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Abstract: The modeling of bivariate dependence is usually accomplished with sym-

metric copula models. However, many examples of datasets show that this hy-

pothesis of symmetry may fail to hold, so there is a need for inferential methods

using asymmetric dependence structures. In this paper, useful tools for model-

ing non-exchangeable dependence structures are developed under a broad class of

asymmetric copulas introduced by Khoudraji (1995). Special attention is given to

the testing of the composite hypothesis that the underlying copula of a popula-

tion belongs to this general class of models. The problem of selecting a specific

Khoudraji-type copula via goodness-of-fit testing is considered as well, hence pro-

viding a complete set of tools for inference when facing bivariate data exhibiting an

asymmetric dependence structure. Monte Carlo simulations show that the newly

introduced methodologies work well in small and moderate sample sizes. Their

usefulness for copula modeling is illustrated on data sets exhibiting patterns of

asymmetric dependence.

Key words and phrases: Empirical copula process, multiplier bootstrap, shape hy-

pothesis.

1. Introduction

Let (X,Y ) be a random pair such that the joint distribution function F (x, y)

= P(X ≤ x, Y ≤ y) has continuous margins FX(x) = P(X ≤ x) and FY (y) =

P(Y ≤ y). Then, it is well known that there exists a unique copula C :

[0, 1]2 → [0, 1] such that the representation F (x, y) = C{FX(x), FY (y)} holds

for all (x, y) ∈ R2. The modeling of dependence using copulas has found many

applications in such areas as finance, actuarial sciences, and hydrology. See Joe

(1997), Cherubini, Luciano, and Vecchiato (2004) and Nelsen (2006) for details

on their theoretical aspects.

Most of the copulas commonly used in practice are symmetric in the sense

that C(u, v) = C(v, u) for all (u, v) ∈ [0, 1]2. This property is shared, e.g., by all

models in the Archimedean and meta-elliptical families, making them appropriate

only in situations where observed random pairs come from a distribution whose
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underlying copula is symmetric with respect to the main diagonal. Otherwise,

conclusions from such models can be misleading.

To illustrate a situation of asymmetric dependence, consider 47,388 pairs

taken from the Walker Lake data set described by Isaaks and Srivastava (1989).

As mentioned by these authors, the meaning of the two variables is not revealed.

From the scatter plot of the pairs of standardized ranks on the upper left panel of

Figure 5, one can conclude a strong asymmetry; trying to fit a symmetric copula

to these data would clearly be inappropriate.

Potentially useful models for asymmetric dependence modeling are those

studied by Khoudraji (1995). Specifically, based on two copulas C1 and C2, one

can build another copula model via

Cδ(u, v) = C1

(
uδ1 , vδ2

)
C2

(
u1−δ1 , v1−δ2

)
, (1.1)

where δ = (δ1, δ2) ∈ [0, 1]2; in general, Cδ is asymmetric whenever δ1 ̸= δ2.

See also Liebscher (2008) for related constructions. Here, particular attention is

given to the special case C1(u, v) = uv and C2 = D is symmetric. This yields a

rich family of dependence functions of the form

Cδ,D(u, v) = uδ1 vδ2 D
(
u1−δ1 , v1−δ2

)
, (1.2)

where δ = (δ1, δ2) ∈ [0, 1)2. For reasons of uniqueness, the cases δ = (1, δ)

and δ = (δ, 1) are excluded since they correspond to the independence copula

Cδ,D(u, v) = uv whatever the value of δ ∈ [0, 1). As will be seen, the depen-

dence patterns offered by this class of models is somewhat similar to the kind of

asymmetry that one observes for the Walker Lake data. A formal methodology

is needed to assess the appropriateness of such asymmetric models.

The goal of this paper is to develop statistical tools for the modeling of

asymmetric dependence via model (1.2). Rather than trying to fit a particular

parametric copula structure of this form by fixing D up to a parameter to be

estimated, the main focus here is testing the composite hypothesis that the un-

known copula of a bivariate population admits this representation. Hence, one

first assesses the appropriateness of the general representation (1.2), and then

one seeks for a particular model for the symmetric part D. This model selection

step is also addressed formally, yielding a complete set of tools for asymmetric

dependence modeling.

The paper is organized as follows. In Section 2, a characterization of the

null hypothesis is given. In Section 3, an empirical process related to this char-

acterization is defined and test statistics built around it are proposed when the

parameter that manages the asymmetry is assumed known. The methodology is

extended in Section 4 to the more realistic situation where the asymmetry param-

eter is unknown with the help of minimum-distance statistics. How to formally
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choose a specific Khoudraji-type model via goodness-of-fit testing is addressed

in Section 5. The details of an investigation of the sample properties of the tests

via Monte Carlo simulations are given in Section 6. The article ends with illus-

trations of the newly introduced methodologies on data exhibiting patterns of

asymmetric dependence; details are given in Section 7.

2. Characterization of the Null Hypothesis

Our first goal is to provide a formal way to test whenever the underlying

copula C of a bivariate population admits a representation of the form given in

(1.2). To this end, denote by K the class of copulas of the form Cδ,D in (1.2),

where δ = (δ1, δ2) ∈ [0, 1)2 and D is a copula such that

uξD(u1−ξ, v) = vξD(v1−ξ, u) if and only if ξ = 0. (2.1)

This assumption excludes, for example, the case whenD = Π, where Π(u, v) = uv

is the independence copula.

Lemma 1. Any copula Cδ,D ∈ K admits the unique representation

Cδ,D(u, v) =


uβD⋆(u1−β, v), if δ1 > δ2;

vβD⋆(u, v1−β), if δ1 < δ2;

D⋆(u, v), if δ1 = δ2,

(2.2)

where β = β(δ) ∈ [0, 1) and D⋆ is a copula that satisfies (2.1).

The main null and alternative hypotheses of interest here can be stated as

H0 : C ∈ K and H1 : C /∈ K. They are composite because the specific form of the

copula under H0 is not specified, and so fall into the category of so-called shape

hypotheses. As a consequence of Lemma 1, one can focus on models of the form

Cβ,D(u, v) = uβD(u1−β, v), (2.3)

where β ∈ [0, 1) and D satisfies (2.1). For, if the copula C associated to a random

pair (X,Y ) belongs to the class K of models with δ1 < δ2, then it is the copula

of (Y,X) that writes in the form (2.3), according to Lemma 1. In the sequel, K′

denotes the subset of K that consists of copulas that admit representation (2.3).

The null and alternative hypotheses can then be reformulated as

H0 : C ∈ K′ and H1 : C /∈ K′.

A true null hypothesis means that C(u, v) = uβ0D(u1−β0 , v) for a unique β0 ∈
[0, 1) and a unique copula D that satisfies (2.1). Then, because D is symmetric,



180 JEAN-FRANÇOIS QUESSY AND OTHMANE KORTBI

one has for all (u, v) ∈ [0, 1]2 that

vβ0C
(
u, v1−β0

)
= (uv)β0D

(
u1−β0 , v1−β0

)
= (uv)β0D

(
v1−β0 , u1−β0

)
= uβ0 C

(
v, u1−β0

)
. (2.4)

The converse is also true, so that (2.4) is a characterization of the class K′ of

copulas.

Proposition 1. Let C be a copula that satisfies equation (2.4) for a unique

β0 ∈ [0, 1). If in addition the bivariate function defined for (u, v) ∈ [0, 1]2 by

D(u, v) = u−β0/(1−β0)C
(
u1/(1−β0), v

)
is a copula, then C = Cβ0,D ∈ K′.

3. Testing H0 for a Fixed Asymmetry Parameter β0

3.1. An empirical process for H0

Let (X1, Y1), . . . , (Xn, Yn) be independent random copies of a pair (X,Y )

from some joint distribution function F with continuous margins FX and FY .

