor-

mation. For example, the impact of the random-effects distribution diminishes as

the amount of information per random effect grows, so the maximum likelihood

estimator is robust to random-effect misspecification in this setting. A fixed-

order composite likelihood estimator only uses a fixed amount of information per

random effect, leading to a loss of robustness. The choice of random-effect distri-

bution belongs to a wider class of model assumptions whose impact diminishes

as the amount of information provided by the data increases. Under deviations

from other assumptions of this type, we might also expect fixed-order compos-

ite likelihood estimators to suffer a loss of robustness relative to the maximum

likelihood estimator.
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Appendix: Proof of Lemma 1

Proof. We first reparameterize the integral, to write the likelihood as an integral
over η(i). Let

gi(η
(i) | y(i), θ) =

[ m∏
j=1

f(y
(i)
j | η(i))

] 1
σ
ϕ
(η(i) − βTx(i)

σ

)
,

so that L(θ; y(i)) =
∫∞
−∞ gi(η

(i) | y(i), θ)dη(i). We may think of gi(. | y(i), θ) as a

non-normalized posterior density for η(i), given a prior

1

σ
ϕ
(η(i) − βTx(i)

σ

)
which shrinks η(i) towards βTx(i). Provided σ > 0, as m increases, the∏m

j=1 f(y
(i)
j | η(i)) term, which does not depend on θ, dominates the prior, so

that η̂(i)(θ), the maximizer of gi(. | y(i), θ) over η(i), loses its dependence on θ,

and tends towards its true value η
(i)
0 = βT

0 x
(i) + b0i .

As m increases, gi(. | y(i), θ) becomes well approximated by a normal density
about η̂(i)(θ), and the relative error in a Laplace approximation to L(θ; y(i)) tends
to zero. Writing ℓi(θ; y

(i)) = logL(θ; y(i)), as m → ∞,

ℓi(θ; y
(i)) = log gi(η̂

(i)(θ) | y(i), θ) + 1

2
logHθ(η̂

(i)(θ))− 1

2
log 2π + o(1),

where

Hθ(η
(i)) =

∂2

∂η(i)2
log gi(η

(i) | y(i), θ).

So, for any two distinct θ1, θ2, the difference in log-likelihoods ℓi(θ1; y
(i)) −

ℓi(θ2; y
(i)) is

log gi(η̂
(i)(θ1) | y(i), θ1)− log gi(η̂

(i)(θ2)|y(i), θ2)

+
1

2
logHθ1(η̂

(i)(θ1))−
1

2
logHθ2(η̂

(i)(θ2)) + o(1)

= log gi(η
(i)
0 | y(i), θ1)− log gi(η

(i)
0 | y(i), θ2)

+
1

2
logHθ1(η

(i)
0 )− 1

2
logHθ2(η

(i)
0 ) + o(1),

since for any θ, η̂(i)(θ) → η
(i)
0 in probability as m → ∞. But

Hθ2(η
(i))

Hθ1(η
(i))

=

1
m

[∑m
j=1

∂2

∂η(i)2
log f(y

(i)
j | η(i)) + ∂2

∂η(i)2
log

{
1
σ2
ϕ
(
η(i)−βT

2 x(i)

σ2

)}]
1
m

[∑m
j=1

∂2

∂η(i)2
log f(y

(i)
j | η(i)) + ∂2

∂η(i)2
log

{
1
σ1
ϕ
(
η(i)−βT

1 x(i)

σ1

)}] → 1
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in probability as m → ∞, so

ℓi(θ1; y
(i))− ℓi(θ2; y

(i))

= log gi(η
(i)
0 | y(i), θ1)− log gi(η

(i)
0 | y(i), θ2) + o(1)

= log
{ 1

σ1
ϕ
(η(i)0 − βT

1 x
(i)

σ1

)}
− log

{ 1

σ2
ϕ
(η(i)0 − βT

2 x
(i)

σ2

)}
+ o(1)

= ℓi(θ1; η
(i)
0 )− ℓi(θ2; η

(i)
0 ) + o(1).

Letting θ1 = θ, θ2 = θ+ h and considering the limit as h → 0, we therefore have

si(θ; y
(i)) = si(θ; η

(i)) + o(1), as claimed.
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