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Connection between General Equivalence Theorem and Theorem 3.1.1:

Extending the notations of this paper, we consider the problem when a design

ξ = {(xi, pi), i = 1, . . . , 2k} maximizes the D-criterion |M(ξ)| = |X ′WX|, where
xi is the ith row of X and X is the 2k × (d+ 1) model matrix.

General Equivalence Theorem (see, for example, Atkinson et al. (2007)): ξ

maximizes |M(ξ)| (or equivalently minimizes Ψ{M(ξ)} = − log |M(ξ)|) if and

only if

wix
′
i(X

′WX)−1xi ≤ d+ 1

for each i = 1, . . . , 2k and equality holds if pi > 0.

Here’s the outline of the proof of the General Equivalence Theorem described

in Atkinson et al. (2007, §9.2, page 122): For each i = 1, . . . , 2k, let ξ̄i be the

design supported only on xi, or in other words, it puts unit mass at the point xi

and let ξ′i = (1− α)ξ + αξ̄i. The derivative of Ψ in the direction ξ̄i or xi is

ϕ(xi, ξ) = lim
α→0+

1

α
[Ψ(M(ξ′i))−Ψ(M(ξ))] = (d+ 1)− wix

′
i(X

′WX)−1xi .

Then ξ is D-optimal if and only if mini ϕ(xi, ξ) = 0 and ϕ(xi, ξ) = 0 if pi > 0.

Comparing with our proof of Theorem 3.1.1, ξ′i = (1− α)ξ + αξ̄i = ξ + α(ξ̄i − ξ)

corresponds to our pr + uδ
(r)
i with u replaced by α and δ

(r)
i replaced by ξ̄i − ξ.

Therefore, ϕ(xi, ξ) is equal to
∂f (r)(pr+uδ

(r)
i )

∂u

∣∣∣∣
u=0

and the if and only if condition

comparing Atkinson et al. (2007) becomes

∂f (r)(pr + uδ
(r)
i )

∂u

∣∣∣∣∣
u=0

= 0 if pi > 0;

≤ 0 otherwise.
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The major difference between the general equivalence theorem and Theo-

rem 3.11 is that the general equivalence theorem ends up with the inverse of

X ′WX, while we expressed the same set of conditions in terms of determinants

with the aid of Lemma 3.1.1, as well as Lemma S1.2 and Lemma S1.3. �

Additional Results for Example 4.1: Consider a 23 main-effects model with

logit link. Suppose β1 = 0. As a corollary of Theorem 4.1.4, the regular fractions

{1, 4, 6, 7}, {2, 3, 5, 8} are D-optimal half-fractions if and only

4 ν (|β0|+ |β2|+ |β3|) ≥ ν

(
|β0|+ |β2|+ |β3| − 2 max

0≤i≤3
|βi|
)
.

Note that ν(η) = 1
2+eη+e−η for logit link, which is symmetric about 0. To simplify

the notations, let β2∨3 = max{|β2|, |β3|} and β2∧3 = min{|β2|, |β3|}. The regular

fractions {1, 4, 6, 7}, {2, 3, 5, 8} are D-optimal half-fractions if and only if one of

three conditions below is satisfied:

(i) |β2|+ |β3| ≤ log 2; (S.1)

(ii) |β2|+ |β3| > log 2, β2∨3 ≤ log

(
1 + e−β2∧3 +

[
1 + e−β2∧3 + e−2β2∧3

]1/2)
,

and |β0| ≤ log

(
2 exp{|β2|+ |β3|} − 1

exp{|β2|+ |β3|} − 2

)
;

(iii) β2∨3 > log

(
1 + e−β2∧3 +

[
1 + e−β2∧3 + e−2β2∧3

]1/2)
,

|β2∨3| ≤ log

(
2e|β2∧3| − 1

e|β2∧3| − 2

)
and |β0| ≤ log

(
2eβ2∨3 − 1

eβ2∨3 − 2

)
− β2∧3.