Suppose that the unique copula C of F belongs to the class K′ of copulas. Defin-

ing for each (u, v) ∈ [0, 1]2 and β ∈ [0, 1) the function

Qβ,C(u, v) = vβC
(
u, v1−β

)
− uβC

(
v, u1−β

)
,

it follows from (2.4) that Qβ0,C(u, v) = 0 for all (u, v) ∈ [0, 1]2. An empirical

version of Qβ,C arises while replacing C by the empirical copula first proposed

by Rüschendorf (1976),

Cn(u, v) =
1

n

n∑
i=1

I (Ui,n ≤ u, Vi,n ≤ v) ,

where for each i ∈ {1, . . . , n}, Ui,n = Fn,X(Xi), Vi,n = Fn,Y (Yi) and Fn,X , Fn,Y

are the marginal empirical distribution functions. This suggests the study of the

empirical process Qn,β =
√
n(Qβ,Cn −Qβ,C). Under H0, Qβ0,C ≡ 0 and then

Qn,β0(u, v) =
√
n
{
vβ0Cn

(
u, v1−β0

)
− uβ0Cn

(
v, u1−β0

)}
. (3.1)

The asymptotic behavior of Qn,β0 under H0 will inherit from the large-sample

properties of Cn, which are now well established. Indeed, the asymptotic be-

havior of the empirical copula process Cn =
√
n(Cn − C) was investigated by

Deheuvels (1981) under independence. General weak convergence in the space
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D([0, 1]2) of càdlàg functions equipped with the Skorohod topology was inves-

tigated by Gaenßler and Stute (1987); van der Vaart and Wellner (1996) show

weak convergence in the space ℓ∞([a, b]2) of bounded functions on [a, b]2 for

0 < a < b < 1. The result was extended to the space ℓ∞([0, 1]2) by Fermanian,

Radulović, and Wegkamp (2004) while assuming the existence and continuity of

the partial derivatives C10(u, v) = ∂ C(u, v)/∂u and C01(u, v) = ∂ C(u, v)/∂v on

[0, 1]2. In that case, Cn converges weakly with respect to the supremum distance

to

C(u, v) = BC(u, v)− C10(u, v)BC(u, 1)− C01(u, v)BC(1, v), (3.2)

where BC is a continuous and centered Gaussian process such that

E
{
BC(u, v)BC(u

′, v′)
}
= C

{
min(u, u′),min(v, v′)

}
− C(u, v)C(u′, v′).

As shown by Segers (2012), the result still holds under the less restrictive as-

sumption that C10 and C01 exist and are continuous respectively on the sets

(0, 1)× [0, 1] and [0, 1]× (0, 1).

Proposition 2. Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. from a joint distribution F

with continuous margins FX , FY and unique copula C. If C ∈ K′ for some

β0 ∈ [0, 1) and some copula D that satisfies (2.1) and such that D10(u, v) =

∂D(u, v)/∂u, D01(u, v) = ∂D(u, v)/∂v exist and are continuous, respectively, on

the sets (0, 1)× [0, 1] and [0, 1]×(0, 1), then the empirical process Qn,β0 converges

weakly in the space ℓ∞([0, 1]2) to

Qβ0(u, v) = vβ0 C
(
u, v1−β0

)
− uβ0 C

(
v, u1−β0

)
,

where C is the Gaussian weak limit of Cn described in (3.2).

Proposition 2 is a special case of a more general result about the weak behav-

ior of the empirical process Qn,β =
√
n(Qβ,Cn −Qβ,C). In fact, a straightforward

adaptation of the proof of Proposition 2 yields the conclusion that for a fixed

β ∈ [0, 1), the process Qn,β converges weakly in the space ℓ∞([0, 1]2) to

Qβ(u, v) = vβ C
(
u, v1−β

)
− uβ C

(
v, u1−β

)
as long as C10(u, v) = ∂C(u, v)/∂u and C01(u, v) = ∂C(u, v)/∂v exist and are

continuous respectively on the sets (0, 1)× [0, 1] and [0, 1]×(0, 1). More generally

still, the result can be shown to be uniform in β ∈ [0, 1), i.e.,

sup
(u,v,β)∈[0,1]2×[0,1)

|Qn,β(u, v)−Qβ(u, v)|
P−→ 0. (3.3)
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3.2. Test statistics

Since Qβ0,C vanishes under the null hypothesis, a test of H0 against H1 could

consider some sort of distance function applied to its empirical version Qβ0,Cn .

To this end, let M : ℓ∞([0, 1]2) → R+ be a norm on the space of bounded

functions on [0, 1]2 and consider the test statistic SM
n (β0) =

√
nM(Qβ0,Cn).

Popular candidates for M are the Cramér–von Mises and Kolmogorov–Smirnov

functionals,

MCvM(g) =
(∫

[0,1]2
{g(u, v)}2 dudv

)1/2
,

MKS(g) = sup
(u,v)∈[0,1]2

|g(u, v)| ,

where g ∈ ℓ∞([0, 1]2). In the sequel, the statistics corresponding to these func-

tionals are denoted SCvM
n (β0) and SKS

n (β0), respectively. An interesting fea-

ture of SCvM
n (β0) is that an explicit formula can be derived. Indeed, letting

a ∨ b = max(a, b), one can show that

n{SCvM
n (β)}2 = 2

2β + 1

n∑
i,j=1

{1− (Ui,n ∨ Uj,n)}
{
1− (Vi,n ∨ Vj,n)

(2β+1)/(1−β)
}

− 2

(β+1)2

n∑
i,j=1

{
1−
(
Ui,n ∨ V

1/(1−β)
j,n

)β+1
}{

1−
(
V

1/(1−β)
i,n ∨ Uj,n

)β+1
}
.

Observe that whenever the null hypothesis holds, SM
n (β0) = M(Qn,β0), where

Qn,β0 is defined at (3.1). Hence, under the conditions of Proposition 2, the

Continuous Mapping Theorem ensures that SM
n (β0) converges in distribution to

a random variable having the representation

SM(β0) = M (Qβ0) . (3.4)

On the other hand, one knows from Proposition 1 that (2.4) holds if and only

if C ∈ K′. As a consequence, if C /∈ K′, then there is a subset A of [0, 1]2

such that Qβ,C(u, v) ̸= 0 for (u, v) ∈ A. As mentioned in the comment after

Proposition 2, Qn,β converges weakly to a tight Gaussian process in ℓ∞([0, 1]2).

As a consequence, it follows from the continuity of M that

SM
n (β)√

n
= M

(
Qn,β√

n
+Qβ,C

)
→ M (Qβ,C) > 0.

This entails that SM
n (β) → ∞ in probability. The same conclusion holds when

C ∈ K′ and β ̸= β0, since (2.4) holds for a unique β0 ∈ [0, 1).
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3.3. Computation of P-values
The multiplier bootstrap was successfully employed in several contexts in-

volving shape hypotheses about copulas, first by Scaillet (2005) for testing the

hypothesis of positive quadrant dependence. The method has proven useful for

testing several other hypotheses, including equality of copulas (Rémillard and

Scaillet (2009)), extreme-value dependence (Kojadinovic and Yan (2010), Quessy

(2012)), change-point detection (Bücher and Ruppert (2013), Quessy, Säıd, and

Favre (2013)) and symmetry (Genest, Nešlehová and Quessy (2012)), to name a

few.

To describe the method, consider the independent random vectors (ξ
(1)
1 , . . .,

ξ
(1)
n ), . . . , (ξ

(H)
1 , . . . , ξ

(H)
n ), where for each h ∈ {1, . . . ,H}, the random variables

ξ
(h)
1 , . . . , ξ

(h)
n are independent, positive, and satisfy

E (ξ
(h)
i ) = Var (ξ

(h)
i ) = 1 and

∫ ∞

0

{
P
(
ξ
(h)
i > x

)}1/2
dx < ∞.

