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Connection between General Equivalence Theorem and Theorem 3.1.1:

Extending the notations of this paper, we consider the problem when a design
¢ ={(xi,pi), i =1,...,2"} maximizes the D-criterion |[M(¢)| = |X'W X|, where
x; is the ith row of X and X is the 2% x (d + 1) model matrix.

General Equivalence Theorem (see, for example, Atkinson et al. (2007)): £
maximizes |M(§)| (or equivalently minimizes W{M (&)} = —log|M(§)]) if and
only if

wixi(X'WX)Ix; <d+1

for each i = 1,...,2% and equality holds if p; > 0.

Here’s the outline of the proof of the General Equivalence Theorem described
in Atkinson et al. (2007, §9.2, page 122): For each i = 1,...,2% let & be the
design supported only on x;, or in other words, it puts unit mass at the point x;
and let & = (1 — a)€ + ;. The derivative of ¥ in the direction &; or x; is

b(xi,€) = lim ~[W(M(€]) — T(M(E)] = (d+1) — wix)(X'WX)'x;

a—0t «

Then ¢ is D-optimal if and only if min; ¢(x;,£) = 0 and ¢(x;,£) = 0 if p; > 0.

Comparing with our proof of Theorem 3.1.1, £ = (1 — @)é + a&; = £+ a(&; — &)
(r)

i

with u replaced by a and dgr) replaced by & — &.
o1 (pr+us(”)

corresponds to our p, + ud

Therefore, ¢(x;,§) is equal to s and the if and only if condition
u=0
comparing Atkinson et al. (2007) becomes
of ") (p, + udlm) = 0 ifp; >0
ou _— < 0 otherwise.
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The major difference between the general equivalence theorem and Theo-
rem 3.11 is that the general equivalence theorem ends up with the inverse of
X'W X, while we expressed the same set of conditions in terms of determinants
with the aid of Lemma 3.1.1, as well as Lemma S1.2 and Lemma S1.3. O

Additional Results for Example 4.1: Consider a 23 main-effects model with
logit link. Suppose 51 = 0. As a corollary of Theorem 4.1.4, the regular fractions
{1,4,6,7}, {2,3,5,8} are D-optimal half-fractions if and only

L (B0l + 16al + 150D 2 v 1601+ 62l + 5] — 2 g 5 ).

Note that v(n) = w for logit link, which is symmetric about 0. To simplify

the notations, let Savs = max{|f2|, |B3|} and fars = min{|S2|, |53]}. The regular
fractions {1,4,6,7}, {2,3,5,8} are D-optimal half-fractions if and only if one of

three conditions below is satisfied:

() [Bo] + 185 < log2; (S.1)

1/2
(i) 162] + 85| > log2, Bavs < log <1 e g [1 g e 4 720 ) !

2expf|Ba| + 8a]} — 1)
exp{|Ba] + 33]} — 2

1/2
(i) Bavs > log <1 +e a4 [1 +e P 4 6_25”3} ) ;

2¢lBansl — 1 2¢P2v3 _
|Bavs| < log () and |G| < log <€Bzv3_2> — Bans.

I

and |5y| < log <

elB2nsl — 9

The above result is displayed in the right panel of Figure 4.2. In the z-
and y-axis, we have plotted B and (3 respectively. The rhomboidal region at
the center (marked as oo) represents the region where the regular fractions will
always be D-optimal, irrespective of the values of By. The contours outside this
region are for the upper bound of |5y|. Regular fractions will be D-optimal if the
values of |By| will be smaller than the upper bound with 82 and fs falling inside

the region outlined by the contour.



OPTIMAL DESIGN FOR BINARY RESPONSE S3

Proofs

We need two lemmas before the proof of Theorem 3.1.1.

