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SUPPLEMENT TO
“OPTIMALLY COMBINED ESTIMATION
FOR TAIL QUANTILE REGRESSION”

Kehui Wang and Huixia Judy Wang
In this supplement, we provide the proofs for Theorems 1-3, Proposition 1 and the
statements in Remark 2 in the main paper. We first introduce some notations. Denote

(1-71)n
Fo () = Fg ' (7m)

lk(l — T)TL
Fo i) = Fo ' (Fon)

and ap =

(1)

ap =

where m > 1, 7, = 1 —=m(1 —7) and T;pr = 1 —m(1 — 7). For notational simplicity, we
denote Fz = Fy(|Xl) and fi = fy(|Xl)

Proof of Theorem 1. At the 7,th quantile, the local quantile estimator of the coeffi-
cients in model (2.1) is defined as

(@x, By) = argmin > prlyi —a—x7B).
aB) =

Denote tAn,k = ap(Q — ag) and z, ;, = ak(ak —By), k=1,...,K. By Theorem 5.1 of
Chernozhukov (2005), we have

" - S\ 10!
= ~ d m
(tn,lazn,h"'7tn,KaZZ;K)T — N <07 <§> {I‘® < 0D > )

where T is a K x K matrix with the (k, k")th element as min(ly, lx/)/+/lilk. Therefore,
we have

~ K — —9
an(Bwoar—Bo) = Zwk%En,k 4N (0,wT<I>_1(£)I‘<I>_1(§)w <m§1> D_1> )
k=1

Lemma 1. For a sequence of quantiles 1, ...,7k with 7, = 1 and (1 — 7,)n — oo,

min(Tk,Tk/) — Tk Tk

-, Nmin(lk,lk/),

where 7 = 1, (1 =7)n = 00, and (1 —7)/(1 —7) = Iy fork=1,... K.

Proof. Let 7* =1—7, 7} =1— 7. Therefore, 7} /7* — I, k=1,...,K, and 7* — 0.



52 KEHUI WANG AND HUIXIA JUDY WANG

It’s easy to show that min(7y, 7/ ) — 7,7 = min(7, 7)) — 7575 Forany k, k' = 1,... | K,
min(7rg, ) — TTRe  min(7Ty, T ) =TT
1 — T B T*
~ mmin(lg, k) +o(1) = 7l + o(1) H{lw 4 0o(1)}]
T*

= min{lg, i + o(1)} — 77{lx + o(1) Hlx + o(1)}
~ min(lk,lk/).

Lemma 2. Under conditions A3-A5, a/a, — liH/Q foranyk=1,...,K.

Proof. Since OF; '(7)/0r = 1/fo{F; *(1)}, A4 means that for any 2 > 0

fO{F071(1 -7} ~ g€l
folFy 1(1 — 7))}

,as 7" = 0. (2)

For any § > 0, note that dFy (1 — s6)/ds = —0 [fo{Fy ' (1 — 55)}]_1 . Therefore,

m 1 _ Fyt(1—-6) — Fy (1 —mo)
| mmawt 5 | ®

Combining (2) and (3) gives

Fo {1 - (1=} = Fy ' {1 = m(1— 7))
1—74
-1 " 1
fo{Fy (Tk)}/l folFy {1 — s(1 — 7%)}] =
™ folFy M1 — (1 — 1)}
1 folFy M1 —s(1— 7))

m £ _
~ / s~ 1gs = M umire — o), (4)
1

Fo () = Fy ' (Fnk)
Le(L—7)/ fo{Fy ' ()}

ol (7)) [

Therefore, applying (2) and (4), we have
a _ Vnl(l-7) { Fy (1) = Fy (Tm) }
an n(l—7) UFy () = F5 ' (Fouk)

Fy H(7) = Fy* (Tm) (L=n)/folFy '(D] ] [ =7)/folFy " (m)}
Vi [(1 - T)/fo{Fol(T)J Lk(l - T)/fo{Fol(Tk)}] [ Fy ' (m) = F * (Tk)