The value of H corresponds to the number of replicates and in practice is chosen

sufficiently large. A valid choice for the law of ξ
(h)
i is the exponential distribution

with mean one. The so-called multiplier versions of the empirical copula process

are given, for each h ∈ {1, . . . ,H}, by

C(h)
n (u, v) =

1√
n

n∑
i=1

γ
(h)
i {I (Ui,n ≤ u, Vi,n ≤ v)− Cn,10(u, v) I (Ui,n ≤ u)

−Cn,01(u, v) I (Vi,n ≤ v)} ,

where γ
(h)
i = ξ

(h)
i /ξ̄(h) − 1, and Cn,10 and Cn,01 are data-based estimators of the

partial derivatives of C such that for any ϵ ∈ (0, 1/2),

sup
u∈[ϵ,1−ϵ],
v∈[0,1]

|Cn,10(u, v)− C10(u, v)| and sup
u∈[0,1],
v∈[ϵ,1−ϵ]

|Cn,01(u, v)− C01(u, v)|

converge in probability to zero; such estimators based on finite differences are

described in Section 6. Under these conditions, a slight adaptation of a result that

one can find in Segers (2012) entails that (Cn,C
(1)
n , . . . ,C(H)

n ) (C,C(1), . . . ,C(H)),

where C(1), . . . ,C(H) are independent copies of C. This result is useful since

one can replicate the asymptotic distribution of any continuous functional L :

ℓ∞([0, 1]2) → R of Cn with L(C(1)
n ), . . . ,L(C(H)

n ), from which P-values can be

computed.

Natural multiplier bootstrap versions of Qβ0 based on its asymptotic repre-

sentation given in Proposition 2 are, for each h ∈ {1, . . . ,H},

Q(h)
n,β0

(u, v) = vβ0 C(h)
n

(
u, v1−β0

)
− uβ0 C(h)

n

(
v, u1−β0

)
. (3.5)
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Their asymptotic validity can be established by a straightforward application of

the Continuous Mapping Theorem. Indeed, it suffices to note that the functional

Φβ0 : ℓ∞([0, 1]2) → ℓ∞([0, 1]) defined by

Φβ0(g) = vβ0g
(
u, v1−β0

)
− uβ0g

(
v, u1−β0

)
is continuous. Multiplier versions of SM

n (β0) based on its limit representation

in (3.4) are then S
M,(h)
n (β0) = M(Q(h)

n,β0
). Another application of the Contin-

uous Mapping Theorem ensures that the latter are asymptotically independent

copies of SM
n (β0). In practice, the computation of S

M,(1)
n (β0), . . . , S

M,(H)
n (β0)

is facilitated by choosing B ∈ N sufficiently large, and by making use of the

approximation

Q(h)
n,β0

(u, v) ≈ Q(h)
n,β0

(ηk, ηℓ), when (u, v) ∈
[
k − 1

B
,
k

B

)
×
[
ℓ− 1

B
,
ℓ

B

)
,

where ηk = (k−0.5)/B. In particular, the multiplier versions of the test statistics

SCvM
n (β0) and SKS

n (β0) are given by

SCvM,(h)
n (β0) ≈

1

B

( B∑
k,ℓ=1

{
Q(h)

n,β0
(ηk, ηℓ)

}2
)1/2

,

SKS,(h)
n (β0) ≈ max

k,ℓ∈{1,...,B}

∣∣∣Q(h)
n,β0

(ηk, ηℓ)
∣∣∣ .

4. Testing H0 for an Unknown Asymmetry Parameter β0

4.1. Minimum-distance statistics

The assertion that the asymmetry parameter β0 is known is rather unrealistic

in practice. The purpose of this section is to extend the methodology of Section 3

to take into account the fact that the value of β is unknown in the representation

Cβ,D. It is worth noting that whatever the form of C, the bivariate function Qβ,C

vanishes whenever β = 1. Thus the criteria based on Qβ,C previously used must

be adjusted when β ∈ [0, 1) is unknown. An idea is to work with the modified

version

Q̃β,C =
Qβ,C

1− β
.

As long as (2.4) holds, there will be a unique β0 ∈ [0, 1] such that Q̃β0,C vanishes

whenever C ∈ K′. Some curves of |Qβ,C | and |Q̃β,C | are given in Figure 1 when

C = Cβ0,D and D = DCL
θ is Clayton’s copula, where

DCL
θ (u, v) =

(
u−θ + v−θ − 1

)−1/θ
, θ ≥ 0. (4.1)
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Figure 1. Functions |Qβ(0.25, 0.75)| (solid line) and |Q̃β(0.25, 0.75)| (dashed
line) for the Khoudraji–Clayton copula when τ = 0.5, β0 = 0.2 (top left),
τ = 0.75, β0 = 0.2 (top right), τ = 0.5, β0 = 0.5 (bottom left) and τ = 0.75,
β0 = 0.5 (bottom right).

Based on the empirical version of Q̃β,C given by Q̃β,Cn = Qβ,Cn/(1 − β),

consider for a given norm M the minimum-distance test statistic

TM
n =

√
n inf

β∈(0,1)
M
(
Q̃β,Cn

)
. (4.2)

This statistic is related to SM
n (β) via

TM
n = inf

β∈(0,1)

SM
n (β)

1− β
.

Because the case β0 = 0 lies on the boundary of the possible values of β, it

results in theoretical complexities. For that reason, it has been excluded in the
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above definition. Since this special case corresponds to symmetry, it can easily

be tested first.

Theorem 1. If Q̃′
β,C = ∂Q̃β,C/∂β exists and is not singular at β = β0 ∈ (0, 1),

Q̃′
β0,C

(u, v) ̸= 0 for all (u, v) ∈ [0, 1]2, then under the conditions of Proposition 2,

the statistic TM
n converges in distribution to

T M = inf
t∈R

M
(
Q̃β0 + t Q̃′

β0,C

)
,

where Q̃β0 = Qβ0/(1− β0) and Qβ0 is the limit of Qn,β0 given in Proposition 2.

4.2. Minimum-distance estimator of the asymmetry parameter

An estimator of β0 that is implicit in the definition of TM
n in (4.2) is

βM
n = argmin

β∈(0,1)
M
(
Q̃β,Cn

)
. (4.3)

There is a close relationship between the large-sample behavior of βM
n and the

result on the weak convergence of TM
n stated in Theorem 1. Indeed, following

Pollard (1980), suppose that the mapping

t 7→ M
(
Q̃β0 − t Q̃′

β0

)
attains its minimum at a unique t ∈ R for almost all sample paths Q̃β0 . Letting ν

be the functional that associates with g ∈ ℓ∞([0, 1]2) a value t ∈ R that minimizes

M(g − t Q̃′
β0
), one can conclude that

√
n
(
βM
n − β0

)
 ν

(
Q̃β0

)
under the conditions stated in Theorem 1.

The mean-squared error of βM
n when M is either the Cramér–von Mises or

the Kolmogorov–Smirnov functional has been evaluated with the help of sim-

ulations. These estimators are βCvM
n and βKS

n , respectively; the results are in

Table 1. Generally speaking, β0 is easier to estimate when it is small. Un-

der most scenarios considered, the estimator based on the Kolmogorov–Smirnov

distance function is the more accurate.

4.3. Multiplier bootstrap of the minimum-distance statistics

From the conclusion of Theorem 1, it is natural to define the multiplier

bootstrap versions of TM
n by

TM,(h)
n = inf

t∈R
M
(
Q̃(h)

βM
n ,n

− t
̂̃
Q′

β0,C

)
, h ∈ {1, . . . ,H},
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Table 1. Estimation based on 1,000 replicates of the mean-squared errors
(×103) of βCvM

n and βKS
n for the estimation of the asymmetry parameter

β under Khoudraji-type dependence structures Cβ,D when D is either the
Clayton or Gumbel–Hougaard copula.