The above result is displayed in the right panel of Figure 4.2. In the x-

and y-axis, we have plotted β2 and β3 respectively. The rhomboidal region at

the center (marked as ∞) represents the region where the regular fractions will

always be D-optimal, irrespective of the values of β0. The contours outside this

region are for the upper bound of |β0|. Regular fractions will be D-optimal if the

values of |β0| will be smaller than the upper bound with β2 and β3 falling inside

the region outlined by the contour.
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Proofs

We need two lemmas before the proof of Theorem 3.1.1.

Lemma S1.2 Suppose p = (p1, . . . , p2k)
′ satisfies f (p) > 0. Given i = 1, . . . , 2k,

fi(z) = aiz(1− z)d + bi(1− z)d+1, (S.2)

for some constants ai and bi. If pi > 0, bi = fi(0), ai =
f(p)−bi(1−pi)

d+1

pi(1−pi)
d ; other-

wise, bi = f (p), ai = fi
(
1
2

)
· 2d+1 − bi. Note that ai ≥ 0, bi ≥ 0, and ai + bi > 0.

�

Lemma S1.3 Let h(z) = az(1 − z)d + b(1 − z)d+1 with 0 ≤ z ≤ 1 and a ≥

0, b ≥ 0, a + b > 0. If a > b(d + 1), then maxz h(z) =
(

d
a−b

)d (
a

d+1

)d+1
at z =

a−b(d+1)
(a−b)(d+1) < 1. Otherwise, maxz h(z) = b at z = 0. �

Proof of Theorem 3.1.1: Note that f(p) > 0 implies 0 ≤ pi < 1 for each

i = 1, . . . , 2k. Since
∑

i pi = 1, without any loss of generality, we assume p2k > 0.

Define pr = (p1, . . . , p2k−1)
′, and f (r)(pr) = f(p1, . . . , p2k−1, 1−

∑2k−1
i=1 pi).

For i = 1, . . . , 2k − 1, let δ
(r)
i = (−p1, . . . ,−pi−1, 1− pi,−pi+1, . . . ,−p2k−1)

′.

Then fi(z) = f (r)(pr + uδ
(r)
i ) with u = z−pi

1−pi
. Since the determinant |(δ(r)1 , . . . ,

δ
(r)

2k−1
)| = p2k ̸= 0, δ

(r)
1 , . . . , δ

(r)

2k−1
are linearly independent and thus may serve

as a new basis of

Sr = {(p1, . . . , p2k−1)
′ |

2k−1∑
i=1

pi ≤ 1, and pi ≥ 0, i = 1, . . . , 2k − 1}. (S.3)

Since log f (r)(pr) is concave, pr maximizes f (r) if and only if along each direction

δ
(r)
i ,

∂f (r)(pr + uδ
(r)
i )

∂u

∣∣∣∣∣
u=0

= 0 if pi > 0; ≤ 0 otherwise.

That is, fi(z) attains its maximum at z = pi, for each i = 1, . . . , 2k − 1 (and thus

for i = 2k). Based on Lemma S1.2 and Lemma S1.3, it implies one of the two

cases:

(i) pi = 0 and fi
(
1
2

)
· 2d+1 − f(p) ≤ f(p)(d+ 1);
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(ii) pi > 0, a > b(d + 1), and a − b(d + 1) = pi(a − b)(d + 1), where b = fi(0),

and a = f(p)−b(1−pi)
d+1

pi(1−pi)d
.

The conclusion needed can be obtained by simplifying those two cases above. �

Proof of Theorem 3.1.2: Let pI be the minimally supported design satisfying

pi1 = pi2 = · · · = pid+1
= 1

d+1 . Note that if |X[i1, i2, . . . , id+1]| = 0, pI can not

be D-optimal. Suppose |X[i1, i2, . . . , id+1]| ≠ 0, pI is D-optimal if and only if

pI satisfies the conditions of Theorem 3.1.1. By Lemma 3.1.1, f(pI) = (d +

1)−(d+1)|X[i1, i2, . . . , id+1]|2wi1wi2 · · ·wid+1
.