Lemma S1.2 Supposep = (p1,...,pox) satisfies f (p) > 0. Giveni=1,...,2%,

fi(2) = a;z(1 — 2)% + by(1 — )47, (S.2)

d
for some constants a; and b;. If p; > 0, b; = f;(0), a; = %ﬁ)“

wise, by = f (p), a; = fi (%) .24+ b Note that a; > 0, b; > 0, and a; +b; > 0.
O

; other-

Lemma S1.3 Let h(z) = az(1 — 2)? 4+ b(1 — 2) with 0 < 2z < 1 and a >

d d+1
0,0 >0,a+b>0. Ifa > b(d+1), then max, h(z) = (ﬁ) (L> at z =

d+1
% < 1. Otherwise, max, h(z) =b at z = 0. =

Proof of Theorem 3.1.1: Note that f(p) > 0 implies 0 < p; < 1 for each

i=1,..., 2k Since Zl p; = 1, without any loss of generality, we assume pyr > 0.
Define py = (p.- - pe 1)’y and fO(p,) = f(pr,- -,y 1 = TEy ' po).
Fori=1,...,28 —1, let 6§r) =(=p1,- s —Di-1, L — Pis —Pit1,-- -, —Dok_1)"-
Then f;(2) = f")(p, + uégr)) with u = $=It. Since the determinant \(5({), cee
652)71)\ = por # 0, 5&”, .. ,5;2)71 are linearly independent and thus may serve
as a new basis of
2k—1
Se={(p1,...ppr 1) | D pi<1 andp; >0,i=1,...,25~1}.  (S.3)
i=1

Since log (") (pr) is concave, p, maximizes f (") if and only if along each direction
5"

7 Y

a1 (py + ud'™)
ou

=0if p; > 0; <0 otherwise.
u=0

That is, f;(2) attains its maximum at z = p;, for each i = 1,...,2¥ — 1 (and thus
for i = 2¥). Based on Lemma S1.2 and Lemma S1.3, it implies one of the two

cases:

(i) p =0and f; (3) - 24 = f(p) < f(p)(d + 1);



S4 JIE YANG, ABHYUDAY MANDAL AND DIBYEN MAJUMDAR

(ii) pi > 0,a > b(d+ 1), and a — b(d+ 1) = pi(a — b)(d + 1), where b = f;(0),
f(®)—b(1—p;)?*!
e i

and a = o (pi)

The conclusion needed can be obtained by simplifying those two cases above. [

Proof of Theorem 3.1.2: Let pr be the minimally supported design satisfying
Piy = Piy = " = Digyy = d+1 Note that if | X[i1,d2,...,i4+1]] = 0, pr can not
be D-optimal. Suppose |X[i1,i9,...,i4+1]| # 0, pr is D-optimal if and only if
p; satisfies the conditions of Theorem 3.1.1. By Lemma 3.1.1, f(p;) = (d +
D)~ X iy, 42, . . . g ]| Pwiy wiy - wiy,, -

Fori € I, p; = ﬁ, fi(0) = 0. By case (ii) of Theorem 3.1.1, p; = ﬁ
maximizes f;(x). For i ¢ I, p; =0,

P (;) = 20+ D) X i, )P, - wiy,
5 X3} UT\ G

Wy

+ 2_(d+1)(d + 1)_dwi Wiyt v wid“
Jel

Then p; = 0 maximizes f;(x) if and only if f; (%) < f(p) gjﬁ, which is equivalent
to

(X[ OIN G _ X i da, - e
; w; o w;

0

Proof of Theorem 3.3.3: Suppose the lift-one algorithm or its modified version
converges at p* = (pj,...,Py) - According to the algorithm, |[X'WX| > 0 at
p* and pf < 1 for i = 1,...,2%. The proof of Theorem 3.1.1 guarantees that p*
maximizes f(p) = |[X'WX].