True copula n = 200 n = 400 n = 800

D τ(D) β0 βCvM
n βKS

n βCvM
n βKS

n βCvM
n βKS

n

Clayton 0.50 0.20 1.226 1.148 1.283 1.189 1.209 1.170
0.35 1.270 1.167 1.258 1.237 1.300 1.185
0.50 1.280 1.184 1.323 1.193 1.299 1.210

0.75 0.20 1.311 1.123 1.075 1.048 0.770 0.839
0.35 1.367 1.206 1.228 1.108 0.987 1.043
0.50 1.326 1.174 1.268 1.190 1.082 1.056

Gumbel– 0.50 0.20 1.268 1.165 1.380 1.195 1.285 1.216
Hougaard 0.35 1.358 1.243 1.382 1.243 1.364 1.220

0.50 1.305 1.171 1.438 1.273 1.281 1.194

0.75 0.20 1.286 1.156 1.105 1.057 0.769 0.755
0.35 1.467 1.245 1.321 1.221 0.943 0.913
0.50 1.416 1.238 1.328 1.234 0.966 0.931

where Q̃(h)
β,n = Q(h)

β,n/(1− β) for Q(h)
β,n defined in (3.5), and

Q̂′
β0,C

(u, v) =
1

2 ℓn

{
QβM

n +ℓn,Cn
(u, v)−QβM

n −ℓn,Cn
(u, v)

}
, (4.4)

where ℓn = 1/
√
n. Note that a slight modification of the estimator of Q̃′

β0,C
is

needed when βM
n ≤ ℓn or βM

n ≥ 1 − ℓn. This estimator is uniformly consistent

for Q′
β0,C

. To see that this is indeed the case, observe that

Q̂′
β0,C

=

(Qn,βM
n +ℓn −Qn,βM

n −ℓn

2

)
+

(
QβM

n +ℓn,C −QβM
n −ℓn,C

2 ℓn

)
.

From (3.3), Qn,β converges uniformly in ℓ∞([0, 1]2 × [0, 1)) to Qβ; hence the

first summand on the right converges uniformly to zero in probability. Ap-

plying the Mean-Value Theorem, the second summand converges to Q′
β0,C

as

n → ∞ because βM
n → β0 in probability. One can then conclude that, un-

der the conditions of Theorem 1, (TM
n , T

M,(1)
n , . . . , T

M,(H)
n ) converges weakly to

(T M, T (1), . . . , T (H)), where T (1), . . . , T (H) are independent copies of the limit

T M of TM
n .
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4.4. Consistency of the tests

Note that
TM
n√
n

= inf
β∈(0,1)

M
(Q̃n,β√

n
+ Q̃β,C

)
,

where Q̃n,β = Qn,β/(1 − β). Since the map g 7→ infβ∈(0,1)M(g(·, ·, β)), for

g ∈ ℓ([0, 1]2 × (0, 1)), is continuous, and because of (3.3), one has in probability

that
TM
n√
n

→ inf
β∈[0,1)

M
(
Q̃β,C

)
.

In view of Proposition 1, infβ∈(0,1)M(Q̃β,C) = 0 if and only if C ∈ K′. As a

consequence, TM
n → ∞ in probability as n → ∞ for C /∈ K′, since M(Q̃β,C) > 0

in that case. On the other hand, whether the null hypothesis holds or not, one

has that (T
M,(1)
n , . . . , T

M,(H)
n ) converges to a vector (TM,(1), . . . , TM,(H)) of tight

Gaussian processes. As a consequence,

P̂ V
M

=
1

H

H∑
h=1

I
(
TM,(h)
n > TM

n

)
is an asymptotically valid P-value for the test based on TM

n . Thus, the test that

rejects H0 for large values of TM
n is consistent.

5. Selection of the Symmetric Component D

Once a test based on TM
n concludes that the underlying copula of a popu-

lation belongs to K′, there remains the issue of determining a specific, suitable

symmetric structure for D. To this end, suppose D belongs to the parametric

family of one-parameter symmetric copula models {Dθ : θ ∈ Θ ⊆ R}, where Dθ

satisfies (2.1) for each θ ∈ Θ. Assuming that β is fixed, let Kendall’s dependence

measure associated to C = Cβ,Dθ
be

κ(θ) = 4

∫
[0,1]2

Cβ,Dθ
(u, v) dCβ,Dθ

(u, v)− 1.

In practice, β is replaced by the estimator βM
n described in (4.3).

If τn is the empirical version of Kendall’s tau based on the original data set

(X1, Y1), . . . , (Xn, Yn), then a moment-based estimator θn of θ is defined as the

solution of κ(θn) = τn. Since κ can generally not be inverted explicitly, one must

use a numerical root-finding method to obtain a solution. However, since the

expression for κ involves a double integral whose evaluation requires a numerical

approach, a simpler Monte Carlo method can be suggested.
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(i) Discretize Θ as θ1, . . . , θN ;

(ii) For each j ∈ {1, . . . , N}, generate a large sample of pairs from model Cβ,Dθj

and let κ̂(θj) be Kendall’s tau for this sample;

(iii)Take θ̂n = argmin
j∈{1,...,N}

|κ̂(θj)− τn|.

Another possibility for the estimation of θ is to use the so-called pseudo maximum

likelihood method as described by Genest, Ghoudi, and Rivest (1995). However,

this would require using the density of Cβ,Dθ
, which can be cumbersome.

Once θ is estimated from an inversion of Kendall’s tau, or by maximum like-

lihood, consider the goodness-of-fit test statistic proposed by Genest, Rémillard,

and Beaudoin (2009),

V β
n,N = n

∫
[0,1]2

{Cn(u, v)− CN (u, v)}2 dudv,

where Cn is the empirical copula computed from the original data set (X1, Y1),

. . ., (Xn, Yn) and CN is the empirical copula of an artificially generated data set

(X⋆
1 , Y

⋆
1 ), . . . , (X

⋆
n, Y

⋆
n ) of size N from model Cβ,Dθn

. One can show that

V β
n,N =

1

n

n∑
i=1

n∑
j=1

{1− (Ui,n ∨ Uj,n)} {1− (Vi,n ∨ Vj,n)}

+
n

N2

N∑
i=1

N∑
j=1

{
1−

(
U⋆
i,n ∨ U⋆

j,n

)} {
1−

(
V ⋆
i,n ∨ V ⋆

j,n

)}
− 2

N

n∑
i=1

N∑
j=1

{
1−

(
Ui,n ∨ U⋆

j,n

)} {
1−

(
Vi,n ∨ V ⋆

j,n

)}
,

where (U⋆
1,n, V

⋆
1,n), . . . , (U

⋆
n,n, V

⋆
n,n) are the pairs of ranks divided by N deduced

from the artificial sample. A Kolmogorov–Smirnov statistic could also be defined,

but V β
n,N is chosen here for computational convenience and also because it is gen-

erally more powerful in a copula goodness-of-fit context (see Genest, Rémillard,

and Beaudoin (2009) for more details on this aspect).

The P-value of V β
n,N is obtained from a parametric bootstrap procedure: for

a sufficiently large H, the test statistic V β
n,N is computed repeatedly from H data

sets of size n simulated from model Cβ,Dθn
, yielding V

(1)
n,N , . . . , V

(H)
n,N . As in Genest

and Rémillard (2008),

P̂ V =
1

H

H∑
h=1

I
(
V

(h)
n,N > V β

n,N

)
is an asymptotically valid P-value as n,N → ∞.