£ _1 1 — 1
\/E(m £ ) (lkliﬂ) (m—f— 1) :1?2.
~T

Proof of Theorem 2. For notational simplicity, we write §WCRQ = (Qy,...,ax,B8 )T

2

in this proof. Let U, = ar(@r —aok), kK =1,..., K, and 0, = a,(B8 — By), where



OPTIMALLY COMBINED ESTIMATION FOR TAIL QUANTILE REGRESSION S3

(a1, .-, 0K, B) are the true parameters. From (2.7), it is clear that (U, 1,

-y Un, K, un)
is the minimizer of

up  xTu

L, = \/ﬁz ;:{P'rk <yz_ 1/6 _ao,k_a_ ;n >_Pfk(yi—xfﬁo—a0’k)}

with respect to (ug,...,ur, u). Using Knight’s identity (Knight, 1998),

pr(u—v)—pr(u)=—v{r —I(u<0)}+ /OU{I(u <s)—I(u<0)}ds,

we can rewrite L,, as L,, = Ly, 1 + Ly, 2, where

Lna = \/17_7 Z ;: <Zz X;nu) (e <0) —7x},

u «Tu

an

mzwkz [7 T e <0 - e < opas

L

and €, = y; — X! By — o k. Denoting ¥; = I(e; x < 0) — 71, we have

K n K n
Ap Wk Ap, Wk T
Ln, = — 1/’z’,kuk + 1/1i,kxi u
! \/n(l—T);ak; n(l—T)kz:lan;
K
k=1
where
a K n
Wn = = i,k n 4 79
* Wakzm VTT;““W i

W, =Wt Wai, WIT and U = (up1, ..., un.x,ul)7.

We next derive the limiting distribution of Wn Denote

T
w1 WK an T

T7: — 7 gy Y/ — — 7 ,87 3
< 1-na d’l (1—T)aK¢’K )

where S; = (1 —7)~1/2 Zle wii kX;. Note that T; are i.i.d. with mean 0 and covari-

ance matrix V,,. For k, k' =1,..., K, the (k, k")th element of V,, is,

noo— _ Yk On Wk On
Vn(kak ) - COV( (1 — ’7’) ar ’(/J’L,k?? (1 — 7_) ’(/}z K’ )

WEWEk! a%

(1 — 7_) akak: {min(Tk,Tk/) — Tka/}

— wkwk/lk zl 4 2mln(lk,lk/) (6)
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where Lemmas 1 and 2 are used to prove the last step. Under condition A2,

Var(S;)

E{Var(Si|x;)} + Var{E(S;|x;)}

K K .
: {X“&T 03 wpaay, T ) T } 10
-7

k=1k'=1

L& min(7g, Tk ) — T T

k> Th') — TkTk'

DE E WEW ’1 - DwTw.
-7

k=1k'=1

In addition, for any k=1,..., K,

K
w a Wi a
cov ((k”qpi’k,si) = (lik—"E Vi k ij%‘,jxi
j=1

1—r71)ak —T)ag
wp @ K
k
-7 i E | ik ijwi,jxi X; =0, (7)
=1

where the last step is due to the assumption that F(X) = 0. Combining (6)-(7) gives

the limit of V,,
(Vi 0

el g1
where V is a K x K matrix with the (k, ¥")th element wywyl,, ¢z lk,,g 2min({xlx ), and
k,k"=1,..., K. Applying the multivariate Central Limit Theorem and Slutsky theorem
to T;, we can show that
— 1 & d
W, =— T; — N(0,V). 9
LT ANOY) )

Now we consider the second part of the objective function L,,, L, 2. By the defini-
tions of a,, and aj, we have

K -1 —1/=
F — F m
R SR ATARY: ST P
o o () = F ()
where
n up x?u
ak U.k an
ok - % / {I(eir <s)—I(e;, <0)}ds
" k(1 —7)n ; 0 ’

ds.

n /uk'i‘:ix?u I(Ei’k < i) - I(ei,k < 0)

i—1 0 lk(l 77’)71
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Furthermore, we have