Now we show that the modified lift-one algorithm must converge to the
maximum value maxp | X'WX|. Based on the algorithm, we obtain a sequence
of designs {py }n>0 C Sy defined in (S.3) such that | X'WX| > 0. We only need
to check the case when the sequence is infinite. To simplify the notation, here we
still denote f(p) = f(p1,...,Pok_1,1 — Zfi;l pi) for p = (p1,...,pex_1) € Sy
Since that f (p) is bounded from above on S, and f (p,) strictly increases with

n, then lim,,_, f (pn) exists.
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Suppose limy, o f (Pn) < maxp |X'WX|. Since S, is compact, there exists a

P« = (i, ..., Pr_,)' € Sy and a subsequence {pn, }s>1 C {P10m}m>0 C {Pn}n>0
such that

0 < f(ps) = lim f(pn)= lim f(pn,) and [[pn, — Ps|| — 0 as s = oo,

where “|| - ||” represents the Euclidean distance. Since ps is not a solution maxi-
mizing | X'W X|, by the proof of Theorem 3.1.1 and the modified algorithm, there
exists a 51(-7") at px and an optimal u, # 0 such that p. + u*aﬁ” (p«) € Sy and
A= f (P* + u*élm (p*)) = f(ps) >0.

As s — 00, pp, — Px, its ith direction ézm (Pn,) determined by the algorithm
— 62(-7”) (p«), and the optimal u (p,,) — u.. Thus p,, + u(pn,) 61(” (Pn.) —

P« + u*éy) (p«) and

F (Po. +1(Pa) 8 (Pa)) = £ (Pa.) — £ (pu+u0” (p)) = f (p) = A.

For all large enough s, f (pns +u (pn,) 52@ (pns)> — f(pn,) > A/2 > 0. How-

ever,

7 (Po. + (@) 67 (Bn)) = F () < f (Pr1) =S (Pn) < f ()] (Pr.) =0

The contradiction implies that lim, . f (pn) = maxp | X' WX]. O

Proof of Theorem 4.1.4: Given 1 = 0, we have w1 = ws = v(5y + B2 + 53),
wy = we = v(Bo + P2 — B3), wy = wr = v(Bo — B2 + B3), wy = wg = v(fo —
B2 — B3). The goal is to find a half-fraction I = {iy, 49,143,714} which maximizes
s(I) = | X[i1, d2, 13, i4]|*wi, wi, wi;w;,. For regular half-fractions I = {1,4,6,7}
or {2,3,5,8}, s(I) = 256wjwowswy. Note that | X[i1,dz,13,14]|> = 0 for 12 half-
fractions identified by 1 = £A4, 1 = B, 1 = +C, 1 = £AB, 1 = £ AC, or
1 = +BC; and | X[iy, i2,143,i4]|> = 64 for all other 56 cases.

Without any loss of generality, suppose w; > we > w3 > w4. Note that
the half-fraction {1,5,2,6} identified by 1 = B leads to s(I) = 0. Then the
competitive half-fractions consist of both 1 and 5, one element from the second
block {2,6}, and one element from the third block {3,7}. The corresponding

s(I) = 64w?wows. In this case, the regular fractions are optimal ones if and only
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if 4’(1]4 Z w1 . ]

We need the lemma below for Theorem 5.1.6:

Lemma S1.4 Suppose k > 3 and d(d + 1) < 2KT1 — 4. For any index set
I={i1,...,5q01} C {1,...,2F}, there exists another index set T’ = {i),... N
such that

| X1, .. yiap]]? = | X[,y ilyq])? and INT = 0. (S.4)