190 JEAN-FRANÇOIS QUESSY AND OTHMANE KORTBI

6. Investigation of the Sample Properties of the Tests

The aim of this section is to report on the sampling distributions of the test

statistics in small and moderate sample sizes. Here, the partial derivatives of the

copula have been estimated by finite-difference estimators,

Cn,01(u, v) =



Cn (u, 2ℓn)

2ℓn
, v ∈ [0, ℓn) ,

Cn (u, v + ℓn)− Cn (u, v − ℓn)

2ℓn
, v ∈ [ℓn, 1− ℓn] ,

Cn (u, 1)− Cn (u, 1− 2ℓn)

2ℓn
, v ∈ (1− ℓn, 1] ,

where ℓn = 1/
√
n, and similarly for Cn,10. In each of the scenarios considered,

the probability of rejection of H0 has been estimated from 1,000 replicates and

the type I error was set to α = 0.05. The number of multiplier bootstrap samples

for the computation of P-values was H = 1, 000 and the computation of T
M,(h)
n

used an approximation of Q̃(h)

βM
n ,n

− t
̂̃
Q′

β0,C
on a grid of [0, 1]2 of size 5 × 5, i.e.,

with B = 5.

6.1. Ability of the test to keep its nominal level

Random samples have been drawn from copula models of the form Cβ,D(u, v)

= uβD(u1−β, v). This task is easily done upon noting that Cβ,D is the joint

distribution of max(U
1/β
1 , U

1/(1−β)
2 ) and V2, where U1 ∼ U(0, 1) and (U2, V2) ∼ D

are independent.

The chosen models for D are the Clayton copula described in (4.1), as well

as the Gumbel–Hougaard extreme-value copula

DGH
θ (u, v) = exp

{
−
(
| log u|1/1−θ + | log v|1/1−θ

)1−θ
}
.

The asymmetric models arising from the construction Cβ,D are referred to the

Clayton–Khoudraji and Gumbel–Khoudraji copulas in the sequel. The Gumbel–

Khoudraji copula is a special case of the logistic model described by Tawn (1988).

See the top and bottom panels of Figure 2 for the scatter plot of random pairs

drawn from these asymmetric models.

The asymmetry parameter was given the values β0 ∈ {0.20, 0.35, 0.50}.
The symmetric copula D was parameterized in terms of the value of Kendall’s

tau, τ(D) = 4
∫
[0,1]2 D(u, v) dD(u, v) − 1. The values considered were τ(D) ∈

{0.50, 0.75}. The results can be found in Table 2. Generally, the tests are good at

keeping their size, considering the computationally intensive minimum-distance

nature of the test statistics and their associated bootstrap versions. However, the
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Figure 2. 5,000 realizations from Khoudraji-type copulas C0.5,D; top panels:
D is the Clayton copula with τ = 0.5 (left) and τ = 0.9 (right); bottom
panels: D is the Gumbel–Hougaard copula with τ = 0.5 (left) and τ = 0.9
(right).

tests are too conservative when β0 = 0.5. The test based on TKS
n is too liberal

when D is the Clayton copula with τ(D) = 0.5 and β0 = 0.2.

6.2. Power against asymmetric alternatives

One wishes to discard models that are not of a Khoudraji-type. To this end,

some families of asymmetric models not of the form (1.2) have been considered.

The first class consists of the Liouville copulas proposed and investigated by

McNeil and Nešlehová (2010). A Liouville copula arises as the survival copula of

a random pair

(X,Y )
d
= R

(
G1

G1 +G2
,

G2

G1 +G2

)
,

where G1, G2 are independent Gamma random variables with respective param-

eters ξ1, ξ2 and R is a random variable whose cdf FR satisfies FR(0) = 0. When

ξ1 = ξ2, the copula is symmetric and belongs to the Archimedean family. In the

simulation study, R was a Gamma(5) or an inverse Gamma(5) distribution; the
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Table 2. Percentages of rejection of the null hypothesis H0 : C ∈ K′ for the
test statistics TCvM

n and TKS
n as estimated from 1,000 replicates from various

Khoudraji-type dependence structures Cβ,D, when D is either the Clayton
or Gumbel–Hougaard copula.

True copula n = 200 n = 400 n = 800

D τ(D) β0 TCvM
n TKS

n TCvM
n TKS

n TCvM
n TKS

n

Clayton 0.50 0.20 4.6 8.3 6.5 9.6 6.6 9.0
0.35 3.9 4.8 4.3 6.7 6.7 7.9
0.50 1.4 1.9 1.2 1.5 0.7 0.9

0.75 0.20 5.1 5.8 5.9 8.9 4.1 6.2
0.35 3.9 5.3 5.5 6.2 4.9 4.4
0.50 1.9 2.2 1.0 0.7 1.2 1.0

Gumbel– 0.50 0.20 2.8 5.9 3.8 6.3 4.3 6.9
Hougaard 0.35 3.1 4.4 3.4 5.0 3.6 4.4

0.50 0.6 0.5 1.1 1.2 1.1 0.7

0.75 0.20 5.6 5.2 6.0 5.8 5.1 5.2
0.35 5.9 6.0 8.8 6.6 5.4 4.8
0.50 4.2 2.9 3.8 2.1 1.7 1.8

Figure 3. 5,000 realizations from Gamma–Liouville (left) and Inverse–
Gamma–Liouville (right) copulas when (ξ1, ξ2) = (1/3, 1) and θ = 5.

corresponding models are referred to the Gamma–Liouville and Inverse–Gamma–

Liouville copulas, respectively. The scatter plots of random pairs from these

models are in Figure 3.

The results of a power investigation involving these two copulas are in Ta-

ble 3. The main features are as follows. The tests are generally good at detecting

departures from H0, except when (ξ1, ξ2) = (1/2, 1), which correspond to a model

that is hard to distinguish from symmetry. The power generally increases as n

increases, as a consequence of the consistency of the tests. Generally speaking,

TCvM
n is slightly more powerful than TKS

n .



SELECTION OF AN ASYMMETRIC COPULA 193

Table 3. Percentages of rejection of the null hypothesis H0 : C ∈ K′ for
the test statistics TCvM

n and TKS
n as estimated from 1,000 replicates from

Gamma–Liouville (Ga) and Inverse–Gamma–Liouville (IGa) copulas.

True copula n = 200 n = 400 n = 800

Model (ξ1, ξ2) TCvM
n TKS

n TCvM
n TKS

n TCvM
n TKS

n

Ga (1, 1/2) 26.1 16.0 51.5 38.8 78.1 70.3
(1, 1/3) 37.9 25.1 47.1 38.5 52.2 52.8
(1/2, 1) 6.8 4.9 16.2 14.6 17.6 16.2
(1/3, 1) 30.0 23.9 47.7 49.9 62.6 69.2

IGa (1, 1/2) 50.6 36.6 84.1 74.5 92.6 91.2
(1, 1/3) 52.5 42.2 65.1 60.4 58.0 56.7
(1/2, 1) 3.9 3.2 5.9 6.9 7.0 8.1
(1/3, 1) 26.1 27.8 28.4 41.6 38.4 60.3

Figure 4. 5,000 realizations from the copula of (|U − 0.4|, |V − 0.6|) when
(U, V ) follows the Clayton (left) or the Gumbel–Hougaard (right) copula
with a Kendall’s tau of 0.75.

An apparent irregularity occurs when the data come from the Inverse-Gamma

-Liouville copula with (ξ1, ξ2) = (1, 1/3). Indeed, one can see that the power is

slightly lower when n = 800 than when n = 400. This behavior can be explained

by the discretization used to compute the infimum over β ∈ (0, 1) in the defini-

tion of the minimum-distance statistics and the fact that β that minimizes Q̃β,C

is hard to distinguish in that case.

A second class of alternatives to H0 is based on a construction of asymmetric

copulas. Let (U, V ) be a random pair from a symmetric copula D and take, for

δ1, δ2 ∈ [0, 1], X = |U − δ1| and Y = |V − δ2|. In general, when δ1 ̸= δ2, the

copula of (X,Y ) is asymmetric. See Figure 4 for the scatter plots of random

pairs from this model when D is the Clayton or the Gumbel–Hougaard copula.

Here, δ1 = δ2 = 1 yields the (symmetric) survival copula associated to D.