For i ∈ I, pi = 1
d+1 , fi(0) = 0. By case (ii) of Theorem 3.1.1, pi = 1

d+1

maximizes fi(x). For i /∈ I, pi = 0,

fi

(
1

2

)
= [2(d+ 1)]−(d+1)|X[i1, . . . , id+1]|2wi1 · · ·wid+1

+ 2−(d+1)(d+ 1)−dwi · wi1 · · ·wid+1

∑
j∈I

|X[{i} ∪ I \ {j}]|2

wj
.

Then pi = 0 maximizes fi(x) if and only if fi
(
1
2

)
≤ f(p) d+2

2d+1 , which is equivalent

to ∑
j∈I

|X[{i} ∪ I \ {j}]|2

wj
≤ |X[i1, i2, . . . , id+1]|2

wi
.

�

Proof of Theorem 3.3.3: Suppose the lift-one algorithm or its modified version

converges at p∗ = (p∗1, . . . , p
∗
2k
)′. According to the algorithm, |X ′WX| > 0 at

p∗ and p∗i < 1 for i = 1, . . . , 2k. The proof of Theorem 3.1.1 guarantees that p∗

maximizes f(p) = |X ′WX|.
Now we show that the modified lift-one algorithm must converge to the

maximum value maxp |X ′WX|. Based on the algorithm, we obtain a sequence

of designs {pn}n≥0 ⊂ Sr defined in (S.3) such that |X ′WX| > 0. We only need

to check the case when the sequence is infinite. To simplify the notation, here we

still denote f(p) = f(p1, . . . , p2k−1, 1 −
∑2k−1

i=1 pi) for p = (p1, . . . , p2k−1)
′ ∈ Sr.

Since that f (p) is bounded from above on Sr and f (pn) strictly increases with

n, then limn→∞ f (pn) exists.
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Suppose limn→∞ f (pn) < maxp |X ′WX|. Since Sr is compact, there exists a

p∗ = (p∗1, . . . , p
∗
2k−1

)′ ∈ Sr and a subsequence {pns}s≥1 ⊂ {p10m}m≥0 ⊂ {pn}n≥0

such that

0 < f (p∗) = lim
n→∞

f (pn) = lim
s→∞

f (pns) and ∥pns − p∗∥ −→ 0 as s→ ∞,

where “∥ · ∥” represents the Euclidean distance. Since p∗ is not a solution maxi-

mizing |X ′WX|, by the proof of Theorem 3.1.1 and the modified algorithm, there

exists a δ
(r)
i at p∗ and an optimal u∗ ̸= 0 such that p∗ + u∗δ

(r)
i (p∗) ∈ Sr and

∆ := f
(
p∗ + u∗δ

(r)
i (p∗)

)
− f (p∗) > 0.

As s→ ∞, pns → p∗, its ith direction δ
(r)
i (pns) determined by the algorithm

→ δ
(r)
i (p∗), and the optimal u (pns) → u∗. Thus pns + u (pns) δ

(r)
i (pns) −→

p∗ + u∗δ
(r)
i (p∗) and

f
(
pns + u (pns) δ

(r)
i (pns)

)
− f (pns) −→ f

(
p∗ + u∗δ

(r)
i (p∗)

)
− f (p∗) = ∆.