/ukhjﬁxzr“ F; {Fi_l(Tk) +s/an} — F{F
o l(l—7)n

E(GYy = nE (Tk)}ds] (iterated expectations)

arp /(1 —7)n

(%) nE /uk+ xiu fi[Fi_l(Tk)‘Fo{Fo_l(Tk) _Fo_l(;mk)}]sds
0

@ g /uk+ " ‘LF T)ls
0 lk(l - T)n
_ 1 Fil E7 ()}
= nkE 2(uk -l- a )2a = )TL}
_ 1 A T )2 Fy (Tk) - Fy 1(ka) ]
S R iy vy
@ g {;(uk + T ) K ()6 (m—_&5—1> } . (10)
By Taylor expansion and the fact that (1 — 7)n — oo,
s/ai = S{Fo_l(Tk) - Fy ka WAV —7)n = o{F (ka)}

then equation () (10) is proven. The equation (i) holds because fi{F; '(7) +
o (Fy ' (mw) — Fy (ka))} ~ [i{F; (1)} as 7 — 1, which is derived following the same
arguments as in the proof of Lemma 9.6 in Chernozhukov (2005). The equation (i) is
proven as follows. By condition A3, as 7 — 1,

FidFTH ()} = folaln)lxi} ~ fo {Fg (1)}

Therefore,
B ()~ Fy ' Gw) | Fir' o) i () "
b1 =7)/fdE7 N ()Y (L —7)/ fol Fy (1)}
Combining (11) and (4), we have
FO_I(Tk) B F()_l(%:mk) m7£ -1 (12)

W=7/ fdF )y~ €

which together with Lemma 2 proves equation (i4i). Furthermore, we can show that
Var(G¥) — 0 by following the same arguments as in the proof of Lemma 9.6 in
Chernozhukov (2005). In Lemma 2 we showed that {F, ' (1) — Fy (%)} /{Fy * (1) —
Fyt(Fon)} ~ li. Therefore, we have

D K 1 e+1 m*E -1
L,y = FE Zwkl,zgi(uk—klk 2xiTu)2 <_£>
m -1 € Levi 1
= Zwk ukl ilk u' Du). (13)
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Combining (5), (9) and (13), we get
d _ T m=*—1 ¢ Lernyr
Ly S5 Lee=Y Wyup +Wha+ Zwk ukl + 5l u"Du ),
k=1

where W = (I/Vl7 o, Wi, WT)T is a random vector following the distribution N(0,V)
with V defined in (8). Since the objective function L, is quadratic in U, the minimizer

of L is
—£ 1 —1
Uk,oo = {(m€> wkl,f} Wy, fork=1,..., K,

1 = (m;‘lyl{w(g)w}lnlw,

where (&) = (I571,... 51T, By the definition of W, we have

T —€ 1\ ?
U, ~ N |0, L; d (m ) D).
{o" (Owp \ —¢
Note that wy, > 0, £k =1,..., K, then the application of the convexity lemma in Pollard
(1991) gives

-~ ~ d
an(Bwcrg — Bo) = Un — Uoo.

The proof of the statements in Remark 2 relies on the following Lemma 3.

Lemma 3. Let f(z) = (a*T! —25tY)/(a — 2) for a > 0,2 > 0 and x # a, then (i) when
& >0, f(x) is an increasing function; (i) when —1/2 < & < 0, f(z) is a decreasing
function.

Proof. We first prove (i). Note that

() = astl — (6 + 1)ax25 + ettt 1)

(@ —x)

has the same sign as that of (a/x)**! — (¢ + 1)a/x + ¢. Consider the function s(t) =
L (E4+ Dt + & >0 For € >0, s"(t) = £(6E+ 1)t > 0, so s(t) is a convex
function that achieves its minimum at ¢ = 1. Since s(1) = 0, s(¢) and f’(x) are both
nonnegative. Thus f(z) is an increasing function for £ > 0. To prove (ii), we can use the
same technique to show that s(t) is a concave function achieving its maximum at ¢t = 1,
and thus f/(x) <0 for all z > 0.