For the results presented in Table 4, D is either the Clayton or the Gumbel–

Hougaard copula; the values taken by Kendall’s measure of association are τ(D) ∈
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Table 4. Percentages of rejection of the null hypothesis H0 : C ∈ K′ for
the test statistics TCvM

n and TKS
n as estimated from 1,000 replicates from

(|U − δ1|, |V − δ2|), where (U, V ) ∼ C.

True copula n = 200 n = 400 n = 800

C τ(C) (δ1, δ2) TCvM
n TKS

n TCvM
n TKS

n TCvM
n TKS

n

CL 1/2 (0.4,0.6) 76.2 71.2 97.7 95.8 99.9 99.9
(0.6,0.4) 64.7 57.4 95.1 92.0 100.0 99.9

3/4 (0.4,0.6) 72.5 58.7 97.3 93.0 99.9 99.8
(0.6,0.4) 60.2 48.9 93.7 87.7 100.0 100.0

GH 1/2 (0.4,0.6) 17.0 15.7 35.1 31.9 68.6 60.9
(0.6,0.4) 24.9 22.9 46.8 38.0 73.6 67.0

3/4 (0.4,0.6) 7.9 8.4 14.8 11.9 35.4 24.5
(0.6,0.4) 16.4 17.4 23.3 17.0 48.6 33.0

{1/2, 3/4}. The asymmetry parameters have been set to (δ1, δ2) ∈ {(0.4, 0.6),
(0.6, 0.4)}. Here, both tests are very powerful. However, the Cramér–von Mises

statistics is generally more powerful than the Kolmogorov–Smirnov. The ob-

served powers are larger when D is the Clayton copula, a consequence of the fact

that the departures from H0 are more pronounced in that case than under the

construction using the Gumbel–Hougaard copula.

Another possibility for models under H1 are those of the form given at (1.1)

when C1 and C2 are symmetric copulas and C1 ̸= Π. However, based on several

investigations not presented here, the tests hardly detect departure from H0

unless the sample size is very large, say n = 3, 000. This behavior of the test

statistics can easily be explained by the fact that models of the form (1.1) are

indeed very close to Cβ,D. This is something of an argument for using the simpler

models (1.2) for asymmetric copula modeling.

7. Illustrations

7.1. Walker Lake data

Our statistical tools are here illustrated on a sub-sample of the Walker Lake

data whose scatter plot of the standardized ranks has already been presented

on the upper left panel of Figure 5. This data set was described by Isaaks and

Srivastava (1989) and is classical in geostatistics. In our analysis, a random

sub-sample of size n = 1, 150 of the complete data set consisting of those 47 388

pairs for which the third variable (an indicator function) equals 1 is considered.

The scatter plot of the pairs (U1,n, V1,n), . . . , (Un,n, Vn,n) of standardized ranks

involved in the computation of Cn is in the top right panel of Figure 5. We first

test for the independence between the two random variables. While the departure
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Figure 5. Top panels: scatter plot of the standardized ranks of the full
Walker Lake data set (left) and of the sub-sample of 1,150 pairs (right);
bottom panels: curves SCvM

n (β) (left) and SKS
n (β) (right) for β ∈ (0, 0.5).

from independence is quite obvious from the scatter plot, it is also confirmed by

a simple test of independence based on the estimation τn of Kendall’s tau. Here,√
n τn =

√
1, 150 × .5897 = 20.00, so that the null hypothesis Hτ

0 : τ = 0 is

clearly rejected in favor of Hτ
1 : τ > 0 based on the well-known result that√

n τn  N (0, 4/9) under independence (see Lee (1990), for instance).

Even if symmetric dependence structures are special cases of the general

Khoudraji-type copulas in (1.2), it may be advisable to specifically test for sym-

metry. Here, the asymmetry is rather clear from the scatter plot of the stan-

dardized ranks. This conclusion is confirmed by performing the tests based on

SCvM
n (β0) and SKS

n (β0) when β0 = 0. One has SCvM
n (β0) = 0.3536 (P̂ V < 0.001)

and SKS
n (β0) = 1.2680 (P̂ V < 0.001), clearly indicating a rejection of the hy-

pothesis of a symmetric copula.

We now test for the general Khoudraji-type copula structure of the form

Cδ,D ≡ Cβ,D. The tests based on the minimum-distance statistics were performed

to get TCvM
n = 0.0209 (P̂ V = 0.246) and TKS

n = 0.4304 (P̂ V = 0.505); the P-
values were estimated from H = 1, 000 multiplier bootstrap samples and a grid

of [0, 1]2 of size 20× 20, B = 20. Thus, one concludes that the underlying copula

C of the population can reasonably be taken as belonging to the family K′ of



196 JEAN-FRANÇOIS QUESSY AND OTHMANE KORTBI

Table 5. Results of the parameter estimation and goodness-of-fit testing
based on V β

n,N , β = 0.24, and on V 0
n,N for the 1,150 pairs in the sub-sample

of the Walker Lake data set.

Dθ θ̂n τ(Dθ̂n
) V β

n,N P-value V 0
n,N P-value

Clayton 7.523 0.79 0.0247 0.572 0.1917 0.000
Frank 13.517 0.74 0.0468 0.132 0.0875 0.000

Gumbel–Hougaard 0.740 0.74 0.0862 0.036 0.1599 0.000
Plackett 78.170 0.95 0.0730 0.028 0.4834 0.012
Normal 0.918 0.74 0.0561 0.056 0.1154 0.000

Student ν = 3 0.941 0.78 0.0512 0.180 0.1001 0.004
Student ν = 5 0.930 0.76 0.0783 0.036 0.1718 0.000
Student ν = 7 0.935 0.77 0.1317 0.008 0.1346 0.000
Student ν = 9 0.905 0.72 0.0660 0.072 0.1235 0.000

asymmetric models, C(u, v) = uβD(u1−β, v). The curves for SCvM
n (β)/(1 − β)

and SKS
n (β)/(1− β) are in the bottom panels of Figure 5.

In order to determine the form of D that best fits the data, consider as candi-

dates the symmetric one-parameter copula families of Clayton, Frank, Gumbel–

Hougaard, Plackett, Normal, and Student with ν ∈ {3, 5, 7, 9}. Details on these

models can be found in the monographs by Nelsen (2006) and Salvadori et al.

(2007). From the previous analysis, βCvM
n = 0.235 and βKS

n = 0.273. We took the

value of the asymmetry parameter to be β ≈ .24. The results of the parameter

estimation and goodness-of-fit testing are in Table 5.

One can see that the model with the highest P-value is the Clayton; other

models not rejected at the 10% level are the Frank and T3 copulas, but only

by a small amount. A reasonable model is then Cβ,D with β = 0.24 and D

is Clayton’s copula with θ = 7.52. For completeness, the goodness-of-fit test

based on V β
n,N when one assumes symmetry was also performed. All models were

clearly rejected, showing the inadequacy of trying to fit a symmetric model to

these data.

7.2. Nutrient data

Consider the pairs (Ca,Fe) and (Ca,Pr) in the nutrient data set that consists

of the daily intake in calcium (Ca), iron (Fe), protein (Pr), vitamin A (vA) and

vitamin C (vC) for n = 747 women; these observations come from a 1985 survey

by the United States Department of Agriculture. In their statistical analysis,

Genest, Nešlehová and Quessy (2012) and Quessy and Bahraoui (2013) found a

significant copula asymmetry.

A copula structure of the form Cβ,D seems appropriate for (Ca,Fe) since

TCvM
n = 0.0418 (P̂ V = 0.280) and TKS

n = 0.4436 (P̂ V = 0.435). The estimation

of the asymmetry parameter yielded βCvM
n = 0.397 and βKS

n = 0.402. The same
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models as in Table 5 for the Walker Lake data were tested in order to find an

appropriate model for D. None was rejected at the 10% level.