For all large enough s, f
(
pns + u (pns) δ

(r)
i (pns)

)
− f (pns) > ∆/2 > 0. How-

ever,

f
(
pns + u (pns) δ

(r)
i (pns)

)
−f (pns) ≤ f (pns+1)−f (pns) ≤ f (p∗)−f (pns) → 0

The contradiction implies that limn→∞ f (pn) = maxp |X ′WX|. �

Proof of Theorem 4.1.4: Given β1 = 0, we have w1 = w5 = ν(β0 + β2 + β3),

w2 = w6 = ν(β0 + β2 − β3), w3 = w7 = ν(β0 − β2 + β3), w4 = w8 = ν(β0 −
β2 − β3). The goal is to find a half-fraction I = {i1, i2, i3, i4} which maximizes

s(I) := |X[i1, i2, i3, i4]|2wi1wi2wi3wi4 . For regular half-fractions I = {1, 4, 6, 7}
or {2, 3, 5, 8}, s(I) = 256w1w2w3w4. Note that |X[i1, i2, i3, i4]|2 = 0 for 12 half-

fractions identified by 1 = ±A, 1 = ±B, 1 = ±C, 1 = ±AB, 1 = ±AC, or
1 = ±BC; and |X[i1, i2, i3, i4]|2 = 64 for all other 56 cases.

Without any loss of generality, suppose w1 ≥ w2 ≥ w3 ≥ w4. Note that

the half-fraction {1, 5, 2, 6} identified by 1 = B leads to s(I) = 0. Then the

competitive half-fractions consist of both 1 and 5, one element from the second

block {2, 6}, and one element from the third block {3, 7}. The corresponding

s(I) = 64w2
1w2w3. In this case, the regular fractions are optimal ones if and only
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if 4w4 ≥ w1. �

We need the lemma below for Theorem 5.1.6:

Lemma S1.4 Suppose k ≥ 3 and d(d + 1) ≤ 2k+1 − 4. For any index set

I = {i1, . . . , id+1} ⊂ {1, . . . , 2k}, there exists another index set I′ = {i′1, . . . , i′d+1}
such that

|X[i1, . . . , id+1]|2 = |X[i′1, . . . , i
′
d+1]|2 and I ∩ I′ = ∅. (S.4)

Proof of Lemma S1.4: Note that k ≥ 3 and d(d + 1) ≤ 2k+1 − 4 imply

d + 1 ≤ 2k−1 and d(d+1)
2 < 2k − 1. Let I = {i1, . . . , id+1} ⊂ {1, . . . , 2k}

be the given index set. It can be verified that there exists a nonempty subset

J ⊂ {1, 2, . . . , k}, such that (i) the i1th, . . . , id+1th rows of the matrix [C1, C2, . . . ,

Ck] are same as the i′1th, . . . , i
′
d+1th rows of the matrix [A1, A2, . . . , Ak], where

A1, . . . , Ak are the columns of X corresponding to the main effects, Ci = −Ai

if i ∈ J and Ci = Ai otherwise; (ii) I
′ = {i′1, . . . , i′d+1} satisfies conditions (S.4).

Actually, the index set I′ satisfying (i) always exists once J is given, since the

2k rows of matrix [A1, . . . , Ak] contain all possible vectors in {−1, 1}k. Then

|X[i1, . . . , id+1]|2 = |X[i′1, . . . , i
′
d+1]|2 is guaranteed once I′ satisfies (i). If I∩ I′ ̸=

∅, then there exists an i′a ∈ I ∩ I′ (a ∈ {1, . . . , d + 1}). Thus ia ∈ I and the

iath row of [C1, . . . , Ck] is same as the i′ath row of [A1, . . . , Ak]. Based on the

definitions of C1, . . . , Ck, the iath and i′ath rows of [A1, . . . , Ak] have the same

entries at Ai for all i /∈ J but different entries at Ai for all i ∈ J. On the other

hand, once the index pair {ia, i′a} ⊂ I is given, it uniquely determines the subset