Proof of Lemma S1.4: Note that & > 3 and d(d + 1) < 2¥1 — 4 imply
d+1 < 251 and 44D < ok 1 Let T = {ir,...,ign} C {1,...,2%}
be the given index set. It can be verified that there exists a nonempty subset
J C{1,2,...,k}, such that (i) the i;th,. .., iz1th rows of the matrix [Cy, Cy, .. .,
Cy] are same as the #\th,... i} ;th rows of the matrix [Ay, A, ..., Ag], where
Aq,..., A are the columns of X corresponding to the main effects, C; = —A;
if i € J and C; = A; otherwise; (ii) I' = {4},...,14, ,} satisfies conditions (S.4).
Actually, the index set I’ satisfying (i) always exists once J is given, since the
2F rows of matrix [Ay,..., Ag] contain all possible vectors in {—1,1}*. Then
| X[i1, ... iapa]|* = |X[#h, . .., i, ]| is guaranteed once I’ satisfies (i). If INT #
(), then there exists an i/, € INT (a € {1,...,d + 1}). Thus i, € I and the
igth row of [Cq,...,Cy] is same as the i/ th row of [Ay,..., A;]. Based on the
definitions of (1, ..., Cf, the i,th and i/ th rows of [A1,..., Ax] have the same
entries at A; for all i ¢ J but different entries at A; for all i € J. On the other
hand, once the index pair {i4,4,} C I is given, it uniquely determines the subset
J c {1,...,k}. Note that there are 2¥ — 1 possible nonempty J but only (dH)

possible pairs in I. Since — 1, there is at least one J such that there

is no pair in I corresponding to it. For such a J, we must have INT' =( . O

Proof of Theorem 5.1.6: Fixing any row index set I = {i1,... 4441} of X

such that |X[i1,da,...,4i441]|> > 0, among all the (d + 1)-row fractional designs
d+1
d+1 T Wigy, X

| X [i1, 49, ..., iq41]|* at pr satisfying p;, = -+ = piy,, = d—_lﬂ. leen any other

/\

satisfying p; = 0,Vi ¢ I, | X'W X]| attains its maximum

index set I' = {21, -+, 4y, } With minimally supported design py satisfying p; =

C=Dy,, = m, the loss of efficiency of p; with respect to py given wp =
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(Wi, .. wor) is
1 : , 2\ 7T
7/}(1)17 WI’) d+l Wiy * - Wi,y ’X[Zla R ﬂd-&-l”
Rp(I) = 1- =1- 3y 7 2
’¢(p1’ WI’) wz’l "wi:i_,'_l’X[Zla'--a/Ld-‘,-l”
1
Xliv, ... ige]]? )
< 1- a . ’ [1/17 ﬂ7j7+1”2 ]
b ’X[le-"ZdJrlH
By Lemma S1.4, there always exists an index set I' = {i},...,4, } such that
|X[l/1, vey i:i+1]|2 = |X[i1, ceuy Z'd+1]|2 and INT = Q) Let Wy = (wl,. .. ,ka)/
satisfy w; = b,Vi € I’ and w; = a,Vi € I (here we assume (wq, ..., wqr) can take

any point in [a, b]Qk). Then the loss of efficiency of p; with respect to this wp is
at least 1—a/b. If we choose I = {iy, ..., 44,1} which maximizes X[iy,...,iq41]/%
then the corresponding p; attains the minimum value 1 — a/b of the maximum

loss in efficiency compared to other minimally supported designs. O

We need two lemmas for the exchange algorithm for integer-valued allocations.

Lemma S1.5 Let g(z) = Az(m — z) + Bz + C(m — z) + D for real numbers
A>0,B>0C>0,D >0, and integers m > 0,0 < z < m. Let A be the

. mA+B-C
integer closest to ™5 7—=.

(i) If 0 < A < m, then maxo<,<m g(z) = mC + D + (mA+ B — C)A —
AA? at 2z = A.

(11) If A <0, then maxo<.<m = mC + D at z = 0.