Proof of Remark 2. Recall that the matrix T is a K x K matrix with the (k, k¥")th
element defined as min(ly, /). Then it can be shown that T'' is a band matrix with
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the following form

1 1
11—{2 Tl Ol 0 0
Tl il +1 la—l3 1_12713 L 0 0
Tl lo—1 + ls—I 0 0
! _ 2—l3 2—l3 3—la
- _1 . 1
0 0 ls—ly : lk—2—lk—1 01
0 0 0 Ik _—2—lKk_1 + Ik—1—lKk _lll(—l_lK
1 K—1
0 0 0 lk—1-1lK Lx(lx-1—IK)

Therefore, the optimal weights T~ ¢(£) /15T 1 (¢) = (wk)kK:l, where

l§+1 l§+1 lic1
= - — I l§ . lf
w1 c(ll_lQ ll_lg , WK C{lKl_lK(K K—l)}?

lE+1 _ l£+1 l§+1 . l§+1
wE =¢ k kil kol k fork=2,..., K —1,
Ig — lpy1 le—1— Ik

and ¢ = 11T<I‘_1d)(§) is a positive constant. We consider the three different cases sepa-
rately.
(i) Case 1 (¢ > 0). Note that I; > I3 > ... > lg. Obviously w; > 0, wxg < 0. For
E+1_ &4l
any k=2,...,K—1,let f(z) = b =T then wy = c{ f(lk+1) — f(Ix)} < 0 by Lemma
3 (i).

(ii) Case 2 (£ =0). It is easy to show that w; =1 and wy = ... =wg = 0.

lkfw

(iii) Case 3 (—1/2 < £ < 0). By Lemma 3 (ii) and the similar technique as used in
the proof for case 1, we can show that wy >0 for k=1,..., K.

The proof of Proposition 1 relies on the following lemma.

Lemma 4 (Lemma 2 of Zhao and Xiao, 2013). Let S be a K x K symmetric positive-

definite matriz and v be any non-zero K x1 column vector. Define M = vT'S™1vS —vovT.

Then (i) for any column vector z, 2" Mz > 0; and (ii) 2" Mz = 0 holds if and only if
z = ¢S~ for some real constant c.

Proof of Proposition 1. Since the matrix I' is positive-definite and symmetric, and
¢(&) is non-zero, by Lemma 4 (i), we have
Wl ¢" (OT ' P(OTw — w' P(€)¢" (§)w > 0, for any w € RF. (15)
Note that ¢’ (€)T'g(€) is a scalar, (15) can be expressed as
wlTw
WT ()" (w

Lemma 4 (ii) then implies that the equality in (15) holds if and only if w = ¢I' ' (€)
for some constant c.

= oivore(@) = {¢7 (OTP(€)} !, for any w € RY.
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Proof of Theorem 3. By the definitions, B(8) is the first derivative of E{A(0)}. With
the Taylor series expansion, we get

E{A(0)} = E{A(60)} + B(8)(6 — ), (16)
where 0 lies between 6, and 0. Define

8 = AO+8)-A®)

ZZwk zi [I{y: — 2z} (6 +6) <0} — I(y; szkO <0)].

k=111=1

Applying Lemma 4.1 of He and Shao (1996), we have the uniform approximation

5'\\8;\1\110Hrn(6) — E{r,(8)}|| = O,(v/nlogn||8]|*/?), for some constant C.

Since 0 is an an-consistent estimator of 6,
I{A(8) — A(8o)} — [E{A(8)} — E{A(60)}]|| = Op(Vnlogn|[0 — 6,|['/?).  (17)
Combining (16) and (17) gives
Oos — 0y = —B(8)A(8,) —

where R,, = B(8)"'{B(8) —B(8)}(6 —6,) +B(8) ' 0,(v/nlogn||6 —8,||'/2). Following
similar arguments as in the proof of Theorem 3 in Bradic, Fan and Wang (2011), we can
show that R,, is 0,(1/ an) Consequently, to prove Theorem 3, we only need to consider
an{B( JA(6)}. Since 0 is a consistent estimator, by Slusky theorem, it is sufficient to
show the asymptotic normality of a,{B(0¢)A(6y)}. By the regularly varying property
n (12), Lemma 2 and the multivariate CLT, we can show that

an{B(80)A(85)} % N (0,T1JT ),

where
(o)lf“rl OT
=€ WO o” ’ 0 Duwl Twey,
0 e 0 wl (D

and J; is a K x K matrix with the (k, k")th element wiwy min(ly, lx). By some linear
algebra, we can show that the lower right p x p block of T™1JT ! is

Optl"wopt (m—é — 1)—2 bt
{@" (§)wopt}? =€

The proof is completed by plugging in wep = T p(€)/{15T 1 o(¢)}.
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