J ⊂ {1, . . . , k}. Note that there are 2k − 1 possible nonempty J but only d(d+1)
2

possible pairs in I. Since d(d+1)
2 < 2k − 1, there is at least one J such that there

is no pair in I corresponding to it. For such a J, we must have I ∩ I′ = ∅ . �

Proof of Theorem 5.1.6: Fixing any row index set I = {i1, . . . , id+1} of X

such that |X[i1, i2, . . . , id+1]|2 > 0, among all the (d + 1)-row fractional designs

satisfying pi = 0, ∀i /∈ I, |X ′WX| attains its maximum
(

1
d+1

)d+1
wi1 · · ·wid+1

×
|X[i1, i2, . . . , id+1]|2 at pI satisfying pi1 = · · · = pid+1

= 1
d+1 . Given any other

index set I′ = {i′1, . . . , i′d+1} with minimally supported design pI′ satisfying pi′1 =

· · · = pi′d+1
= 1

d+1 , the loss of efficiency of pI with respect to pI′ given wI′ =
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(w1, . . . , w2k)
′ is

RI′(I) = 1−
(
ψ(pI ,wI′)

ψ(pI′ ,wI′)

) 1
d+1

= 1−

(
wi1 · · ·wid+1

|X[i1, . . . , id+1]|2

wi′1
· · ·wi′d+1

|X[i′1, . . . , i
′
d+1]|2

) 1
d+1

≤ 1− a

b
·

(
|X[i1, . . . , id+1]|2

|X[i′1, . . . , i
′
d+1]|2

) 1
d+1

.

By Lemma S1.4, there always exists an index set I′ = {i′1, . . . , i′d+1} such that

|X[i′1, . . . , i
′
d+1]|2 = |X[i1, . . . , id+1]|2 and I ∩ I′ = ∅. Let wI′ = (w1, . . . , w2k)

′

satisfy wi = b,∀i ∈ I′ and wi = a,∀i ∈ I (here we assume (w1, . . . , w2k) can take

any point in [a, b]2
k
). Then the loss of efficiency of pI with respect to this wI′ is

at least 1−a/b. If we choose I = {i1, . . . , id+1} which maximizes X[i1, . . . , id+1]|2,
then the corresponding pI attains the minimum value 1 − a/b of the maximum

loss in efficiency compared to other minimally supported designs. �

We need two lemmas for the exchange algorithm for integer-valued allocations.

Lemma S1.5 Let g(z) = Az(m − z) + Bz + C(m − z) + D for real numbers

A > 0, B ≥ 0, C ≥ 0, D ≥ 0, and integers m > 0, 0 ≤ z ≤ m. Let ∆ be the

integer closest to mA+B−C
2A .

(i) If 0 ≤ ∆ ≤ m, then max0≤z≤m g(z) = mC + D + (mA + B − C)∆ −
A∆2 at z = ∆.

(ii) If ∆ < 0, then max0≤z≤m = mC +D at z = 0.

(iii) If ∆ > m, then max0≤z≤m = mB +D at z = m.

Lemma S1.6 Let n = (n1, . . . , n2k)
′, Wn = diag{n1w1, . . . , n2kw2k}, f(n) =

|X ′WnX|. Fixing 1 ≤ i < j ≤ 2k, let

fij(z) = f (n1, . . . , ni−1, z, ni+1, . . . , nj−1,m− z, nj+1, . . . , n2k)
△
= Az(m− z) +Bz + C(m− z) +D, (S.5)

where m = ni + nj. Then (i) D > 0 =⇒ B > 0 and C > 0; (ii) B > 0 or C >

0 =⇒ A > 0; (iii) f(n) > 0 =⇒ A > 0; (iv) D = f(n1, . . . , ni−1, 0, ni+1, . . . ,

nj−1, 0, nj+1, . . . , n2k). (v) Supposem > 0, then A = 2
m2

(
2fij

(
m
2

)
− fij(0)− fij(m)

)
,

B = 1
m (fij(m)−D), C = 1

m (fij(0)−D).
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Exchange algorithm for real-valued allocations

Lemma S1.7 Let g(z) = Az(e−z)+Bz+C(e−z)+D for nonnegative constants

A,B,C,D, e. Define ∆ = eA+B−C
2A .