(i1i) If A > m, then maxo<,<m =mB+ D at z =m
Lemma S1.6 Let n = (ni,...,nu%)", W, = diag{njwi,...,ngwy}, f(n) =
| X'W, X|. Firing 1 <i<j <2 let

fi(2)

Fna, oo M1, 2, Mgty o M1, M — 2, Mg 1, - 5 Tk )

Az(m —2)+ Bz+ C(m — z) + D, (S.5)

>

where m = n; +n;. Then (i) D >0= B >0and C > 0; (it) B> 0 or C >
0= A>0; (iii) f(l’l) >0= A >0 (iv) D = f(nl,..., ni—1,0,ni41, ...,

nj—1,0,Mj41, ..., Ngr). (v) Supposem > 0, then A = % (inj (%) — fi;(0) — fij(m)),

= L (f;;(m) = D), C = L (f;(0) - D).
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Exchange algorithm for real-valued allocations

Lemma S1.7 Let g(z) = Az(e—z)+Bz+C(e—z)+D for nonnegative constants
A, B,C,D,e. Define A = %.

(1) If 0 < A <'e, then maxp<,<. g(z) =eC + D + W at z = A.

(i1) If A <0, then maxp<.,<. = eC + D at z = 0.

(iii) If A > e, then maxo<.<e =eB + D at z =e.
Lemma S1.8 Let p = (p1,...,pex), f(p) = | X'WX|, and
fP1 o pim1, 2, i1, - Pj—1,€ = 2, D1, - -5 Pok)
Az(e—z)+ Bz+C(e—z)+ D,

fij(2)

> i

where 1 < i < j <2 and e = p; +p;. Then (i) D > 0= B >0 and C >
0; (i) B >0o0rC >0 = A>0; (i1i) f(p) >0 = A > 0; (iv) D =
f1,--o, Pi—1,0,Di41, .-y Pj—1,0,Pj41,- ., Dor); (v) Suppose e > 0, then A =
2 (2£i5 (§) = fi5(0) = fij(e)), B= ¢ (fij(e) = D), C = % (fi;(0) — D).
Exchange algorithm for maximizing f(p) = f(p1,...,pox) = | X' WX|

1° Start with an arbitrary design p(®) = ( go)’ e ,pé(,?)’ such that f(p(©®) > 0.

2° Set up a random order of (7, j) going through all pairs
{(1,2),(1,3),...,(1,2%),(2,3),..., (2" — 1,2%)}.

3° For each (i,j), if e := p(o) —|—p(-0) =0, let pM = p©@ and jump to 5°.

( J
Otherwise, let

0 0 0 0 0 0
f (Pg )7 st 7p§7)1727p1(+)17 st ,p§'31,€ - Z7p§'+)17 cte 7pék)>

= Az(e—z)+Bz+C(e—z)+D

fij(2)

with nonnegative constants A, B, C, D determined by Lemma S1.8.

o 0 0 0 0 0 0\’
4° Define pM) = (p(l ),...,pgf)l,z*,pl(ﬁl,...,pgjl,e—z*,pgll,...,pékv where

2, maximizes f;;(z) with 0 < z < e (see Lemma S1.7). Note that f(p()) =
fij(z) = f(p) > 0.
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5° Repeat 2° ~ 4° until convergence (no more increase in terms of f(p) by any

pairwise adjustment).

Theorem S1.7 If the exchange algorithm converges, the converged p maximizes
| X'WX]|.

Proof of Theorem S1.7: Suppose the exchange algorithm converges at p* =
(P1,- -+ Py) - According to the algorithm, [X'WX| > 0 at p*. Without any loss
of generality, assume p;, > 0. Let p; = (p],...,P5 ), lr(Pr) = log fr(Pr),

k_ .
and fr(pr) = f(p1, .-y Pok_q, 1 — Z?lepi). Then for i = 1,...,2F — 1,
g}l;i e = f([l)*) . gﬁ: e =0, if pf > 0; < 0, otherwise. Thus p* (or p}) lo-
cally maximizes {(p) (or I,(p)), and p* attains the global maximum of f(p) on

S. 0

Similar to the lift-one algorithm, we may modify the exchange algorithm
so that p(© won’t be updated until all potential pairwise exchanges among p;’s
have been checked. It can be verified that the modified exchange algorithm must

converge.