For the pair (Ca,Pr), the tests clearly reject the null hypothesis since TCvM
n =

0.0981 (P̂ V = 0.001) and TKS
n = 0.5841 (P̂ V = 0.006). However, it may be for

the pair (Pr,Ca) the copula has a Khoudraji-type structure. It is indeed the

case since TCvM
n = 0.0142 (P̂ V = 0.828) and TKS

n = 0.2023 (P̂ V = 0.942). The

asymmetry parameter was estimated by βCvM
n = βKS

n = 0.470. Again, several

models for D are acceptable. This illustrates that for values of Kendall’s tau

smaller than 0.5, models of the form Cβ,D are quite similar even for different

symmetric structures for D. From an inferential point-of-view, choosing one of

these models would be appropriate in that case.
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Appendix A. Proofs

Proof of Lemma 1. Let δ∧ = min(δ1, δ2) ∈ [0, 1) and note that

Cδ,D(u, v) = u(δ1−δ∧)/(1−δ∧)v(δ2−δ∧)/(1−δ∧)D⋆
(
u1−[(δ1−δ∧)/(1−δ∧)], v1−[(δ2−δ∧)/(1−δ∧)]

)
,

where D⋆(u, v) = (uv)δ
∧
D(u1−δ∧ , v1−δ∧). While D⋆ is clearly a symmetric cop-

ula, it can also be shown that it satisfies (2.1) as well. Indeed, easy algebra

enables to show that the copula D⋆
ξ (u, v) = uξD⋆(u1−ξ, v) is symmetric if and

only if the equation

uξ(1−δ∧)D
(
u(1−ξ)(1−δ∧), v1−δ∧

)
= vξ(1−δ∧)D

(
v(1−ξ)(1−δ∧), u1−δ∧

)
holds for all (u, v) ∈ [0, 1]2. Letting ũ = u1−δ∧ and ṽ = v1−δ∧ , this can equiva-

lently be written ũξD(ũ1−ξ, ṽ) = ṽξD(ṽ1−ξ, ũ), which is true for all (ũ, ṽ) ∈ [0, 1]2

if and only if ξ = 0, because D satisfies (2.1). Finally note that (2.2) obtains

with β = (δ∨ − δ∧)/(1 − δ∧) ∈ [0, 1), where δ∨ = max(δ1, δ2). In order to show

this representation’s uniqueness, suppose there exist β̃ ∈ (0, 1] and a copula D̃⋆

that satisfies (2.1) such that (2.2) holds. When δ1 > δ2, this would imply that

uβD⋆(u1−β, v) = uβ̃D̃⋆
(
u1−β̃, v

)
∀(u, v) ∈ [0, 1]2.

Assuming that β̃ ≤ β, one deduces that

D̃⋆(u, v) = uξD⋆
(
u1−ξ, v

)
∀(u, v) ∈ [0, 1]2,
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where ξ = (β− β̃)/(1− β̃). Because D̃⋆ must be symmetric and since D⋆ satisfies

(2.1), it is true if and only if ξ = 0, β = β̃, which also implies that D⋆ = D̃⋆. The

case β̃ ≥ β would give D⋆(u, v) = uξD̃⋆(u1−ξ, v), bringing the same conclusion.

The proof for δ1 < δ2 is identical.

Proof of Proposition 1. As a special case of (2.2) with δ1 = 0 and δ2 = β0,

the bivariate function D̃(u, v) = vβ0C(u, v1−β0) is a copula. Since C satisfies

(2.4), one has D̃(u, v) = uβ0C(v, u1−β0). For an arbitrary ξ ∈ [0, 1), the equality

uξD̃(u1−ξ, v) = vξD̃(v1−ξ, u) holds if and only if

uξ+β0(1−ξ)C
(
v, u(1−β0)(1−ξ)

)
= vξ+β0(1−ξ)C

(
u, v(1−β0)(1−ξ)

)
.

Letting α = ξ + β0(1 − ξ), this can be written uαC(v, u1−α) = vαC(u, v1−α).

Because, by assumption, C satisfies (2.4) for a unique β0 ∈ [0, 1), one must have

α = β0, which is true if and only if ξ = 0. One concludes that D̃ satisfies (2.1).

Next, note that D̃(u, v) = (uv)β0D(u1−β0 , v1−β0) and suppose uξD(u1−ξ, v) =

vξD(v, u1−ξ) for some arbitrary ξ ∈ [0, 1). Making the change of variable s =

u1−β0 , t = v1−β0 , this is

sξ(1−β0)D

{(
s1−ξ

)1−β0

, t1−β0

}
= tξ(1−β0)D

{(
t1−ξ

)1−β0

, s1−β0

}
,

which can further be expressed as

sξ
(
s1−ξ t

)β0

D

{(
s1−ξ

)1−β0

, t1−β0

}
= tξ

(
t1−ξ s

)β0

D

{(
t1−ξ

)1−β0

, s1−β0

}
.

Equivalently, one has sξD̃(s1−ξ, t) = tξD̃(t1−ξ, s), which holds if and only if

ξ = 0 because D̃ satisfies (2.1). As a consequence, one has the representation

C = Cβ0,D with D that satisfies (2.1). This completes the proof that C ∈ K′.

Proof of Proposition 2. Since C ∈ K′ with β = β0, (2.4) holds and one can

write

Qn,β0(u, v) = vβ0Cn

(
u, v1−β0

)
− uβ0Cn

(
v, u1−β0

)
.

Upon noting that

C10(u, v) =
βD(u1−β, v)

u1−β
+ (1− β)D10(u

1−β, v)

and C01(u, v) = uβD01(u
1−β, v), it is easy to see that the assumption on D10, D01

imply that C10 and C01 exist and are continuous, respectively, on (0, 1) × [0, 1]

and [0, 1]× (0, 1). Proposition 3.1 in Segers (2012) then entails that

sup
(u,v)∈[0,1]2

|Cn(u, v)− C(u, v)| P→ 0.
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As a consequence,

sup
(u,v)∈[0,1]2

|Qn,β0(u, v)−Qβ0(u, v)|

≤ sup
(u,v)∈[0,1]2

∣∣∣vβ0 Cn

(
u, v1−β0

)
− vβ0 C

(
u, v1−β0

)∣∣∣
+ sup

(u,v)∈[0,1]2

∣∣∣uβ0 Cn

(
v, u1−β0

)
− uβ0 C

(
v, u1−β0

)∣∣∣
≤ sup

(u,v)∈[0,1]2
|Cn (u, v)− C (u, v)|

+ sup
(u,v)∈[0,1]2

|Cn (v, u)− C (v, u)|

= 2 sup
(u,v)∈[0,1]2

|Cn (u, v)− C (u, v)| .

Thus sup(u,v)∈[0,1]2 |Qn,β0(u, v)−Qβ0(u, v)|
P→ 0, which completes the proof.

Proof of Theorem 1. The proof proceeds in three steps.

Step I. It is shown that the minimum in

TM
n = inf

β∈(0,1)
M
(
Q̃β,Cn

)
is necessarily attained, asymptotically, in any arbitrarily small neighborhood of
the true value β0. First note that the triangular inequality entails

M
(
Q̃β,Cn

)
≥ M

(
Q̃β,C

)
−M

(
Q̃β,Cn − Q̃β,C

)
for any β ∈ (0, 1). Hence,

M
(
Q̃β,Cn

)
−M

(
Q̃β0,Cn

)
≥ M

(
Q̃β,C

)
−M

(
Q̃β0,Cn

)
− M

(
Q̃β,Cn − Q̃β,C

)
.

Consequently, for any neighborhood N of β0,

inf
β/∈N

{
M
(
Q̃β,Cn

)
−M

(
Q̃β0,Cn

)}
≥ inf

β/∈N

{
M
(
Q̃β,C

)
−M

(
Q̃β0,Cn

)
−M

(
Q̃β,Cn − Q̃β,C

)}
.