(i) If 0 ≤ ∆ ≤ e, then max0≤z≤e g(z) = eC +D + (eA+B−C)2

4A at z = ∆.

(ii) If ∆ < 0, then max0≤z≤e = eC +D at z = 0.

(iii) If ∆ > e, then max0≤z≤e = eB +D at z = e.

Lemma S1.8 Let p = (p1, . . . , p2k)
′, f(p) = |X ′WX|, and

fij(z) := f (p1, . . . , pi−1, z, pi+1, . . . , pj−1, e− z, pj+1, . . . , p2k)
△
= Az(e− z) +Bz + C(e− z) +D,

where 1 ≤ i < j ≤ 2k and e = pi + pj. Then (i) D > 0 =⇒ B > 0 and C >

0; (ii) B > 0 or C > 0 =⇒ A > 0; (iii) f(p) > 0 =⇒ A > 0; (iv) D =

f(p1, . . . , pi−1, 0, pi+1, . . . , pj−1, 0, pj+1, . . . , p2k); (v) Suppose e > 0, then A =
2
e2

(
2fij

(
e
2

)
− fij(0)− fij(e)

)
, B = 1

e (fij(e)−D), C = 1
e (fij(0)−D).

Exchange algorithm for maximizing f(p) = f(p1, . . . , p2k) = |X ′WX|

1◦ Start with an arbitrary design p(0) = (p
(0)
1 , . . . , p

(0)

2k
)′ such that f(p(0)) > 0.

2◦ Set up a random order of (i, j) going through all pairs

{(1, 2), (1, 3), . . . , (1, 2k), (2, 3), . . . , (2k − 1, 2k)}.

3◦ For each (i, j), if e := p
(0)
i + p

(0)
j = 0, let p(1) = p(0) and jump to 5◦.

Otherwise, let

fij(z) = f
(
p
(0)
1 , . . . , p

(0)
i−1, z, p

(0)
i+1, . . . , p

(0)
j−1, e− z, p

(0)
j+1, . . . , p

(0)

2k

)
= Az(e− z) +Bz + C(e− z) +D

with nonnegative constants A,B,C,D determined by Lemma S1.8.

4◦ Define p(1) =
(
p
(0)
1 , . . . , p

(0)
i−1, z∗, p

(0)
i+1, . . . , p

(0)
j−1, e− z∗, p

(0)
j+1, . . . , p

(0)

2k

)′
where

z∗ maximizes fij(z) with 0 ≤ z ≤ e (see Lemma S1.7). Note that f(p(1)) =

fij(z∗) ≥ f(p(0)) > 0.
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5◦ Repeat 2◦ ∼ 4◦ until convergence (no more increase in terms of f(p) by any

pairwise adjustment).

Theorem S1.7 If the exchange algorithm converges, the converged p maximizes

|X ′WX|.

Proof of Theorem S1.7: Suppose the exchange algorithm converges at p∗ =

(p∗1, . . . , p
∗
2k
)′. According to the algorithm, |X ′WX| > 0 at p∗. Without any loss

of generality, assume p∗
2k

> 0. Let p∗
r = (p∗1, . . . , p

∗
2k−1

), lr(pr) = log fr(pr),

and fr(pr) = f(p1, . . . , p2k−1, 1 −
∑2k−1

i=1 pi). Then for i = 1, . . . , 2k − 1,
∂lr
∂pi

∣∣∣
p∗r

= 1
f(p∗) ·

∂fr
∂pi

∣∣∣
p∗r

= 0, if p∗i > 0; ≤ 0, otherwise. Thus p∗ (or p∗
r) lo-

cally maximizes l(p) (or lr(pr)), and p∗ attains the global maximum of f(p) on

S. �

Similar to the lift-one algorithm, we may modify the exchange algorithm

so that p(0) won’t be updated until all potential pairwise exchanges among pi’s

have been checked. It can be verified that the modified exchange algorithm must

converge.