Since Cn is uniformly consistent for C, it follows that

sup
(u,v)∈[0,1]2

∣∣∣Q̃β0,Cn(u, v)− Q̃β0,C(u, v)
∣∣∣ P−→ 0,

and thus in probability, M(Q̃β0,Cn) → M(Q̃β0,C) = 0. Next, note that

M
(
Q̃β,Cn − Q̃β,C

)
= M

(
Q̃n,β√

n

)
P−→ 0,
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since Q̃n,β = Qn,β/(1 − β) converges to the tight Gaussian process Q̃β on

ℓ∞([0, 1]2). As a consequence,

inf
β/∈N

{
M
(
Q̃β,Cn

)
−M

(
Q̃β0,Cn

)}
P→ inf

β/∈N
M
(
Q̃β,C

)
> 0,

where the strict inequality follows from Proposition 1. Hence,

lim
n→∞

P
(
inf
β/∈N

M
(
Q̃β,Cn

)
> M

(
Q̃β0,Cn

))
= lim

n→∞
P
(
inf
β/∈N

M
(
Q̃β,Cn

)
−M

(
Q̃β0,Cn

)
> 0

)
≥ lim

n→∞
P
(
inf
β/∈N

{
M
(
Q̃β,C

)
−M

(
Q̃β0,Cn

)
−M

(
Q̃β,Cn − Q̃β,C

)}
> 0

)
= 1.

Because β0 ∈ N , this can be equivalently written as

lim
n→∞

P
(

inf
β∈(0,1)

M
(
Q̃β,Cn

)
= inf

β∈N
M
(
Q̃β,Cn

))
= 1.

Step II. By assumption, Q̃′
β,C exists and is non-singular at β = β0. This entails

that for any β ∈ [0, 1), Q̃β,C = (β − β0)Q̃
′
β0,C

+R(β), where the remainder term

is such that

M{R(β)} ≤ |β − β0|∆(|β − β0|) (A.1)

for some increasing function ∆ that satisfies ∆(ϵ) = o(1) as ϵ → 0. Hence,

Q̃β,Cn =
(
Q̃β,Cn − Q̃β,C

)
+ (β − β0) Q̃

′
β0,C +R(β).

From the triangle inequality, it follows that

M
(
Q̃β,Cn

)
≥ |β − β0|M

(
Q̃′

β0,C

)
−M{R(β)} −M

(
Q̃β,Cn − Q̃β,C

)
= |β − β0|M

(
Q̃′

β0,C

)
−M{R(β)} −M

(
Q̃n,β√

n

)
.

The non-singularity of Q̃′
β0,C

entails M(Q̃′
β0,C

) > W for some positive constant

W . If one lets N1 be the neighborhood of β0 consisting of those values of β such

that ∆(|β − β0|) ≤ W/2, then for all β ∈ N1,

M
(
Q̃β,Cn

)
≥ W

2
|β − β0| −M

(
Q̃n,β√

n

)
.
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One then has

M
(
Q̃β,Cn

)
−M

(
Q̃β0,Cn

)
≥ W

2
|β − β0| −M

(
Q̃n,β√

n

)
−M

(
Q̃β0,Cn

)
=

W

2
|β − β0| −

1√
n

{
M
(
Q̃n,β

)
+M

(
Q̃n,β0

)}
.

Defining

Λn(β) =
2

W
√
n

{
M
(
Q̃n,β

)
+M

(
Q̃n,β0

)}
,

one can write

M
(
Q̃β,Cn

)
−M

(
Q̃β0,Cn

)
≥ W

2
{|β − β0| − Λn(β)} .

Note that under H0, the random variable

Λn =
√
n inf

β∈(0,1)
Λn(β) =

2

W

{
inf

β∈(0,1)
M
(
Q̃n,β

)
+M

(
Q̃n,β0

)}
(A.2)

converges in distribution to

Λ =
2

W

{
inf

β∈(0,1)
M
(
Q̃β

)
+M

(
Q̃β0

)}
.

Then the infimum of M(Q̃β,Cn) over N1 is the same as its infimum on Ñ1 =

N1 ∩ {β : |β − β0| ≤ Λn/
√
n}, so from the conclusion of Step I,

lim
n→∞

P

(
inf

β∈(0,1)
M
(
Q̃β,Cn

)
= inf

|β−β0|≤Λn√
n

M
(
Q̃β,Cn

))
= 1.

Step III. Make the change of variable t =
√
n(β − β0) and define a random

neighborhood of β0 as

Jn =

{
t : |t| ≤ Λn and β0 +

t√
n
∈ (0, 1)

}
.

Because Q̃′
β0,C

is non-singular, one can write for β = β0 + t/
√
n that

Q̃β,Cn = Q̃β0,Cn +
(
Q̃β,C − Q̃β0,C

)
+
(
Q̃β,Cn − Q̃β,C

)
−
(
Q̃β0,Cn − Q̃β0,C

)
=

Q̃n,β0√
n

+
t Q̃′

β0,C√
n

+R(β) +

(
Q̃n,β − Q̃n,β0√

n

)
.
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Then
√
n Q̃β,Cn = Q̃n,β0 + t Q̃′

β0,C
+

√
nR(β) + (Q̃n,β − Q̃n,β0), so, from the

triangular inequality again,

M
(√

n Q̃β,Cn − Q̃n,β0 − t Q̃′
β0,C

)
≤

√
nM{R(β)}+ M

(
Q̃n,β − Q̃n,β0

)
.

In view of the assumption on R stated at (A.1), and of the convergence in dis-

tribution of Λn, one has for t ∈ Jn that

√
nM{R(β)} =

√
nM

{
R

(
β0 +

t√
n

)}
≤ |t|∆

(∣∣∣∣ t√
n

∣∣∣∣)
≤ Λn∆

(
Λn√
n

)
= oP(1).

Upon noting that the process Q̃n,β is continuous as a function of β ∈ (0, 1), one

concludes that Q̃n,β − Q̃n,β0 = Q̃n,β0+t/
√
n − Q̃n,β0 converges uniformly to zero in

probability; as a consequence, M(Q̃n,β − Q̃n,β0) → 0 in probability. Thus,

sup
t∈Jn

∣∣∣√nM
(
Q̃β,Cn

)
−M

(
Q̃n,β0 + t Q̃′

β0,C

)∣∣∣ = oP(1).

It remains to show that the minimum in the definition of TM
n is indeed achieved

inside Jn. To this end, first note that from the triangle inequality,

M
(
Q̃n,β0 + t Q̃′

β0,C

)
≥ |t|M

(
Q̃′

β0,C

)
−M

(
Q̃n,β0

)
.

Then for t /∈ Jn, i.e., |t| > Λn, one has from the fact that there exists W > 0

such that M(Q̃′
β0,C

) > W and from the definition of Λn in (A.2) that

M
(
Q̃n,β0 + t Q̃′

β0,C

)
>WΛn −M

(
Q̃n,β0

)
= 2 inf

β∈(0,1)
M
(
Q̃n,β

)
+M

(
Q̃n,β0

)
≥M

(
Q̃n,β0

)
=M

(
Q̃n,β0 + 0 Q̃′

β0,C

)
.

Thus, the infimum of M(Q̃n,β0 + t Q̃′
β0,C

) cannot be reached outside Jn. Hence,

TM
n =

√
n inf

|β−β0|≤Λn√
n

M
(
Q̃β,Cn

)
= inf

t∈R
M
(
Q̃n,β0 + t Q̃′

β0,C

)
+ oP(1).
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For g1, g2 ∈ ℓ∞([0, 1]2),∣∣∣∣inft∈R
M
(
g1 + t Q̃′

β0,C

)
− inf

t∈R
M
(
g2 + t Q̃′

β0,C

)∣∣∣∣ ≤ M (g1 − g2) ,

so that the functional inft∈RM is continuous. An application of the continuous

mapping theorem combined with Slutsky’s lemma then yield

TM
n  T M = inf

t∈R
M
(
Q̃β0 + t Q̃′

β0,C

)
,

which completes the proof.
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